首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
3月16日,由国际食品包装协会委托有关方面进行的“3·15”北京市场2类餐具质量安全调查结果显示:一次性塑料餐具70%合格,仿瓷(密胺)餐具质量有所提高。然而,无证企业的产品和虽已获证但产品有严重问题的一次性塑料餐具,仍占据部分市场;超市仿瓷餐具手续齐全质量较有保证,批发市场仿瓷餐具有证产品增多,但无证产品近50%不合格。  相似文献   

2.
介绍了用废谷壳、秸秆等天然纤维生产一次性餐具的过程,并将生产的餐饮具经好氧堆肥和厌氧填埋试验,均具有良好的生物降解性。  相似文献   

3.
改性甘蔗渣吸附废水中低浓度Cu2+的研究   总被引:1,自引:0,他引:1  
利用离子液氯化-1-己基-3-甲基咪唑对甘蔗渣进行改性,利用改性甘蔗渣吸附去除模拟废水中低浓度的Cu2+,并对比了较优条件下甘蔗渣改性前后的Cu2+吸附性能.结果表明,溶液pH、改性甘蔗渣投加量、吸附时间对改性甘蔗渣吸附Cu2+均有一定的影响,较佳的溶液pH为5.41、改性甘蔗渣投加量为0.30 g、吸附时间为130 min;吸附温度升高Cu2+吸附率反而降低,因此选择在室温下进行吸附反应为宜;在以上较优条件下,改性甘蔗渣和甘蔗渣的Cu2+吸附率分别为83.20%和53.83%,前者的Cu2+吸附率提高了30.35%.  相似文献   

4.
通过室内模拟培养实验,探讨了甘蔗渣修复铬污染土壤的效果、土壤中六价铬初始浓度和甘蔗渣添加量对六价铬还原反应一级动力学的影响、微生物对甘蔗渣修复铬污染土壤效果的影响及甘蔗渣修复铬污染土壤的机理。结果表明,甘蔗渣能有效地降低污染土壤中铬的浸出毒性和去除土壤中的六价铬。当甘蔗渣的添加量为5%,六价铬浓度低于1 740 mg·kg~(-1)时,培养70 d内,土壤样品的浸出液中六价铬未检出,培养90 d内,土壤中六价铬的去除率趋近100%。土壤中六价铬的还原反应速率随六价铬初始浓度的增加而减小,随甘蔗渣添加量的增加而增大。同时,灭菌和未灭菌条件下,甘蔗渣对铬污染土壤的修复效果差异性不显著。甘蔗渣修复铬污染土壤的机理可能是甘蔗渣中的蔗糖和纤维素先降解生成葡萄糖和果糖,接着葡萄糖和果糖将土壤中的六价铬还原成三价铬。  相似文献   

5.
改性甘蔗渣对Cu^2+和Zn^2+的吸附机理   总被引:1,自引:0,他引:1  
研究了均苯四甲酸二酐(PMDA)和乙二胺四乙酸二酐(EDTAD)改性甘蔗渣对重金属离子Cu^2+和Zn^2+的吸附性能,包括吸附动力学和吸附等温线。结果表明,改性后的甘蔗渣对重金属离子Cu^2+和Zn^2+的吸附容量有显著提高,对Cu^2+和Zn^2+吸附等温线均符合Langmuir方程,吸附为单分子层吸附。根据Langmuir方程,PMDA和EDTAD改性甘蔗渣对Cu^2+的吸附量分别为60.21和33.45mg/g,对Zn^2+的吸附量分别是70.53和36.53mg/g。两种改性甘蔗渣对两种金属离子的吸附在30min内均可完成,用准二级吸附动力学方程模拟动力学过程得到较好的线性相关性。以EDTA溶液为洗脱剂对吸附Cu^2+和Zn^2+的改性甘蔗渣进行洗脱再生,再生的吸附剂可反复使用。  相似文献   

6.
采用物理方法制备超微淀粉,并研究了超微淀粉基薄膜的环境降解特性,结果表明,物理法制备超微淀粉没有废水产生。超微淀粉平均粒径为3.3μm,结晶度降至13.1%;超微淀粉基薄膜中淀粉质量分数可高达55%,高质量分数的超微淀粉对于薄膜的光降解有促进作用,而土埋120d后,该薄膜生物降解率达52%。  相似文献   

7.
5种植物材料的水解释碳性能及反硝化效率   总被引:4,自引:0,他引:4  
碳源在硝酸盐去除过程中起电子供体的作用,是生物反硝化反应的关键物质之一。为解决污水处理脱氮时碳源不足抑制反硝化反应造成脱氮效率低的问题,本研究选取风车草、甘蔗渣、芦竹、美人蕉和稻草秆5种植物材料作为反硝化碳源,探讨不同植物材料的水解释碳能力和释放规律;并进一步以其水解液作为外加碳源,探讨其对反硝化脱氮效率的影响。研究结果表明,植物材料水解释碳过程符合二级动力学反应规律,不同植物材料的释碳能力具有显著性差异,以甘蔗渣在固液比1∶80时COD释放当量最大,为45.45 mg/L;添加植物水解液可显著提高反硝化脱氮效率,以芦竹水解液脱氮效果最好,达到71.9%。此外,碳氮比是影响脱氮效率的重要因素之一,以碳氮比为9时反硝化脱氮效果最佳。  相似文献   

8.
改性甘蔗渣对Cu2+和Zn2+的吸附机理   总被引:1,自引:1,他引:0  
研究了均苯四甲酸二酐(PMDA)和乙二胺四乙酸二酐(EDTAD)改性甘蔗渣对重金属离子Cu2+和Zn2+的吸附性能,包括吸附动力学和吸附等温线。结果表明,改性后的甘蔗渣对重金属离子Cu2+和Zn2+的吸附容量有显著提高,对Cu2+和Zn2+吸附等温线均符合Langmuir方程,吸附为单分子层吸附。根据Langmuir方程,PMDA和EDTAD改性甘蔗渣对Cu2+的吸附量分别为60.21和33.45 mg/g,对Zn2+的吸附量分别是70.53和36.53 mg/g。两种改性甘蔗渣对两种金属离子的吸附在30 min内均可完成,用准二级吸附动力学方程模拟动力学过程得到较好的线性相关性。以EDTA溶液为洗脱剂对吸附Cu2+和Zn2+的改性甘蔗渣进行洗脱再生,再生的吸附剂可反复使用。  相似文献   

9.
响应面法优化甘蔗渣-污泥复合活性炭的制备工艺   总被引:4,自引:0,他引:4  
为了提高污泥活性炭的吸附性能以提升其实际应用价值,提出在污泥中掺杂甘蔗渣制备复合活性炭,并采用Plackett-Burman联用响应面法对影响复合活性炭碘值的条件进行筛选优化。通过Plackett-Burman实验筛选出热解温度、热解时间和甘蔗渣与污泥干重比为主要影响因素,对这3个因素进行Box-Behnken实验,经响应面优化得到影响碘值的二次响应曲面模型,模型显示热解温度与热解时间、热解温度与干重比的交互作用显著,并确定了最佳制备条件:热解温度550℃、热解时间30 min和干重比50%,此时复合活性炭碘值为814 mg/g,优于未优化条件下制备的复合活性炭。通过比表面积、孔结构和碘值的测定以及元素和扫描电镜分析得出,甘蔗渣的掺杂提高了复合活性炭的比表面积、微孔体积、碘值及含碳量。研究结果表明,甘蔗渣掺杂和制备条件优化是提高污泥活性炭吸附性能的有效手段。  相似文献   

10.
根据含铬废渣的污染特性,利用煤、污水处理厂脱水污泥和紫茎泽兰秸杆作还原剂,在微波辐照下进行单因素与多因素正交还原解毒实验.实验表明,紫茎泽兰秸杆和脱水污泥的解毒效果优于煤,并且得出在实验条件范围内,干法微波解毒的最佳工艺条件为:紫茎泽兰秸杆作还原剂,物料配比为6 g秸杆:4 g铬渣,微波功率为500 W、升温900℃.该工艺条件不仅解毒效果好,而且费用与能耗较低,对实现以废治废,推进循环经济具有现实意义.  相似文献   

11.
GOAL, SCOPE AND BACKGROUND: Aquaculture activities are well known to be the major contributor to the increasing level of organic waste and toxic compound in the aquaculture industry. Along with the development of intensive aquaculture in China, concerns are evoked about the possible effects of ever-increasing aquaculture waste both on productivity inside the aquaculture system and on the ambient aquatic ecosystem. Therefore, it is apparent that appropriate waste treatment processes are needed for sustaining aquaculture development. This review aims at identifying the current status of aquaculture and aquaculture waste production in China. MAIN FEATURES: China is the world's largest fishery nation in terms of total seafood production volume, a position it has maintained continuously since 1990. Freshwater aquaculture is a major part of the Chinese fishery industry. Marine aquaculture in China consists of both land-based and offshore aquaculture, with the latter mostly operated in shallow seas, mud flats and protected bays. The environmental impacts of aquaculture are also striking. RESULTS: Case studies on pollution hot spots caused by aquaculture have been introduced. The quality and quantity of waste from aquaculture depends mainly on culture system characteristics and the choice of species, but also on feed quality and management. Wastewater without treatment, if continuously discharged into the aquatic environment, could result in remarkable elevation of the total organic matter contents and cause considerable economy lost. Waste treatments can be mainly classified into three categories: physical, chemical and biological methods. DISCUSSION: The environmental impacts of different aquaculture species are not the same. New waste treatments are introduced as references for the potential development of the waste treatment system in China. The most appropriate waste treatment system for each site should be selected according to the sites' conditions and financial status as well as by weighing the advantages and disadvantages of each system. Strategies and perspectives for sustainable aquaculture development are proposed, with the emphasis on environmental protection. CONCLUSIONS: Negative effects of waste from aquaculture to aquatic environment are increasingly recognized, though they were just a small proportion to land-based pollutants. Properly planned use of aquaculture waste alleviates water pollution problems and not only conserves valuable water resources but also takes advantage of the nutrients contained in effluent. It is highly demanding to develop sustainable aquaculture which keeps stocking density and pollution loadings under environmental capacity. RECOMMENDATIONS AND PERSPECTIVES: The traditional procedures for aquaculture waste treatment, mainly based on physical and chemical means, should be overcome by more site-specific approaches, taking into account the characteristics and resistibility of the aquatic environment. Further research needs to improve or optimize the current methods of wastewater treatment and reuse. Proposed new treatment technology should evaluate their feasibility at a larger scale for practical application.  相似文献   

12.
Goal, Scope and Background  Aquaculture activities are well known to be the major contributor to the increasing level of organic waste and toxic compounds in the aquaculture industry. Along with the development of intensive aquaculture in China, concerns are evoked about the possible effects of everincreasing aquaculture waste both on productivity inside the aquaculture system and on the ambient aquatic ecosystem. Therefore, it is apparent that appropriate waste treatment processes are needed for sustaining aquaculture development. This review aims at identifying the current status of aquaculture and aquaculture waste production in China. Main Features  China is the world’s largest fishery nation in terms of total seafood production volume, a position it has maintained continuously since 1990. Freshwater aquaculture is a major part of the Chinese fishery industry. Marine aquaculture in China consists of both land-based and offshore aquaculture, with the latter mostly operated in shallow seas, mud flats and protected bays. The environmental impacts of aquaculture are also striking. Results  Case studies on pollution hot spots caused by aquaculture have been introduced. The quality and quantity of waste from aquaculture depends mainly on culture system characteristics and the choice of species, but also on feed quality and management. Wastewater without treatment, if continuously discharged into the aquatic environment, could result in remarkable elevation of the total organic matter contents and cause considerable economy lost. Waste treatments can be mainly classified into three categories: physical, chemical and biological methods. Discussion  The environmental impacts of different aquaculture species are not the same. New waste treatments are introduced as references for the potential development of the waste treatment system in China. The most appropriate waste treatment system for each site should be selected according to the sites’ conditions and financial status as well as by weighing the advantages and disadvantages of each system. Strategies and perspectives for sustainable aquaculture development are proposed, with the emphasis on environmental protection. Conclusions  Negative effects of waste from aquaculture to aquatic environment are increasingly recognized, though they were just a small proportion to land-based pollutants. Properly planned use of aquaculture waste alleviates water pollution problems and not only conserves valuable water resources but also takes advantage of the nutrients contained in effluent. It is highly demanding to develop sustainable aquaculture which keeps stocking density and pollution loadings under environmental capacity. Recommendations and Perspectives  The traditional procedures for aquaculture waste treatment, mainly based on physical and chemical means, should be overcome by more site-specific approaches, taking into account the characteristics and resistibility of the aquatic environment. Further research needs to improve or optimize the current methods of wastewater treatment and reuse. Proposed new treatment technology should evaluate their feasibility at a larger scale for practical application. ESS-Submission Editor: Dr. Ding Wang (wangd@ihb.ac.cn)  相似文献   

13.
Large-scale, monoculture production systems dependent on synthetic fertilizers and pesticides, increase yields, but are costly and have deleterious impacts on human health and the environment. This research investigates variations in banana production practices in Costa Rica, to identify alternative systems that combine high productivity and profitability, with reduced reliance on agrochemicals. Farm workers were observed during daily production activities; 39 banana producers and 8 extension workers/researchers were interviewed; and a review of field experiments conducted by the National Banana Corporation between 1997 and 2002 was made. Correspondence analysis showed that there is no structured variation in large-scale banana producers’ practices, but two other banana production systems were identified: a small-scale organic system and a small-scale conventional coffee–banana intercropped system. Field-scale research may reveal ways that these practices can be scaled up to achieve a productive and profitable system producing high-quality export bananas with fewer or no pesticides.  相似文献   

14.
Catalyst recovery studies were conducted for gasified chars produced from steam gasification of Illinois #6 coal catalyzed with two different catalyst systems. A ternary (43.5 mol% Li2CO3-31.5 mol% Na2COr-25 mol% K2CO3) and a binary (29 mol% Na2CO3-71 mol% K2CO3) eutectic catalyst system were used for gasifying coal. Various extraction schemes, such as water extraction, H2SO4 extraction, and acetic acid extraction, were evaluated with respect to their extraction efficiencies. Effects of major process variables, such as solvent-to-char ratio, mixing time, temperature, and concentration, on the extraction efficiency were evaluated. A process schematic for the entire catalyst recovery, regeneration, and recycle scheme was developed and the preliminary process economics were determined based on these extraction schemes. H2SO4 extraction was found to be the most desirable. It also turned out to be more attractive than a once-through throwaway system.  相似文献   

15.
Current water quality standards for the protection of human health in Korea include 17 substances found in rivers and streams. Due to increasing concern over the release of hazardous chemicals into the aquatic environment, there has been a demand for additional water quality standards. Therefore, the Korean Ministry of the Environment plans to gradually increase the number of water quality standards to 30 substances, including 22 substances for protection of human health and 8 substances for protection of aquatic ecosystems by 2015. In this study, new water quality standards for protection of human health were established for 1,4-dioxane, formaldehyde, and hexachlorobenzene. We selected candidate hazardous chemicals, conducted a human health risk assessment to determine priority chemicals, established water quality standards based on technical analyses and comparison with domestic and developed countries’ water quality standards, and conducted an expert review. Water quality standards for protection of aquatic ecosystems will be derived in the near future. This study describes how the water quality standards for protection of human health were developed and implemented. Current status, recent expansion, and future plans for water quality standards in Korea are also covered.  相似文献   

16.
污水灌溉的研究进展   总被引:9,自引:0,他引:9  
科学合理地利用污水灌溉,可以缓解日益紧张的水资源供需矛盾,充分利用污水的水肥资源,提高经济效益,保护生态环境.总结了国内外污水灌溉的发展概况和研究进展,包括污水灌溉对土壤理化特性的影响、对植物生长的影响以及对地下水的影响,并针对中国污水灌溉存在的问题,探讨了污水灌溉技术的发展方向.  相似文献   

17.
Lakes Dianchi (DC) and Bosten (BST) were determined to be at different stages of eutrophication, by use of total organic carbon content, bulk carbon isotopic composition, bulk nitrogen isotopic composition, and bound saturated fatty acid (BSFA) concentrations in sediment cores. A rapid increase in the supply of organic matter (OM) to DC began after the 1950s, while the environment and trophic status of BST remained constant as indicated by characteristics of OM input to sediments. The BSFA ratios of nC14?+?nC16?+?nC18/nC24?+?nC26?+?nC28 increase upward from 7 to 13 in the DC core, which are significantly greater than those from BST (2 to 3). This result is consistent with algae or bacteria being the dominant contribution of the OM increase induced by eutrophication in DC. The positive shift of nC16 compound-specific δ 13C in the upper section might be an indicator of excess algal productivity, which was observed in the two lakes. The positive shifts of compound-specific δ 13C of other BSFAs were also observed in the upper section of the core only from DC. The observed trends of compound-specific δ13C of BSFA originated from different sources became more consistent, which reflected the intensified eutrophication had profoundly affected production and preservation of OM in DC. The results observed for BST indicated that accumulation of algae did not affect the entire aquatic ecosystem until now.  相似文献   

18.
高氯酸盐是广泛存在于水体环境中的具有高稳定性、高扩散性和持久性的内分泌干扰物,其毒理机制、环境污染、迁移转化和处理技术已成为目前环保领域的研究热点.简要介绍了高氯酸盐的特性、来源及对人体的危害,对比了国内外不同地区高氯酸盐的污染状况,综述了中国已开展的高氯酸盐处理技术,为高氯酸盐环境污染问题的研究提供参考.  相似文献   

19.
Laboratory studies and field trials were conducted to investigate the role of herbicides on saltmarsh vegetation, and their possible significance to saltmarsh erosion. Herbicide concentrations within the ranges present in the aquatic environment were found to reduce the photosynthetic efficiency and growth of both epipelic diatoms and higher saltmarsh plants in the laboratory and in situ. The addition of sublethal concentrations of herbicides resulted in decreased growth rates and photosynthetic efficiency of diatoms and photosynthetic efficiency of higher plants. Sediment stability also decreased due to a reduction in diatom EPS production. There was qualitative evidence that diatoms migrated deeper into the sediment when the surface was exposed to simazine, reducing surface sediment stability by the absence of a cohesive biofilm. Sediment loads on leaves severely reduced photosynthesis in Limonium vulgare. This, coupled with reduced carbon assimilation from the effects of herbicides, could have large negative consequences for plant productivity and over winter survival of saltmarsh plants. The data support the hypothesis that sublethal herbicide concentrations could be playing a role in the increased erosion of salt marshes that has occurred over the past 40 years.  相似文献   

20.
Environmental Science and Pollution Research - Monitoring of health status and metabolism of dairy cows is essential for modern milk production. At the current level of productivity of dairy cows,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号