首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of policies adopted by the federal government and the states have been designed to promote waste reduction or influence the choice of waste disposal technologies employed by generators of hazardous waste. Graphic analysis of smoothed time series data for hazardous wastes manifested in New York State for the period between June 1982 and February 1987 suggests that some of these policies have had the intended effects.

Significant shifts in manifested waste volumes are evident that coincide with the following policy interventions: (1) increased state waste-end tax rates; (2) state and federal landfill bans; (3) federal restrictions on burning hazardous wastes and waste oils for energy recovery; and (4) changes in the federal regulatory definition of hazardous waste. Other changes in waste generation and management appear to be attributable to such factors as state and regional economic conditions and changes in instate treatment and disposal facility capacity. Analysis of the management of specific waste types supports evidence from the graphic analysis that waste generators changed from land disposal to “higher” waste handling technologies in response to several policy interventions.  相似文献   

2.
A number of policies adopted by the federal government and the state have been designed to promote waste reduction or influence the choice of waste disposal technologies employed by generators of hazardous waste. Graphic analysis of smoothed time series data for hazardous wastes manifested in New York State for the period between June 1982 and February 1987 suggests that some of these policies have had the intended effects. Significant shifts in manifested waste volumes are evident that coincide with the following policy interventions: (1) increased state waste-end tax rates; (2) state and federal landfill bans; (3) federal restrictions on burning hazardous wastes and waste oils for energy recovery; and (4) changes in the federal regulatory definition of hazardous waste. Other changes in waste generation and management appear to be attributable to such factors as state and regional economic conditions and changes in instate treatment and disposal facility capacity. Analysis of the management of specific waste types supports evidence from the graphic analysis that waste generators changed from land disposal to "higher" waste handling technologies in response to several policy interventions.  相似文献   

3.
The U.S. Congress and the U.S. Environmental Protection Agency believe that treatment and recovery techniques should be given maximum priority when considering methods for managing the nation's generated hazardous waste. A prohibition for the disposal of certain categories of hazardous wastes either directly onto or into the land without being treated to an accepted degree prior to such disposal practice has been promulgated.1 Wastes containing toxic metals and cyanide complexes have been selected as a group to be restricted. Due to the high generation rate associated with this category, a large capacity of waste treatment processing will be required. Existing and emerging treatment alternatives which are or have the potential to be employed for waste treatment of metal bearing wastes are presented in this paper.  相似文献   

4.
Persistent hazardous wastes are produced in the recovery, processing and upgrading of crude petroleum in Nigeria. However, recent developments in environmental pollution control are drawing increasing attention to the problems of hazardous wastes. The ever-increasing need to control these wastes from the petroleum industry often compels the chemical engineer to specify methods of treatment and disposal. Present methods for disposal are becoming increasingly undesirable for a number of reasons, and incineration is being considered as an alternative. This paper reviews the extent of hazardous waste generation from the Nigerian petroleum industry and its environmental implications. It also examines the current disposal methods and the incineration technology option. The major chemical engineering concepts of the incineration process and the principles guiding their operations are discussed. The potential for the use of incineration is examined, as well as information that would aid the choice of incineration system for new applications.  相似文献   

5.
The quantity and composition of RCRA hazardous wastes incinerated during 1986 were examined using the National Hazardous Waste Survey. This Survey, collected for U.S. EPA by the Research Triangle Institute, is the most extensive examination of hazardous waste generation and management available. The survey data show that although a wide variety of hazardous wastes were treated by incineration, more than 75 percent of incinerated waste streams were from chemical manufacturing. The survey data also show that more than 90 percent of the incinerated wastes were treated by incinerators located at the facility generating the waste. Despite the predominance of a single industrial sector in generating incinerated hazardous wastes, the compositional profile of the wastes is far from uniform. To illustrate this variability, the metals and chlorine content of the wastes are reported along with the sources of the metal and chlorine loadings.  相似文献   

6.
ABSTRACT

The purpose of this investigation was to evaluate the success of residues from advanced Clean Coal Technology (CCT) systems as stabilization agents for heavy metal containing hazardous wastes. In the context examined here, stabilization refers to techniques that reduce the toxicity of a waste by converting the hazardous constituents to a less soluble, mobile, or toxic form.1 Three advanced CCT byproducts were used: coal waste-fired circulating fluidized bed combustor residue, pressurized fluidized bed combustor residue, and spray drier residue. Seven metal-laden hazardous wastes were treated: three contaminated soils, two air pollution control dusts, wastewater treatment plant sludge, and sandblast waste. Each of the seven hazardous wastes was treated with each of the three CCT byproducts at dosages of 10, 30, and 50% by weight (byproduct:waste). The treatment effectiveness of each mixture was evaluated by the Toxicity Characteristic Leaching Procedure. Of the 63 mixtures evaluated, 21 produced non-hazardous residues. Treatment effectiveness can likely be attributed to mechanisms such as precipitation and encapsulation due to the formation of hydrated calcium silicates and calcium sulfo-alu-minates. Results indicate that these residues have potential beneficial uses to the hazardous waste treatment community, possibly substituting for costly treatment chemicals.  相似文献   

7.
掌握填埋废物的工程力学特性是确保危险废物填埋堆体稳定性的重要前提条件,因此,针对6种典型危险废物的工程力学特性开展了调查研究.研究结果表明,污泥类危险废物的含水率和有机质含量远高于非污泥类危险废物,而前者的比重则显著低于后者.污泥类危险废物的渗透系数相对较小,比污染土壤和飞灰炉渣混合物的渗透系数小1个数量级,比滤池填料的渗透系数小2个数量级.不同危险废物的无侧限抗压强度排序为:飞灰炉渣混合物(314.3 kPa)和滤池填料(278.9 kPa)>污染土壤(124.9 kPa)>杭州氧气厂污泥(68.6 kPa)、锌铬污泥(71.4 kPa)、油泥(58.4 kPa).不同危险废物的粘聚力排序为:飞灰炉渣混合物(40.8 kPa)、滤池填料(31.1 kPa)>污染土壤(20.9 kPa)>杭州氧气厂污泥(1.94kPa)、锌铬污泥(3.10 kPa)、油泥(1.81 kPa).此外,不同危险废物的内摩擦角差异相对较小,其变化范围在18.8°~35.0°之间.综合分析可知,飞灰炉渣混合物和滤池填料的工程力学特性较好,而污泥类危险废物的工程力学特性则较差.  相似文献   

8.
The Superfund Innovative Technology Evaluation (SITE) program was authorized as part of the 1986 amendments to the Superfund legislation. It represents a joint effort between U.S. EPA’s Office of Research and Development and Office of Solid Waste and Emergency Response. The program is designed to assist and encourage the development of waste treatment technologies that would contribute to more solutions to our hazardous waste problems.

Recently, EPA, through the SITE program, issued a work assignment to assess the “stateof- the-art” of electroklnetically enhanced contaminant removal from soils. Prior research efforts, both laboratory and field, have demonstrated that electroosmosis has the potential to be effective In facilitating the removal of certain types of hazardous wastes from soils. Particularly encouraging results have been achieved with inorganics in fine-grained soils where more traditional removal alternatives are less effective.

Although the results of various studies suggest that electrokinetics is a promising technology, further testing Is needed at both the laboratory and field levels to fully develop this technology for site remediation. A conceptual test program Is presented based on best available data which incorporates system design and operating parameters used in previous applications of this technology In the use of electrokinetics treatment as a remediation technique at hazardous waste sites.  相似文献   

9.
Formation, release and control of dioxins in cement kilns   总被引:2,自引:1,他引:1  
Karstensen KH 《Chemosphere》2008,70(4):543-560
Co-processing of hazardous wastes in cement kilns have for decades been thought to cause increased emissions of PCDD/PCDFs--a perception that has been evaluated in this study. Hundreds of PCDD/PCDF measurements conducted by the cement industry and others in the last few years, on emissions and solid materials, as well as recent test burns with hazardous wastes in developing countries do not support this perception. Newer data has been compared with older literature data and shows in particular that many emission factors have to be reconsidered. Early emission factors for cement kilns co-processing hazardous waste, which are still used in inventories, are shown to be too high compared with actual measurements. Less than 10 years ago it was believed that the cement industry was the main contributor of PCDD/PCDFs to air; data collected in this study indicates however that the industry contributes with less than 1% of total emissions to air. The Stockholm Convention on POPs presently ratified by 144 parties, classifies cement kilns co-processing hazardous waste as a source category having the potential for comparatively high formation and release of PCDD/PCDFs. This classification is based on early investigations from the 1980s and 1990s where kilns co-processing hazardous waste had higher emissions compared to those that did not burn hazardous waste. However, the testing of these kilns was often done under worst case scenario conditions known to favour PCDD/PCDF formation. More than 2000 PCDD/PCDF cement kiln measurements have been evaluated in this study, representing most production technologies and waste feeding scenarios. They generally indicate that most modern cement kilns co-processing waste today can meet an emission level of 0.1ngI-TEQ/m(3), when well managed and operated. In these cases, proper and responsible use of waste including organic hazardous waste to replace parts of the fossil fuel does not seem to increase formation of PCDD/PCDFs. Modern preheater/precalciner kilns generally seems to have lower emissions than older wet-process cement kilns. It seems that the main factors stimulating formation of PCDD/PCDFs is the availability of organics in the raw material and the temperature of the air pollution control device. Feeding of materials containing elevated concentrations of organics as part of raw-material-mix should therefore be avoided and the exhaust gases should be cooled down quickly in long wet and long dry cement kilns without preheating. PCDD/PCDFs could be detected in all types of solid samples analysed: raw meal, pellets and slurry; alternative raw materials as sand, chalk and different ashes; cement kiln dust, clinker and cement. The concentrations are however generally low, similar to soil and sediment.  相似文献   

10.
Waste minimization in the automotive repair industry is characterized by the large numbers of small quantity generators (SQG) producing solvent, alkaline and detergent hazardous wastes. On-site management of multiple processes which vary depending on the size of shop make the administration of hazardous waste policies particularly complex. This paper presents the quantities and types of hazardous materials typically produced. Guidelines are presented to allow generators to organize a waste minimization program.  相似文献   

11.
This paper discusses the Chemical Manufacturers Association's 1984 survey of the chemical industry's hazardous waste management practices. The survey data include a breakdown of how the industry's hazardous wastes are managed, detailing generation, treatment and disposal, and cover 725 plants in 81 companies. The 1984 survey is the third CM A hazardous waste survey, and the paper discusses resultant waste treatment trends from 1981- 1984, the period covered by previous surveys. A total of 278.5 million tons of hazardous waste was treated and disposed by survey respondents. Of this, 276.8 million tons was hazardous wastewater and 1.7 million tons was solid hazardous waste. The survey solid hazardous waste total was projected to the entire industry (Standard Industrial Code 2800) and is estimated at 6.9 million tons. The survey showed continued decreasing trends in hazardous waste generation in the chemical industry. It demonstrated changes in hazardous waste management practices, with decreased use of landfills and increased incineration of the solid wastes that are generated.  相似文献   

12.
Several designated hazardous wastes (metal plating waste, oil sludge, heavy metal processing sludge) were studied relative to potential detoxification using dry calcium based FGD sludges. The FGD waste was generated from a pilot scale system which utilized slurried lime, a spray drier, and a bag filter. Following detailed physical and chemical identification of the raw FGD and hazardous wastes, various mixtures were prepared and cured. In all cases, even with the organic sludge, a rigid structural material evolved due to the pozzolanic reactions occurring from the wetted dry FGD waste. Structural characteristics, physical character, and chemical leaching effects were evaluated. The solids were leached via both EPA-RCRA and ASTM proposed leaching procedures. In all cases, the hazardous constituents were retained and not leached. Finally, the feasibility of using dry FGD wastes as fixating materials is discussed.  相似文献   

13.
Spills, leaks, and accidental discharges of petroleum products have contaminated soil at thousands of sites in the United States. One remedial action technique for treating petroleum contaminated soil is the use of thermal desorption technologies.

This paper describes key elements of the U.S. Environmental Protection Agency report titled “Thermal Desorption Applications Manual for Treating Nonhazardous Petroleum Contaminated Soils.”1 The applications manual describes the types, mechanical and operating characteristics of thermal desorption technologies that are commercially available to treat petroleum-contaminated soils. It also provides step-by-step procedures to rate the critical success factors influencing the general applicability of thermal desorption at a particular site. These factors include site, waste and soil characteristics, regulatory requirements, and process equipment design and operating characteristics. Procedures are provided to determine the types of thermal desorption systems that are most technically suitable for a given application and to determine whether on-site or off-site treatment is likely to be the most cost-effective alternative. Key factors that determine process economics are identified, and estimated cost ranges for treating petroleum-contaminated soils are presented. Spreadsheets are provided that can be used for performing cost analyses for specific applications.

The aforementioned report is applicable only to the treatment of petroleum-contaminated soils that are exempt from being classified as hazardous wastes under the Resource Conservation and Recovery Act (RCRA) or as toxic materials under the Toxic Substances Control Act (TSCA). Although much of the technical discussion in this paper is applicable to the treatment of both nonhazardous and hazardous ortoxic materials, permitting requirements and treatment costs are significantly different forthe individual categories of waste materials.  相似文献   

14.
Abstract

The U.S. Army has established a policy of achieving a 50 percent reduction in hazardous waste generation by the end of 1992. To assist the Army in reaching this goal, the Environmental Division of the U.S. Army Construction Engineering Research Laboratory (USACERL) designed the Economic Analysis Model for Hazardous Waste Minimization (EAHWM). The EAHWM was designed to allow the user to evaluate the life cycle costs for various techniques used in hazardous waste minimization and to compare them to the life cycle costs of current operating practices. The program was developed in C language on an IBM compatible PC and is consistent with other pertinent models for performing economic analyses. The potential hierarchical minimization categories used in EAHWM Include source reduction, recovery and/or reuse, and treatment. Although treatment is no longer an acceptable minimization option, its use is widespread and has therefore been addressed in the model. The model allows for economic analysis for minimization of the Army’s six most important hazardous waste streams. These include, solvents, paint stripping wastes, metal plating wastes, industrial waste-sludges, used oils, and batteries and battery electrolytes. The EAHWM also includes a general application which can be used to calculate and compare the life cycle costs for minimization alternatives of any waste stream, hazardous or non-hazardous. The EAHWM has been fully tested and implemented in more than 60 Army installations in the United States.  相似文献   

15.
16.

Chromium-containing solid wastes have been generated by chemical and leather/tanning industries, and the management and proper disposal of the same wastes have been challenging tasks. A significant fraction of these wastes contains chromium compounds with chromium present in the hexavalent (Cr+6) form, which is hazardous to human beings, animals, and ecosystems. Since these wastes are discarded largely without proper treatments, soil and groundwater get contaminated and they can cause several health issues to human beings. Conventional methods developed to convert hazardous Cr6+ to Cr3+/Cr metal either generate secondary toxic wastes and unwanted by-products and/or are time-consuming processes. In this work, a plasma-assisted aluminothermic process is developed to convert the toxic waste into non-toxic products. The waste was mixed with aluminium powder and subjected to transferred arc plasma treatment in a controlled air atmosphere. Chemical analysis and Cr leachability studies of the waste material prior to plasma treatment have shown that it is highly toxic. Analysis of the products obtained from the plasma treatment showed that Cr and Fe present in the waste could be recovered as a metallic mixture as well as oxide slag, which were found to be non-toxic. Easy separation of the metallic fraction and the slag from the treated product is one of the merits of this process. Besides converting chromium-containing toxic waste to non-toxic materials, the process is rapid and recovers the metals from the waste completely.

  相似文献   

17.
沈阳市固体废物处置中心对工业危险废物采用了安全土地填埋技术 ,它的主要特点是安全、工艺简单、可操作性强。能够杜绝危险废物渗析液下渗污染地下水 ,同时又避免了危险废物污染环境卫生。本文主要以沈阳工业危险废物处置填埋场为例 ,介绍安全土地填埋的技术要求、设计要点等  相似文献   

18.
Decision-makers require useful tools, such as indicators, to help them make environmentally sound decisions leading to effective management of hazardous wastes. Four hazardous waste indicators are being tested for such a purpose by several countries within the Sustainable Development Indicator Programme of the United Nations Commission for Sustainable Development. However, these indicators only address the 'down-stream' end-of-pipe industrial situation. More creative thinking is clearly needed to develop a wider range of indicators that not only reflects all aspects of industrial production that generates hazardous waste but considers socio-economic implications of the waste as well. Sets of useful and innovative indicators are proposed that could be applied to the emerging paradigm shift away from conventional end-of-pipe management actions and towards preventive strategies that are being increasingly adopted by industry often in association with local and national governments. A methodological and conceptual framework for the development of a core-set of hazardous waste indicators has been developed. Some of the indicator sets outlined quantify preventive waste management strategies (including indicators for cleaner production, hazardous waste reduction/minimization and life cycle analysis), whilst other sets address proactive strategies (including changes in production and consumption patterns, eco-efficiency, eco-intensity and resource productivity). Indicators for quantifying transport of hazardous wastes are also described. It was concluded that a number of the indicators proposed could now be usefully implemented as management tools using existing industrial and economic data. As cleaner production technologies and waste minimization approaches are more widely deployed, and industry integrates environmental concerns at all levels of decision-making, it is expected that the necessary data for construction of the remaining indicators will soon become available.  相似文献   

19.
Abstract

The patented Carver-Greenfield (C-G) Process®, a combination of dehydration and solvent extraction treatment technologies, has a wide range of uses in separating hydrocarbon solvent-soluble hazardous organic contaminants (indigenous oil) from sludges, soils, and industrial wastes. As a result of this treatment, the products from a C-G Process facility are: ? Clean, dry solids which are typically suitable for disposal in nonhazardous landfills;

? Water which is treatable in an industrial or Publicly Owned Treatment Works (POTW) wastewater treatment facility;

? Extracted indigenous oil containing hydrocarbon soluble contaminants which may be recycled or reused or disposed of at less cost because its volume is smaller than the original waste feed.

The C-G Process was demonstrated on spent oily drilling fluids as part of the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation (SITE) Program. This paper summarizes the use of the C-G Process for economical treatment and minimization of hazardous refinery wastes, reviews the SITE program results, and describes extending the C-G Process technology to treatment of other wastes. Estimated treatment costs are presented.  相似文献   

20.
Hazardous wastes in the environment represent one of our most serious problems. Ever increasing quantities of toxic wastes have contaminated our land, air, and water. Lack of adequate hazardous waste disposal facilities is a critical problem. Landfilling toxic wastes is no longer considered safe. The tragedy of the Love Canal has demonstrated the need for proper hazardous waste disposal facilities. The best organic chemical waste disposal method is process incineration. Cement kilns have been used for burning toxic chemical industrial wastes in Canada, Michigan, New York, Sweden, etc. Existing cement kilns, when properly operated, can destroy most organic chemical wastes. Even the most complex chlorinated hydrocarbons, including PCB can be completely destroyed during normal cement kiln operations, with minimal emissions to the environment. Burning toxic chemical wastes in cement kilns, and other mineral industries, is mutually beneficial to both industry, who generates such wastes, and to society and government, who want to dispose properly of such wastes in a safe, environmentally acceptable manner. The added benefit of energy conservation is important, since large quantities of valuable fuel can be saved in the manufacture of cement when such techniques are employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号