首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
To study the impact of emissions at an airport on local air quality, a measurement campaign at the Zurich airport was performed from 30 June 2004 to 15 July 2004. Measurements of NO, NO2, CO and CO2 were conducted with open path devices to determine real in-use emission indices of aircraft during idling. Additionally, air samples were taken to analyse the mixing ratios of volatile organic compounds (VOC). Temporal variations of VOC mixing ratios on the airport were investigated, while other air samples were taken in the plume of an aircraft during engine ignition. CO concentrations in the vicinity of the terminals were found to be highly dependent on aircraft movement, whereas NO concentrations were dominated by emissions from ground support vehicles. The measured emission indices for aircraft showed a strong dependence upon engine type. Our work also revealed differences from emission indices published in the emission data base of the International Civil Aviation Organisation. Among the VOC, reactive C2–C3 alkenes were found in significant amounts in the exhaust of an engine compared to ambient levels. Also, isoprene, a VOC commonly associated with biogenic emissions, was found in the exhaust, however it was not detected in refuelling emissions. The benzene to toluene ratio was used to discriminate exhaust from refuelling emission. In refuelling emissions, a ratio well below 1 was found, while for exhaust this ratio was usually about 1.7.  相似文献   

2.
Volatile organic compounds (VOCs) are emitted from anthropogenic and natural (biogenic) sources into the atmosphere. Characterizing their ambient mixing ratios or concentrations is a challenge because VOCs comprise hundreds of species, and accurate measurements are difficult. Long-term hourly and daily-resolution data have been collected in the metropolitan area of Atlanta, Georgia, a major city dominated by motor vehicle emissions. A series of observations of daily, speciated C2–C10 non-methane organic compounds (NMOC) and oxygenated hydrocarbons (OVOC) in mid-town Atlanta (Jefferson Street, JST) are compared with data from three urban-suburban sites and a nearby non-urban site. Annual-average mixing ratios of NMOC and OVOC at JST declined from 1999 through 2007. Downward trends in NMOC, CO, and NOy corroborate expected emission changes as reflected in emission inventories for Atlanta’s Fulton County. Comparison of the JST NMOC composition with data from roadside and tunnel sampling reveals similarities to motor vehicle dominated samples. The JST annual average VOC-OH reactivities from 1999 to 2007 were relatively constant compared with the decline in annual-average NMOC mixing ratios. Mean reactivity at JST, in terms of concentration*kOH, was approximately 40% alkenes, 22% aromatics, 16% isoprene and 6% other biogenics, 13% C7–C10 alkanes and 3% C2-C6 alkanes, indicating that biogenic NMOCs are important but not dominant contributors to the urban reactive NMOC mix. In contrast, isoprene constituted ~50% of the VOC-OH reactivities at two non-urban sites. Ratios of 24-hour average CO/benzene, CO/isopentane, and CO/acetylene concentrations indicate that such species are relatively conserved, consistent with their low reactivity. Ratios of more-reactive to less-reactive species show diurnal variability largely consistent with expected emission patterns, transport and mixing of air, and chemical processing.  相似文献   

3.
Carbonyl sulfide is found as a major sulfur compound in anodic gases of commercial aluminium electrolysis. Recent spectroscopic measurements on industrial aluminium smelters found typical CO/COS ratios between 80 and 200. This results in specific COS emissions of between 1 and 7 kg/t(Al) if all COS is released into the atmosphere. In 1993 aluminium production would have been responsible for between 0.02 and 0.14 Tg of COS emissions. Currently, aluminium production does not seem to influence the total atmospheric COS budget to an extent beyond its natural variability. If recent growth rates of global aluminium production are sustained, however, COS emissions would quadruple until 2030. Together with increasing aircraft emissions into the stratosphere, an increase of the sulfate background aerosol is to be expected that could significantly enhance ozone depletion. The use of inert anodes is recommended to reduce aluminium production emissions of COS and CF4, C2F6, CO2, and CO at the same time.  相似文献   

4.
ABSTRACT

Idle emissions of total hydrocarbon (THC), CO, NOx, and particulate matter (PM) were measured from 24 heavy-duty diesel-fueled (12 trucks and 12 buses) and 4 heavy-duty compressed natural gas (CNG)-fueled vehicles. The volatile organic fraction (VOF) of PM and aldehyde emissions were also measured for many of the diesel vehicles. Experiments were conducted at 1609 m above sea level using a full exhaust flow dilution tunnel method identical to that used for heavy-duty engine Federal Test Procedure (FTP) testing. Diesel trucks averaged 0.170 g/min THC, 1.183 g/min CO, 1.416 g/min NOx, and 0.030 g/min PM. Diesel buses averaged 0.137 g/min THC, 1.326 g/min CO, 2.015 g/min NOx, and 0.048 g/min PM.

Results are compared to idle emission factors from the MOBILE5 and PART5 inventory models. The models significantly (45-75%) overestimate emissions of THC and CO in comparison with results measured from the fleet of vehicles examined in this study. Measured NOx emissions were significantly higher (30-100%) than model predictions. For the pre-1999 (pre-consent decree) truck engines examined in this study, idle NOx emissions increased with Health and Environment; June 30, 1999 (available from the authors).  相似文献   

5.
To meet increasingly stringent regulations for diesel engines, technologies such as combustion strategies, aftertreatment components, and fuel composition have continually evolved. The emissions reduction achieved by individual aftertreatment components using the same engine and fuel has been assessed and published previously (Liu et al., 2008a, Liu et al., 2008b, Liu et al., 2008c). The present study instead adopted a systems approach to evaluate the net effect of the corresponding technologies for model-year 2004 and 2007 engines. The 2004 engine was equipped with an exhaust gas recirculation (EGR) system, while the 2007 engine had an EGR system, a crankcase emissions coalescer, and a diesel particulate filter. The test engines were operated under the transient federal test procedure and samples were collected with a source dilution sampling system designed to stimulate atmospheric cooling and dilution conditions. The samples were analyzed for elemental carbon, organic carbon, and C1, C2, and C10 through C33 particle-phase and semi-volatile organic compounds. Of the more than 150 organic species analyzed, the largest portion of the emissions from the 2004 engine consisted of formaldehyde, acetaldehyde, and naphthalene and its derivatives, which were significantly reduced by the 2007 engine and emissions technology. The systems approach in this study simulates the operation of real-world diesel engines, and may provide insight into the future development of integrated engine technology. The results supply updated information for assessing the impact of diesel engine emissions on the chemical processes, radiative properties, and toxic components of the atmosphere.  相似文献   

6.
Multi-year inventories of biomass burning emissions were established in the Pearl River Delta (PRD) region for the period 2003–2007 based on the collected activity data and emission factors. The results indicated that emissions of sulfur dioxide (SO2), nitrogen oxide (NOx), ammonia (NH3), methane (CH4), organic carbon (OC), non-methane volatile organic compounds (NMVOC), carbon monoxide (CO), and fine particulate matter (PM2.5) presented clear declining trends. Domestic biofuel burning was the major contributor, accounting for more than 60% of the total emissions. The preliminary temporal profiles were established with MODIS fire count information, showing that higher emissions were observed in winter (from November to March) than other seasons. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3  km, using GIS-based land use data as spatial surrogates. Large amount of emissions were observed mostly in the less developed areas in the PRD region. The uncertainties in biomass burning emission estimates were quantified using Monte Carlo simulation; the results showed that there were higher uncertainties in organic carbon (OC) and elemental carbon (EC) emission estimates, ranging from ?71% to 133% and ?70% to 128%, and relatively lower uncertainties in SO2, NOx and CO emission estimates. The key uncertainty sources of the developed inventory included emission factors and parameters used for estimating biomass burning amounts.  相似文献   

7.
This paper presents the regulated and unregulated exhaust emissions of a diesel passenger vehicle, operated with low sulphur automotive diesel and soy methyl ester blends. Emission and fuel consumption measurements were conducted under real driving conditions (Athens Driving Cycle, ADC) and compared with those of a modified New European Driving Cycle (NEDC) using a chassis dynamometer. A Euro II compliant diesel vehicle was used in this study, equipped with an indirect injection diesel engine, fuelled with diesel fuel and biodiesel blends at proportions of 5, 10, and 20% respectively. Unregulated emissions of 11 polycyclic aromatic hydrocarbons (PAHs), 5 nitro-PAHs, 13 carbonyl compounds (CBCs) and the soluble organic fraction (SOF) of the particulate matter were measured. Qualitative hydrocarbon analysis was also performed on the SOF. Regulated emissions of NOx, CO, HC, CO2, and PM were also measured over the two test cycles. It was established that some of the emissions measured over the (hot-start) NEDC differed from the real-world cycle. Significant differences were also observed in the vehicle's fuel consumption between the two test cycles. The addition of biodiesel reduced the regulated emissions of CO, HC and PM, while an increase in NOx was observed over the ADC. Carbonyl emissions, PAHs and nitro-PAHs were reduced with the addition of biodiesel over both driving cycles.  相似文献   

8.
We have used a global version of the Regional Air Pollution Information and Simulation (RAINS) model to estimate anthropogenic emissions of the air pollution precursors sulphur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), primary carbonaceous particles of black carbon (BC), organic carbon (OC) and methane (CH4). We developed two scenarios to constrain the possible range of future emissions. As a baseline, we investigated the future emission levels that would result from the implementation of the already adopted emission control legislation in each country, based on the current national expectations of economic development. Alternatively, we explored the lowest emission levels that could be achieved with the most advanced emission control technologies that are on the market today. This paper describes data sources and our assumptions on activity data, emission factors and the penetration of pollution control measures. We estimate that, with current expectations on future economic development and with the present air quality legislation, global anthropogenic emissions of SO2 and NOx would slightly decrease between 2000 and 2030. For carbonaceous particles and CO, reductions between 20% and 35% are computed, while for CH4 an increase of about 50% is calculated. Full application of currently available emission control technologies, however, could achieve substantially lower emissions levels, with decreases up to 30% for CH4, 40% for CO and BC, and nearly 80% for SO2.  相似文献   

9.
The Indo-Gangetic plain (IGP) has received extensive attention of the global scientific community due to higher levels of trace gases and aerosols over this region. Satellite retrievals and model simulations show that, in particular, the eastern part IGP is highly polluted. Despite this attention, in situ measurements of trace gases are very limited over this region. This paper presents measurements of SO2, CO, CH4, and C2–C5 NMHCs during March 2012–February 2013 over Kolkata, a megacity in the eastern IGP, with a focus on processes impacting their levels. The mean SO2 and C2H6 concentrations during winter and post-monsoon periods were eight and three times higher compared to pre-monsoon and monsoon. Early morning enhancements in SO2 and several NMHCs during winter connote boundary layer effects. Daytime elevations in SO2 during pre-monsoon and monsoon suggest impacts of photo-oxidation. Inter-species correlations and trajectory analysis evince transport of SO2 from regional combustion sources (e.g., coal burning in power plants, industries) along the east of the Indo-Gangetic plain impacting SO2 levels at the site. However, C2H2 to CO ratio over Kolkata, which are comparable to other urban regions in India, show impacts of local biofuel combustions. Further, high levels of C3H8 and C4H10 evince the dominance of LPG/petrochemicals over the study location. The suite of trace gases measured during this study helps to decipher between impacts of local emissions and influence of transport on their levels.  相似文献   

10.
The objective of this study was to characterize exhaust emissions from a series of handheld, 2-stroke small engines. A total of 23 new and used engines from model years 1981–2003 were studied; these engines spanned three phases of emission control (pre-control, phase-1, phase-2). Measured emissions included carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), hydrocarbons (HC), fine particulate matter (PM2.5), and sulfur dioxide (SO2). Emissions reductions in CO (78%) and HC (52%) were significant between pre-control and phase-2 engines. These reductions can be attributed to improvements in engine design, reduced scavenging losses, and implementation of catalytic exhaust control. Total hydrocarbon emissions were strongly correlated with fuel consumption rates, indicating varying degrees of scavenging losses during the intake/exhaust stroke. The use of a reformulated gasoline containing 10% ethanol resulted in a 15% decrease in HC and a 29% decrease in CO emissions, on average. Increasing oil content of 2-stroke engine fuels results in a substantial increase of PM2.5 emissions as well as smaller increases in HC and CO emissions. Results from this study enhance existing emission inventories and appear to validate predicted improvements to ambient air quality through implementation of new phase-2 handheld emission standards.  相似文献   

11.
ABSTRACT

Emissions of polychlorinated dibenzo-p-dioxins and poly-chlorinated dibenzofurans (PCDDs/Fs) from incinerators and other stationary combustion sources are of environmental concern because of the toxicity of certain PCDD/F congeners. Measurement of trace levels of PCDDs/Fs in combustor emissions is not a trivial matter. Development of one or more simple, easy-to-measure, reliable indicators of stack PCDD/F concentrations not only would enable incinerator operators to economically optimize system performance with respect to PCDD/F emissions, but could also provide a potential technique for demonstrating compliance status on a more frequent basis. This paper focuses on one approach to empirically estimate PCDD/F emissions using easy-to-measure volatile organic C2 chlorinated alk-ene precursors coupled with flue gas cleaning parameters. Three data sets from pilot-scale incineration experiments were examined for correlations between C2 chlorinated alk-enes and PCDDs/Fs. Each data set contained one or more C2 chloroalkenes that were able to account for a statistically significant fraction of the variance in PCDD/F emissions. Variations in the vinyl chloride concentrations were able to account for the variations in the PCDD/F concentrations strongly in two of the three data sets and weakly in one of the data sets.  相似文献   

12.
On-road vehicle emissions of carbon monoxide (CO), nitrogen oxides (NOx), and volatile organic compounds (VOCs) during 1995–2009 in the Atlanta Metropolitan Statistical Area were estimated using the Motor Vehicle Emission Simulator (MOVES) model and data from the National Emissions Inventories and the State of Georgia. Statistically significant downward trends (computed using the nonparametric Theil-Sen method) in annual on-road CO, NOx, and VOC emissions of 6.1%, 3.3%, and 6.0% per year, respectively, are noted during the 1995–2009 period despite an increase in total vehicle distance traveled. The CO and NOx emission trends are correlated with statistically significant downward trends in ambient air concentrations of CO and NOx in Atlanta ranging from 8.0% to 11.8% per year and from 5.8% to 8.7% per year, respectively, during similar time periods. Weather-adjusted summertime ozone concentrations in Atlanta exhibited a statistically significant declining trend of 2.3% per year during 2001–2009. Although this trend coexists with the declining trends in on-road NOx, VOC, and CO emissions, identifying the cause of the downward trend in ozone is complicated by reductions in multiple precursors from different source sectors.
Implications:Large reductions in on-road vehicle emissions of CO and NOx in Atlanta from the late 1990s to 2009, despite an increase in total vehicle distance traveled, contributed to a significant improvement in air quality through decreases in ambient air concentrations of CO and NOx during this time period. Emissions reductions in motor vehicles and other source sectors resulted in these improvements and the observed declining trend in ozone concentrations over the past decade. Although these historical trends cannot be extrapolated to the future because pollutant concentration contributions due to on-road vehicle emissions will likely become an increasingly smaller fraction of the atmospheric total, they provide an indication of the benefits of past control measures.  相似文献   

13.
Abstract

Air quality is degraded by many factors, among which the emissions from on‐road vehicles play a significant role. Timely and accurate estimate of such emissions becomes very important for policy‐making and effective control measures. However, lack of traffic data and outdated emission software make this task difficult. This research has demonstrated a new method that facilitates the vehicular emission inventories at the local level by using shorter-time Highway Performance Monitoring System (HPMS) traffic data along with the latest U.S. Environment Protection Agency (EPA) emission modeling software, MOBILE6. The conversion methodology was developed for converting readily available HPMS traffic volume data into EPA MOBILE-based traffic classifications, and a corresponding software program was written for automating the process. EPA MOBILE6 model was used to obtain emissions of nitrogen oxides (NOx), volatile organic compound (VOC), and cabon monoxide (CO) emitted by the parent traffic and subsampled traffic data, and these emissions were additionally compared. The case study has shown that the difference of the magnitude between the emission estimates produced by certain subsampled and parent traffic data are minor, indicating that subsampled HPMS data can be used for reporting parent traffic emissions. It was also observed that traffic emissions follow a Weibull distribution, and NOx emissions were more sensitive to the traffic data composition than VOC and CO. Lastly, use of average emission values of 20 or 30 consecutive minutes appears to be valid for representing hourly emissions.  相似文献   

14.
Quasi-continuous measurements of NOx, CO and C5–C12 hydrocarbons made during the MEDCAPHOT-TRACE experiment in a street canyon with heavy traffic load were used to estimate the CO/NOx and 36 individual NMHC/NOx traffic emission ratios in the Athens basin. A traffic emission inventory has been compiled for Athens and aspects of this inventory were tested against measurements. The results indicate that although the main features of the 9:00 to 15:00 variations of the NMHC/NOx and CO/NOx inventory emission ratios are in agreement with observations, during the rest of the day the fine structure of the variations of these ratios cannot be accurately predicted by the inventory. Comparison of pollutant emission ratios derived from ambient measurements with emission ratios predicted by existing inventories for Athens reveals serious discrepancies. Further, the experimental results and theoretical considerations indicate that the speciation of evaporative emissions changes with increasing ambient temperature in favour of the most volatile HC species, thus changing the speciation of traffic emissions during the course of the day. This is an aspect that is not taken into account in present urban photochemical modelling inventories.  相似文献   

15.
ABSTRACT

Profiles of the sources of nonmethane organic compounds (NMOCs) were developed for emissions from vehicles, petroleum fuels (gasoline, liquefied petroleum gas [LPG], and natural gas), a petroleum refinery, a smelter, and a cast iron factory in Cairo, Egypt. More than 100 hydrocarbons and oxygenated hydrocarbons were tentatively identified and quantified. Gasoline-vapor and whole-gasoline profiles could be distinguished from the other profiles by high concentrations of the C5 and C6 saturated hydrocarbons. The vehicle emission profile was similar to the whole-gasoline profile, with the exception of the unsaturated and aromatic hydrocarbons, which were present at higher concentrations in the vehicle emission profile. High levels of the C2-C4 saturated hydrocarbons, particularly n-butane, were characteristic features of the petroleum refinery emissions. The smelter and cast iron factory emissions were similar to the refinery emissions; however, the levels of benzene and toluene were greater in the former two sources. The LPG and natural gas emissions contained high concentrations of n-butane and ethane, respectively. The NMOC source profiles for Cairo were distinctly different from profiles for U.S. sources, indicating that NMOC source profiles are sensitive to the particular composition of petroleum fuels that are used in a location.  相似文献   

16.
Speciated volatile organic compound (VOC) and carbon monoxide (CO) measurements from the Marylebone Road site in central London from 1998 through 2008 are presented. Long-term trends show statistically significant decreases for all the VOCs considered, ranging from ?3% to ?26% per year. Carbon monoxide decreased by ?12% per year over the measurement period. The VOC trends observed at the kerbside site in London showed greater rates of decline relative to trends from monitoring sites in rural England (Harwell) and a remote high-altitude site (Hohenpeissenberg), which showed decreases for individual VOCs from ?2% to ?13% per year. Over the same 1998 through 2008 period VOC to CO ratios for London remained steady, an indication that emissions reduction measures affected the measured compounds equally. Relative trends comparing VOC to CO ratios between Marylebone Road and Hohenpeissenberg showed greater similarities than absolute trends, indicating that emissions reductions measures in urban areas are reflected by regional background locations. A comparison of VOC mixing ratios and VOC to CO ratios was undertaken for London and other global cities. Carbon monoxide and VOCs (alkanes greater than C5, alkenes, and aromatics) were found to be strongly correlated (>0.8) in the Annex I countries, whereas only ethene and ethyne were strongly correlated with CO in the non-Annex I countries. The correlation results indicate significant emissions from traffic-related sources in Annex I countries, and a much larger influence of other sources, such as industry and LPG-related sources in non-Annex I countries. Yearly benzene to ethyne ratios for London from 2000 to 2008 ranged from 0.17 to 0.29 and compared well with previous results from US cities and three global megacities.  相似文献   

17.
We measured and analyzed daily mean concentrations of volatile organic compounds (VOC) at Ulsan industrial and downtown sites from 3 to 8 June 1997. The industrial site is situated at the boundary of a petrochemical complex and the other is at downtown area in Ulsan. At each site, we collected ambient air samples in passivated stainless-steel containers by using constant flow samplers and analyzed them by a GC-FID. At Ulsan industrial site, the concentrations and their daily variations of total VOC were higher than those at the downtown site. The concentrations of oxygenated hydrocarbons were the highest among seven hydrocarbon groups at both sites. The fraction of C2–C5 light hydrocarbon concentrations to C2–C9 hydrocarbons at Ulsan industrial site was higher than that in other industrial areas. It suggests that fugitive emissions of light hydrocarbons in Ulsan industrial areas might be higher than those of other industrial areas. Under favorable wind conditions, the influence of industrial emissions of VOC on the downtown hydrocarbon levels was observed.  相似文献   

18.
Bioethanol for use in vehicles is becoming a substantial part of global energy infrastructure because it is renewable and some emissions are reduced. Carbon monoxide (CO) emissions and total hydrocarbons (THC) are reduced, but there is still controversy regarding emissions of nitrogen oxides (NOx), aldehydes, and ethanol; this may be a concern because all these compounds are precursors of ozone and secondary organic aerosol (SOA). The amount of emissions depends on the ethanol content, but it also may depend on the engine quality and ethanol origin. Thus, a photochemical chamber was used to study secondary gas and aerosol formation from two flex-fueled vehicles using different ethanol blends in gasoline. One vehicle and the fuel used were made in the United States, and the others were made in Brazil. Primary emissions of THC, CO, carbon dioxide (CO2), and nonmethane hydrocarbons (NMHC) from both vehicles decreased as the amount of ethanol in gasoline increased. NOx emissions in the U.S. and Brazilian cars decreased with ethanol content. However, emissions of THC, CO, and NOx from the Brazilian car were markedly higher than those from the U.S. car, showing high variability between vehicle technologies. In the Brazilian car, formation of secondary nitrogen dioxide (NO2) and ozone (O3) was lower for higher ethanol content in the fuel. In the U.S. car, NO2 and O3 had a small increase. Secondary particle (particulate matter [PM]) formation in the chamber decreased for both vehicles as the fraction of ethanol in fuel increased, consistent with previous studies. Secondary to primary PM ratios for pure gasoline is 11, also consistent with previous studies. In addition, the time required to form secondary PM is longer for higher ethanol blends. These results indicate that using higher ethanol blends may have a positive impact on air quality.

Implications: The use of bioethanol can significantly reduce petroleum use and greenhouse gas emissions worldwide. Given the extent of its use, it is important to understand its effect on urban pollution. There is a controversy on whether there is a reduction or increase in PM emission when using ethanol blends. Primary emissions of THC, CO, CO2, NOx, and NMHC for both cars decreased as the fraction of ethanol in gasoline increased. Using a photochemical chamber, the authors have found a decrease in the formation of secondary particles and the time required to form secondary PM is longer when using higher ethanol blends.  相似文献   


19.
We present measurements of C1–C8 volatile organic compounds (VOCs) at four sites ranging from urban to rural areas in Hong Kong from September 2002 to August 2003. A total of 248 ambient VOC samples were collected. As expected, the urban and sub-urban sites generally gave relatively high VOC levels. In contrast, the average VOC levels were the lowest in the rural area. In general, higher mixing ratios were observed during winter/spring and lower levels during summer/fall because of seasonal variations of meteorological conditions. A variation of the air mass composition from urban to rural sites was observed. High ratios of ethyne/CO (5.6 pptv/ppbv) and propane/ethane (0.50 pptv/pptv) at the rural site suggested that the air masses over the territory were relatively fresh as compared to other remote regions. The principal component analysis (PCA) with absolute principal component scores (APCS) technique was applied to the VOC data in order to identify and quantify pollution sources at different sites. These results indicated that vehicular emissions made a significant contribution to ambient non-methane VOCs (NMVOCs) levels in urban areas (65±36%) and in sub-urban areas (50±28% and 53±41%). Other sources such as petrol evaporation, industrial emissions and solvent usage also played important roles in the VOC emissions. At the rural site, almost half of the measured total NMVOCs were due to combustion sources (vehicular and/or biomass/biofuel burning). Petrol evaporation, solvent usage, industrial and biogenic emissions also contributed to the atmospheric NMVOCs. The source apportionment results revealed a strong impact of anthropogenic VOCs to the atmosphere of Hong Kong in both urban/sub-urban and rural areas.  相似文献   

20.
Abstract

The purpose of this investigation was to quantify the potential of natural gas to reduce emissions from stationary combustion sources by analyzing the case study of the metropolitan region of Santiago, Chile. For such purposes, referential base scenarios have been defined that represent with and without natural gas settings. The method to be applied is an emission estimate based on emission factors. The results for this case study reveal that stationary combustion sources that replaced their fuel reduced particulate matter (PM) emissions by 61%, sulfur oxides (SOx) by 91%, nitrogen oxides (NOx) by 40%, and volatile organic compounds (VOC) by 10%. Carbon mon-oxide (CO) emissions were reduced by 1%. As a result of this emission reduction, in addition to reductions caused by other factors, such as a shift to cleaner fuels other than natural gas, technological improvements, and sources which are not operative, emission reduction goals set forth by the environmental authorities were broadly exceeded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号