首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

For the past 22 years in the Netherlands, the behavior of Hg in coal-fired power plants has been studied extensively. Coal from all over the world is fired in Dutch power stations. First, the Hg concentrations in these coals were measured. Second, the fate of the Hg during combustion was established by performing mass balance studies. On average, 43 ± 30% of the Hg was present in the flue gases downstream of the electrostatic precipitator (ESP; dust collector). In individual cases, this figure can vary between 1 and 100%. Important parameters are the Cl content of the fuel and the flue gas temperature in the ESP. On average, 54 ± 24% of the gaseous Hg was removed in the wet flue-gas desulfurization (FGD) systems, which are present at all Dutch coal-power stations. In individual cases, this removal can vary between 8% (outlier) and 72%.

On average, the fate of Hg entering the power station in the coal was as follows: <1% in the bottom ash, 49% in the pulverized fuel ash (ash collected in the ESP), 16.6% in the FGD gypsum, 9% in the sludge of the wastewater treatment plant, 0.04% in the effluent of the wastewater treatment plant, 0.07% in fly dust (leaving the stack), and 25% as gaseous Hg in the flue gases and emitted into the air. The distribution of Hg over the streams leaving the FGD depends strongly on the installation. On average, 75% of the Hg was removed, and the final concentration of Hg in the emitted flue gases of the Dutch power stations was only ~3 μg/mSTP 3 at 6% O2. During co-combustion with biomass, the removal of Hg was similar to that during 100% coal firing.

Speciation of Hg is a very important factor. An oxidized form (HgCl2) favors a high degree of removal. The conversion from Hg0 to HgCl2 is positively correlated with the Cl content of the fuel. A catalytic DENOX (SCR) favors the formation of oxidized Hg, and, in combination with a wet FGD, the total removal can be as high as 90%.  相似文献   

2.
From the hygienic point of view, not only the health hazards caused by air pollutants but also the odor from emitted flue gases should be reduced to a minimum. An effective control of the risk of odor at ground level presupposes knowledge of the source concentration of the odoriferous gas as well as its odor threshold. This threshold has to be estimated empirically, as the flue gases often contain a complex mixture of different odoriferous substances, the odor thresholds of which are in most cases unknown. For this purpose a method has been developed for estimating the odor thresholds of flue gases emitted, from different industrial processes. The method, afield method, is based on an exposure procedure, a number of subjects compare different concentrations of the flue gas with samples of fresh air and decide at what concentration the flue gas is no longer noticeable. The gas samples used are neither compressed, nor absorbed or heated before the exposure test. The method has been used in two studies on gases from Swedish sulfate cellulose plants. In order to estimate the effect on the odor threshold of different deodorizing measures, gas samples were taken not only from the stack but also from different phases in the production process. The results and a brief discussion on the practical applications of the method are given.  相似文献   

3.
A carefully selected combination of the techniques of gas-chromatography and negative ion chemical ionization mass spectrometry permits reliable quantitative determination of specific chlorinated dioxins in environmental samples. PCDDs and PCDFs were shown to be present in the fly ash and flue gases of all six municipal incinerators which were specially analyzed for these compounds.  相似文献   

4.
Multistage gas absorption of 1–50% nitric oxide, nitrogen dioxide, and nitrogen tetraoxide from air with water or caustic solutions can produce colorless stack discharges. The rate at which NO is oxidized to No2 in the gas phase and the solubility rate of No2 in water or solution are highly concentration dependent so that reductions of stack gas concentrations of nitrogen oxides below approximately 200 ppm appear to be impractical. High efficiency absorption combined with elevated discharge of the cleaned, colorless gases is an acceptable method of air pollution control for many troublesome operations. Experiences in the fields of rocketry and nuclear energy are cited. Engineering modifications of metal pickling operations have been found especially helpful in producing effective control at an acceptable cost.  相似文献   

5.
Kuo YM  Lin TC  Tsai PJ  Lee WJ  Lin HY 《Chemosphere》2003,51(4):313-319
Fate of polycyclic aromatic hydrocarbons (PAHs) during the vitrification of fly ash and bottom ash from the municipal waste incinerator in a coke bed furnace was investigated. In this system, both coke and lime were added to enhance the melting reaction. The major PAH sources in this system were ash and coke, which respectively contributed 97% and 3% of PAHs in the input-mass. During vitrification process, low molecular PAHs (LM-PAH, 2-3-ring), median molecular PAHs (MM-PAH, 4-ring) and high molecular PAHs (HM-PAH, 5-7-ring) mass respectively accounted for >99%, >99% and 84% of the output-mass emitted as the stack flue gas; while those discharged from the slag were <1%, <1% and 16%, respectively. The O/I (output-mass/input-mass) ratio of LM-, MM- and HM-PAHs were 0.063, 0.002 and <0.001, respectively. The high distribution in flue gas and O/I ratio of LM-PAHs is reasonable since they are more easily evaporated, hence difficult to be removed by air pollution control devices. On the contrary, the HM-PAHs, having lower vapor pressure, primarily stays mainly in slag. Based on the 21 total PAH content in feeding ash and slag, the reduction efficiency of the coke bed furnace was >99.9%. To minimize the risk of secondary pollution, the efficiency of coke bed furnace should be improved to reduce the PAH emission into ambient air.  相似文献   

6.
Abstract

A plasma-assisted ammonia injection technique was previously demonstrated as having the potential to remove NOx from combustion flue gases at SCR-comparable levels without the use of catalysts. However, these demonstrations did not prove the advantage of plasma assistance because they did not explicitly account for enhanced radical production by bulk thermal heating. An experiment using hot ammonia injection was performed to separate this thermal effect from the effect of radical production via interaction with a plasma. Under excess air conditions, results show that a thermal effect does provide improved NOx reduction, but not to the level achieved with the use of a plasma source. However, heating the injection gases provides only a minor improvement in NOx reduction at NH3/NOx ratios and temperatures typical of commercial cold SNCR applications. The plasma effect in ammonia radical injection was also found to be significant, accounting for an additional 15% to 35% of absolute NOx reduction beyond any thermal benefit at typical excess air conditions. The ammonia radical injection technique continues to show promise as an effective NOx reduction alternative.  相似文献   

7.
The purpose of this paper on industrial plan evaluation is twofold: to present tools which can be used to evaluate quantitatively certain aspects of air pollution control devices, and to point up specifically two areas in which research is urgently needed. These research areas are in removing solid particles after wetting in scrubbers and use of surface active agents in scrubbing gaseous pollutants. Therefore, the body of information presented is directed to engineers in the field of evaluating the air pollution potential of new industrial plants, to scientists involved in determining the parameters and effectiveness of control devices, and to research and development scientists in the field of surfactants.

One tool presented is a chart for measuring the effectiveness of incinerator afterburners and vapor incinerators. The required inputs to the chart are the rate of flue gas flow in standard cubic feet per minute and the auxiliary fuel burner capacity in Btu per hour. The chart yields the flue gas temperature increase which will result, given in degrees F. The second tool presented is a new psychrometric graph for the humidifying and cooling of gases from processes as hot as 3000°F. Inputs into the graph are the temperature of the gases entering the sprays from the hot process and the temperature desired before they enter a control device such as a fabric filter or a scrubber. The chart yield is the amount of water needed in gallons per thousand cubic feet of gas. The only calculation needed is a correction of the hot gas volume to 70°F. Water needed to saturate the gases can be read directly also.  相似文献   

8.
Chang MB  Chi KH  Chang SH  Yeh JW 《Chemosphere》2007,66(6):1114-1122
Partitioning of PCDD/F congeners between vapor/solid phases and removal and destruction efficiencies achieved with selective catalytic reduction (SCR) system for PCDD/Fs at an existing municipal waste incinerator (MWI) and metal smelting plant (MSP) in Taiwan are evaluated via stack sampling and analysis. The MWI investigated is equipped with electrostatic precipitators (EP, operating temperature: 230 degrees C), wet scrubbers (WS, operating temperature: 70 degrees C) and SCR (operating temperature: 220 degrees C) as major air pollution control devices (APCDs). PCDD/F concentration measured at stack gas of the MWI investigated is 0.728 ng-TEQ/Nm(3). The removal efficiency of WS+SCR system for PCDD/Fs reaches 93% in the MWI investigated. The MSP investigated is equipped with EP (operating temperature: 240 degrees C) and SCR (operating temperature: 290 degrees C) as APCDs. The flue gas sampling results also indicate that PCDD/F concentration treated with SCR is 1.35 ng-TEQ/Nm(3). The SCR system adopted in MSP can remove 52.3% PCDD/Fs from flue gases (SCR operating temperature: 290 degrees C, Gas flow rate: 660 kN m(3)/h). In addition, the distributions of PCDD/F congeners observed in the flue gases of the MWI and MSP investigated are significantly different. This study also indicates that the PCDD/F congeners measured in the flue gases of those two facilities are mostly distributed in vapor phase prior to the SCR system and shift to solid phase (vapor-phase PCDD/Fs are effectively decomposed) after being treated with catalyst. Besides, the results also indicate that with SCR highly chlorinated PCDD/F congeners can be transformed to lowly chlorinated PCDD/F congeners probably by dechlorination, while the removal efficiencies of vapor-phase PCDD/Fs increase with increasing chlorination.  相似文献   

9.
ABSTRACT

Analysis of Hg speciation in combustion flue gases is often accomplished in standardized sampling trains in which the sample is passed sequentially through a series of aqueous solutions to capture and separate oxidized Hg (Hg2+) and elemental Hg (Hg0). Such methods include the Ontario Hydro (OH) and the Alkaline Mercury Speciation (AMS) methods, which were investigated in the laboratory to determine whether the presence of Cl2 and other common flue gas species can bias the partitioning of Hg0 to front impingers intended to isolate Hg2+ species. Using only a single impinger to represent the front three impingers for each method, it was found that as little as 1-ppm Cl2 in a simulated flue gas mixture led to a bias of approximately 10-20% of Hg0 misreported as Hg2+ for both the OH and the AMS methods. Experiments using 100-ppm Cl2 led to a similar bias in the OH method, but to a 30-60% bias in the AMS method. These false readings are shown to be due to liquid-phase chemistry in the impinger solutions, and not necessarily to the gas-phase reactions between Cl2 and Hg as previously proposed. The pertinent solution chemistry causing the interference  相似文献   

10.
Congener profiles of PCB and a proposed new set of indicator congeners   总被引:2,自引:0,他引:2  
Ishikawa Y  Noma Y  Mori Y  Sakai S 《Chemosphere》2007,67(9):1838-1851
In this study, a new method for calculating total PCB and toxic equivalents (TEQ) of coplanar PCB (Co-PCB) was proposed, called the 'PCB dual method'. This method analysed various kinds of technical PCB, samples contaminated by technical PCB and byproduct PCB. In the PCB dual method, a data set of 15 indicator congeners was utilized for the calculations, having IUPAC nos. #3, #8, #28, #52, #77, #101, #105, #118, #126, #138, #153, #180, #194, #206 and #209. The 15 congener set was chosen from the major congeners, determined by HRGC/HRMS analysis, in 18 technical PCB, Kanechlor, Aroclor, Clophen and Chlorofen, and 20 other samples, such as indoor air, flue gases, emission gases, municipal solid waste (MSW), ash and sealant. To obtain total PCB and TEQ of Co-PCB, the intermediate sum for the concentration of the 15 congeners was multiplied by each multiplication factor. As a result, we obtained the average factor used to calculate total PCB in technical PCB and other samples. For technical PCB, the factor was 3.01, while for indoor air samples, flue and emission gases, MSW, ash and sealants, the factors were 3.92, 4.16, 3.68, 4.52 and 4.77, respectively. Moreover, the factor used to calculate the TEQ of Co-PCB in Kanechlor and other source samples were also obtained. The factors for Kanechlor, indoor air samples and emission gases from a cement plant were in the order of 10(-5), while the factor for flue gases in a MSW incinerator was in the order of 10(-3). These data were valuable for the rough estimation of the TEQ of Co-PCB without separation from other PCB before individual measurements.  相似文献   

11.
In this presentation, adaptation of the lime/limestone process for flue gas desulfurization (FGD) is discussed and how this process can be adapted to applications in the nonferrous smelting industry such as fugitive gases, copper reverberatory furnace gases, lead sintering gases, molybdenum roasting plant tail gases, and other weak SO2 smelter gases. Different methods for particulate removal are also discussed with emphasis on how the particulate removal process can be integrated with the desulfurization process.  相似文献   

12.
Lai YC  Lee WJ  Huang KL  Huang HH 《Chemosphere》2007,69(2):200-208
Despite increasing environmental concerns and stringent limitations on the sulfur content in fuels, many waste hydrodesulfurization (HDS) catalysts containing Co, Mo, Ni and V are generated in the petroleum refining process. To recover valuable metals in the waste HDS catalysts via hydrometallurgy, thermal treatment is usually performed first to remove contaminants (residual oil, carbon and sulfur) present on the surface of catalysts. In this study, the mass partitions of polycyclic aromatic hydrocarbons (PAHs) in different media (aqueous, particulate and gaseous) were quantified in order to determine the efficiency of three different air pollution control devices, cooling unit, filter and glass cartridge, on PAH removal. An afterburner and two furnace temperatures were used to observe the effect on the PAH contents of the treated residues. Results show that total-PAH content in treated residues decreased with the pyrolysis temperature of the primary furnace, while those generated in flue gases were destroyed by the afterburner at an efficiency of approximately 95%. In addition, the thermal process converts high molecular weight PAHs to low molecular weight PAHs, and the afterburner temperature involved (1200 degrees C) was high enough to prohibit the generation of high molecular weight PAHs (HM-PAHs), leading to the domination of low molecular weight PAHs (LM-PAHs) in flue gases, while treated residues were dominated by HM-PAHs. Finally, information on metal contents and their concentrations in the Toxicity Characteristic Leaching Procedure in waste HDS catalyst and thermal treated residues are examined as an index of the potential for metal recovery.  相似文献   

13.
The noncooperative air pollution reduction model (NCRM) that is currently adopted in China to manage air pollution reduction of each individual province has inherent drawbacks. In this paper, we propose a cooperative air pollution reduction game model (CRM) that consists of two parts: (1) an optimization model that calculates the optimal pollution reduction quantity for each participating province to meet the joint pollution reduction goal; and (2) a model that distribute the economic benefit of the cooperation (i.e., pollution reduction cost saving) among the provinces in the cooperation based on the Shapley value method. We applied the CRM to the case of SO2 reduction in the Beijing–Tianjin–Hebei region in China. The results, based on the data from 2003–2009, show that cooperation helps lower the overall SO2 pollution reduction cost from 4.58% to 11.29%. Distributed across the participating provinces, such a cost saving from interprovincial cooperation brings significant benefits to each local government and stimulates them for further cooperation in pollution reduction. Finally, sensitivity analysis is performed using the year 2009 data to test the parameters’ effects on the pollution reduction cost savings.

Implications: China is increasingly facing unprecedented pressure for immediate air pollution control. The current air pollution reduction policy does not allow cooperation and is less efficient. In this paper we developed a cooperative air pollution reduction game model that consists of two parts: (1) an optimization model that calculates the optimal pollution reduction quantity for each participating province to meet the joint pollution reduction goal; and (2) a model that distributes the cooperation gains (i.e., cost reduction) among the provinces in the cooperation based on the Shapley value method. The empirical case shows that such a model can help improve efficiency in air pollution reduction. The result of the model can serve as a reference for Chinese government pollution reduction policy design.  相似文献   

14.
Abstract

The removal system for the absorption of CO2 with amines and NH3 is an advanced air pollution control device to reduce greenhouse gas emissions. Absorption of CO2 by amines and NH3 solutions was performed in this study to derive the reaction kinetics. The absorption of CO2 as encountered in flue gases into aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), and NH3 was carried out using a stirred vessel with a plane gas-liquid interface at 50 °C. Various operating parameters were tested to determine the effect of these variables on the absorption kinetics of the reactants in both gas and liquid phases and the effect of competitions between various reactants on the mass-transfer rate.

The observed absorption rate increases with increasing gas-liquid concentration, solvent concentration, temperature, and gas flow rate, but changes with the O2 concentration and pH value. The absorption efficiency of MEA is better than that of NH3 and DEA, but the absorption capacity of NH3 is the best. The active energies of the MEA and NH3 with CO2 are 33.19 and 40.09 kJ/mol, respectively.  相似文献   

15.
Although sulphur emissions (mainly as SO2) have been continuously decreasing over the last 20 years in most western industrialized countries, localized SO2 problems still exist in conjunction with strong local emission, meteorological, and topographical factors. In this study, the effect of supplementary installed flue gas desulphurization (FGD) units at high-capacity power plants on regional air pollution in the Carpathian Basin is investigated. The dispersion and accumulation of the SO2 air pollutant are studied with the regional three-dimensional on-line atmosphere-chemistry model REMOTE. The changes in the SO2 air pollution are investigated by parallel simulations in a case study, where the single modified parameter is the SO2 emission rate. The results show that FGD units significantly reduce the horizontal and the vertical dispersion of the emitted SO2, and its transboundary transport, too. Beside the SO2 removal efficiency, the dispersion and accumulation also depend on the seasonal weather conditions. During winter, the dispersion and accumulation are higher than in other seasons. Due to this phenomenon, higher SO2 removal efficiency is needed to guarantee similar air quality features like in the other seasons.  相似文献   

16.
The fate and behavior of mercury in coal-fired power plants   总被引:8,自引:0,他引:8  
For the past 22 years in the Netherlands, the behavior of Hg in coal-fired power plants has been studied extensively. Coal from all over the world is fired in Dutch power stations. First, the Hg concentrations in these coals were measured. Second, the fate of the Hg during combustion was established by performing mass balance studies. On average, 43 +/- 30% of the Hg was present in the flue gases downstream of the electrostatic precipitator (ESP; dust collector). In individual cases, this figure can vary between 1 and 100%. Important parameters are the Cl content of the fuel and the flue gas temperature in the ESP. On average, 54 +/- 24% of the gaseous Hg was removed in the wet flue-gas desulfurization (FGD) systems, which are present at all Dutch coal-power stations. In individual cases, this removal can vary between 8% (outlier) and 72%. On average, the fate of Hg entering the power station in the coal was as follows: <1% in the bottom ash, 49% in the pulverized fuel ash (ash collected in the ESP), 16.6% in the FGD gypsum, 9% in the sludge of the wastewater treatment plant, 0.04% in the effluent of the wastewater treatment plant, 0.07% in fly dust (leaving the stack), and 25% as gaseous Hg in the flue gases and emitted into the air. The distribution of Hg over the streams leaving the FGD depends strongly on the installation. On average, 75% of the Hg was removed, and the final concentration of Hg in the emitted flue gases of the Dutch power stations was only -3 microg/m3(STP) at 6% O2. During co-combustion with biomass, the removal of Hg was similar to that during 100% coal firing. Speciation of Hg is a very important factor. An oxidized form (HgCl2) favors a high degree of removal. The conversion from Hg0 to HgCl2 is positively correlated with the Cl content of the fuel. A catalytic DENOX (SCR) favors the formation of oxidized Hg, and, in combination with a wet FGD, the total removal can be as high as 90%.  相似文献   

17.
二次风口的合理布设是实现炉膛内气体混合均匀、反应完全的有效措施之一,运用CFD技术进行二段往复炉排焚烧炉二次风口的辅助设计,借助PHOENICS软件模拟二次风口对炉内流场的影响。通过模拟发现,二次风口的布设可明显提高烟气的湍流程度.前后墙各设一排直径为0.04m的二次风口可以实现最佳的炉膛流场工况。  相似文献   

18.
二次风口的合理布设是实现炉膛内气体混合均匀、反应完全的有效措施之一,运用CFD技术进行二段往复炉排焚烧炉二次风口的辅助设计,借助PHOENICS软件模拟二次风口对炉内流场的影响.通过模拟发现,二次风口的布设可明显提高烟气的湍流程度,前后墙各设一排直径为0.04 m的二次风口可以实现最佳的炉膛流场工况.  相似文献   

19.
This publication concerns the dry removal of SO2 from gases using limestone absorbents. It reports bench-scale experiments made with commercial samples of powdered limestone (CaCO3) activated by addition of a cheap substance, namely CaCl2. The absorption was carried out in a fluidized bed traversed by the flue gases, between 600° and 900° C. The degree and rate of transformation of CaCO3 to CaSO4 in the presence of SO2 and air have been compared for unmodified and modified absorbents. Initial rates of reaction, and the variation of the rate of absorption with time have been measured. The influence of the SO2 content of the gas has been assessed. At 700° C, the maximum degree of transformation of activated limestone to sulfate exceeds 90%, whereas untreated CaCO3 transforms only to 16–20%. At the same temperature, more than 90% of SO2 contained In a gas carrying 0.35% SO2 is removed. Because of the much smaller quantity of solid absorbent required, dry absorption processes based on the modified absorbents might get renewed interest. The modified absorbents might also be used for in situ absorption in fluidized bed combustion, in which the temperatures are in the range studied in the present paper.  相似文献   

20.
Abstract

Selective catalytic reduction (SCR) technology increasingly is being applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury (Hg) in coal combustion flue gases. The speciation of Hg is an important factor influencing the control and environmental fate of Hg emissions from coal combustion. The vanadium and titanium oxides, used commonly in the vanadia-titania SCR catalyst for catalytic NOx reduction, promote the formation of oxidized mercury (Hg2+).

The work reported in this paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. Bench-scale experiments were conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures with different concentrations of hydrogen chloride (HCl) and sulfur dioxide (SO2) for simulating the combustion of bituminous coals and subbituminous coals were tested in these experiments. The effects of HCl and SO2 in the flue gases on Hg0 oxidation under SCR reaction conditions were studied. It was observed that HCl is the most critical flue gas component that causes conversion of Hg0 to Hg2+ under SCR reaction conditions. The importance of HCl for Hg0 oxidation found in the present study provides the scientific basis for the apparent coal-type dependence observed for Hg0 oxidation occurring across the SCR reactors in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号