首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mei Z  Shen Z  Zhao Q  Yuan T  Zhang Y  Xiang F  Wang W 《Chemosphere》2008,70(8):1399-1404
The Hg(0) oxidation ability and reusability of Cu(x)Co(3-x)O(4) were investigated in an attempt to improve SO(2) anti-poisoning ability of metal oxide and produce more economic and effective sorbents for the control of Hg(0) emission from combustion processes. The influence of copper content on Cu(x)Co(3-x)O(4)'s (0.75< or = x < or =2.25) oxidation ability of Hg(0) in the presence of SO(2) was investigated. According to the X-ray diffraction, Brunauer-Emmett-Teller (BET) and mass balance analysis on mercury, we found that Cu(1.5)Co(1.5)O(4) showed the highest S(BET) and best Hg(0) oxidation ability. With continuous increase of x from 0.75 to 2.25, Cu(x)Co(3-x)O(4)'s SO(2) anti-poisoning ability increased. The analysis results of the X-ray photoelectron spectroscopy manifested that the adsorptive mercury species on spent Cu(1.5)Co(1.5)O(4) was HgO. The spent Cu(1.5)Co(1.5)O(4) could be regenerated by thermal decomposition at 673K and regenerated Cu(1.5)Co(1.5)O(4) showed higher Hg(0) oxidation ability due to Hg-doping. Regenerated enrichment Hg(0) was collected using activated carbon at an ambient temperature to eliminate the secondary pollution.  相似文献   

2.
Yu H  Kennedy EM  Mackie JC  Dlugogorski BZ 《Chemosphere》2007,68(10):2003-2006
Gas phase reaction of CHClF(2) with CH(3)Br in an alumina tube reactor at 773-1123 K as a function of various input ratios of CH(3)Br to CHClF(2) is presented. The major products detected include C(2)F(4), CH(2)CF(2), and CH(4). Minor products include CH(3)Cl, CHF(3), C(2)H(4), C(2)H(2), CH(2)CF-CF(3), and C(2)H(3)F. The reaction produces a high yield of CH(2)CF(2) (53% based on CHClF(2) feed) at 1123 K and an input molar ratio of CH(3)Br to CHClF(2) of 1.8, suggesting that the reaction potentially can be developed as a process to convert two ozone depleting substances (CHClF(2) and CH(3)Br) to a highly valuable chemical, CH(2)CF(2). The reaction of CHClF(2) with CH(3)Cl and CH(3)I was also investigated under similar reaction conditions, to assist in understanding the reaction chemistry involved in the reaction of CHClF(2) with CH(3)Br.  相似文献   

3.
Three novel halogenated organic compounds (HOCs) have been identified in the blubber of marine mammals from coastal New England with the molecular formulae C(9)H(3)N(2)Br(6)Cl, C(9)H(3)N(2)Br(7), and C(9)H(4)N(2)Br(5)Cl. They were identified using high and low resolution gas chromatography mass spectrometry (GCMS) and appear to be highly brominated analogues of Q1, a heptachlorinated HOC suspected to be naturally produced. These compounds were found in Atlantic white sided dolphin (Lagenorhynchus acutus), bottlenose dolphin (Tursiops truncatus), common dolphin (Delphinus delphis), Risso's dolphin (Grampus griseus), harbor porpoise (Phocoena phocoena), beluga whale (Delphinapterus leucas), fin whale (Balaenoptera physalus), grey seal (Halichoerus grypus), harp seal (Phoca groenlandica) and a potential food source (Loligo pealei) with concentrations as high as 2.7 microg/g (lipid weight). The regiospecificity of C(9)H(3)N(2)Br(6)Cl is suggestive of a biogenic origin. Debromination of C(9)H(3)N(2)Br(6)Cl may be significant in the formation of C(9)H(4)N(2)Br(5)Cl.  相似文献   

4.
The selective catalytic reduction (SCR) of NOx by C(2)H(5)OH was studied in excess oxygen over Ag/Al(2)O(3) catalysts with different Ag loadings at lab conditions. The 4% Ag/Al(2)O(3) has the highest activity for the C(2)H(5)OH-SCR of NOx with a drawback of simultaneously producing CO and unburned THC in effluent gases. An oxidation catalyst 10% Cu/Al(2)O(3) was directly placed after the Ag/Al(2)O(3) to remove CO and unburned THC. Washcoated honeycomb catalysts were prepared based on the 4% Ag/Al(2)O(3) and 10% Cu/Al(2)O(3) powders and tested for the C(2)H(5)OH-SCR of NOx on a diesel engine at the practical operating conditions. Compared with the Ag/Al(2)O(3) powder, the Ag/Al(2)O(3) washcoated honeycomb catalyst (SCR catalyst) has a similar activity for NOx reduction by C(2)H(5)OH and the drawback of increasing the CO and unburned THC emissions. Using the SCR+Oxi composite catalyst with the optimization of C(2)H(5)OH addition, the diesel engine completely meets EURO III emission standards.  相似文献   

5.
Engineered nanomaterials (ENMs) alone could negatively impact the environment and human health. However, their role in the presence of other toxic substances is not well understood. The toxicity of nano-Al(2)O(3), inorganic As(V), and a combination of both was examined with C. dubia as the model organisms. Bare nano-Al(2)O(3) particles exhibited partial mortality at concentrations of greater than 200mg/L. When As(V) was also present, a significant amount of As(V) was accumulated on the nano-Al(2)O(3) surface, and the calculated LC(50) of As(V) in the presence of nano-Al(2)O(3) was lower than that it was without the nano-Al(2)O(3). The adsorption of As(V) on the nano-Al(2)O(3) surface and the uptake of nano-Al(2)O(3) by C. dubia were both verified. Therefore, the uptake of As(V)-loaded nano-Al(2)O(3) was a major reason for the enhanced toxic effect.  相似文献   

6.
Potted seedlings of black cherry (Prunus serotina Ehrh.) (BC), green ash (Fraxinus pennsylvanica Marsh.) (GA), and yellow-poplar (Liriodendron tulipifera L.) (YP) were exposed to one of the four treatments: (1) charcoal-filtered air (CF) at ambient CO(2) (control); (2) twice ambient O(3) (2 x O(3)); (3) twice ambient CO(2) (650 microl l(-1)) plus CF air (2 x CO(2)); or (4) twice ambient CO(2) (650 microl l(-1)) plus twice ambient O(3) (2 x CO(2) + 2 x O(3)). The treatments were duplicated in eight continuously stirred tank reactors for 10 weeks. Gas exchange was measured during the last 3 weeks of treatment and all seedlings were destructively harvested after 10 weeks. Significant interactive effects of O(3) and CO(2) on the gas exchange of all three species were limited. The effects of elevated CO(2) and O(3), singly and combined, on light-saturated net photosynthesis (A(max)) and stomatal conductance (g(s)) were inconsistent across species. In all three species, elevated O(3) had no effect on g(s). Elevated CO(2) significantly increased A(max) in GA and YP foliage, and decreased g(s) in YP foliage. Maximum carbon exchange rates and quantum efficiencies derived from light-response curves increased, while compensation irradiance and dark respiration decreased in all three species when exposed to 2 x CO(2). Elevated O(3) affected few of these parameters but any change that was observed was opposite to that from exposure to 2 x CO(2)-air. Interactive effects of CO(2) and O(3) on light-response parameters were limited. Carboxylation efficiencies, derived from CO(2)-response curves (A/C(i) curves) decreased only in YP foliage exposed to 2 x CO(2)-air. In general, growth was significantly stimulated by 2 x CO(2) in all three species; though there were few significant growth responses following exposure to 2 x O(3) or the combination of 2 x CO(2) plus 2 x O(3). Results indicate that responses to interacting stressors such as O(3) and CO(2) are species specific.  相似文献   

7.
Three soil types (sandy gravel, silty clay and sandy loam) from sites historically contaminated with total petroleum hydrocarbon (TPH) were amended with NH(4)NO(3) at concentrations ranging from 16 to 2133 mg/kg soil(dry weight). Microbial activity was measured as O(2) consumption and CO(2) production in order to assess nitrogen limitation. Although activity was stimulated in all three soils under NH(4)NO(3) amendment (after 72 h), the level of nitrogen required was soil specific. For the sandy gravel and silty clay soils, O(2) consumption and CO(2) production both showed enhanced microbial activity when amended with 16 mg/kg soil(dry weight) NH(4)NO(3), whereas, these two parameters gave differing results for the sandy loam soil. Specifically, CO(2) production and O(2) consumption were stimulated with 66 mg/kg and 133 mg/kg soil(dry weight) of NH(4)NO(3) respectively. In addition, respiratory quotient kinetic analysis suggested different decomposition processes occurring in this soil under different NH(4)NO(3) amendment concentrations.  相似文献   

8.
The apparent water solubility of pentachlorophenol was measured at pH=6 and at 25 degrees C in pure water, aqueous solutions of three salts (NaCl, KNO(3) and CaCl(2) at 0.010, 0.10 and 1.0M) and in aqueous solutions of three fulvic acids samples extracted from a natural soil (sFA), composted sewage sludge (csFA) and composted livestock's material (lsFA). A solubility enhancement method was developed for the measurement of partition coefficients (K(oc), L/kg organic carbon). Pentachlorophenol associates strongly with the fulvic acid samples and the calculated K(oc) were the following (averages and standard deviations): (sFA) (211+/-22) x 10(2), (csFA) (253+/-26) x 10(2), (lsFA) (235+/-10) x 10(2). For comparison purposes the K(oc) for pyrene were also calculated for the three FA samples and were the following: (sFA) (119+/-10) x 10(2), (csFA) (239+/-21) x 10(2), (lsFA) (92+/-10) x 10(2). The analysis of variance (one-way ANOVA) of the effect of the type of FA sample on the solubilization of pentachlorophenol and pyrene shows that this factor causes significant differences on the aqueous solubilization of these two organic substances.  相似文献   

9.
Maas Pv  Brink Pv  Klapwijk B  Lens P 《Chemosphere》2009,75(2):243-249
BioDeNO(x), a novel technique to remove NO(x) from industrial flue gases, is based on absorption of gaseous nitric oxide into an aqueous Fe(II)EDTA(2-) solution, followed by the biological reduction of Fe(II)EDTA(2-) complexed NO to N(2). Besides NO reduction, high rate biological Fe(III)EDTA(-) reduction is a crucial factor for a succesful application of the BioDeNO(x) technology, as it determines the Fe(II)EDTA(2-) concentration in the scrubber liquor and thus the efficiency of NO removal from the gas phase. This paper investigates the mechanism and kinetics of biological Fe(III)EDTA(-) reduction by unadapted anaerobic methanogenic sludge and BioDeNO(x) reactor mixed liquor. The influence of different electron donors, electron mediating compounds and CaSO(3) on the Fe(III)EDTA(-) reduction rate was determined in batch experiments (21mM Fe(III)EDTA(-), 55 degrees C, pH 7.2+/-0.2). The Fe(III)EDTA(-) reduction rate depended on the type of electron donor, the highest rate (13.9mMh(-1)) was observed with glucose, followed by ethanol, acetate and hydrogen. Fe(III)EDTA(-) reduction occurred at a relatively slow (4.1mMh(-1)) rate with methanol as the electron donor. Small amounts (0.5mM) of sulfide, cysteine or elemental sulfur accelerated the Fe(III)EDTA(-) reduction. The amount of iron reduced significantly exceeded the amount that can be formed by the chemical reaction of sulfide with Fe(III)EDTA(-), suggesting that the Fe(III)EDTA(-) reduction was accelerated via an auto-catalytic process with an unidentified electron mediating compound, presumably polysulfides, formed out of the sulfur additives. Using ethanol as electron donor, the specific Fe(III)EDTA(-) reduction rate was linearly related to the amount of sulfide supplied. CaSO(3) (0.5-100mM) inhibited Fe(III)EDTA(-) reduction, probably because SO(3)(2-) scavenged the electron mediating compound.  相似文献   

10.
Wang CH  Lin SS  Chen CL  Weng HS 《Chemosphere》2006,64(3):503-509
A fixed bed reactor was used to assess the catalytic incineration of toluene by various transition-metal oxide species supported on gamma-Al(2)O(3). CuO/gamma-Al(2)O(3) was found to be the most active of seven catalysts investigated. The CuO species, with a Cu content of 5% (wt), was hence used with four different supports (CeO(2), gamma-Al(2)O(3), TiO(2) and V(2)O(5)) in order to define the optimal combination. Results of the catalytic incineration of toluene, X-ray diffraction (XRD) analysis, oxygen-temperature programmed desorption (O(2)-TPD), toluene-temperature programmed desorption (toluene-TPD) and hydrogen-temperature programmed reduction (H(2)-TPR) showed that CuO/CeO(2) was the most active catalyst, followed by CuO/gamma-Al(2)O(3). The activity of CuO/CeO(2) with respect to the VOC molecule was observed to follow this sequence: toluen>p-xylene>benzene. The addition of water vapor or CO(2) significantly inhibited the activity of the CuO/CeO(2) and CuO/gamma-Al(2)O(3) catalysts. The inhibiting effect of both was reversible for CuO/gamma-Al(2)O(3). For CuO/CeO(2), the inhibiting effect of CO(2) was reversible and even insignificant at a higher temperature (220 degrees C), but the effect of H(2)O vapor was somewhat irreversible at lower incineration temperatures (220 degrees C). For complete oxidation of toluene, the required reaction temperature increased with gas hourly space velocity (GHSV) and toluene inlet concentration.  相似文献   

11.
Eutrophication has decreased the O(2) content and increased the NH(4)(+) availability in freshwaters. These changes may affect carbon and nitrogen transformation processes and the production of CH(4) and N(2)O, which are important greenhouse gases. We studied release of CH(4) and N(2)O from a eutrophic lake sediment under varying O(2) and NH(4)(+) conditions. Intact sediment cores were incubated in a laboratory microcosm with a continuous anoxic or oxic water flows containing 0, 50, 500, 5,000, or 15000 microM NH(4)(+). With the anoxic flow, the sediment released CH(4), up to 7.9 mmol m(-2)d(-1). With the oxic flow, the CH(4) emissions were small indicating limited CH(4) production and/or effective CH(4) oxidation. Addition of NH(4)(+) did not affect sediment CH(4) release, evidence that the CH(4) oxidizing bacteria were not disturbed by the extra NH(4)(+). The release of N(2)O from the sediment was highest, up to 7.6 micromol m(-2)d(-1), with the oxic flow without NH(4)(+) addition. Oxygen was the key factor regulating the production of NO(3)(-), which enabled denitrification and production of N(2)O. However, the highest NH(4)(+) addition increased nitrification and associated O(2) consumption causing a decrease in sediment O(2) content and in accumulation of NO(3)(-) and N(2)O, which were effectively reduced to N(2) in denitrification. In summary, sediment CH(4) and N(2)O dynamics are regulated more by the availability of O(2) than extra NH(4)(+). Anoxia in eutrophic lakes favouring the CH(4) production, is the major contributor to the atmospheric consequences of water eutrophication.  相似文献   

12.
Huang JS  Tsai CC  Chou HH  Ting WH 《Chemosphere》2006,62(1):61-70
Nitrification-denitrification in a single-sludge nitrogen removal system (SSNRS; with a sufficient carbon source for denitrification) was performed. With an increase in the mixed liquor recycle ratio (R(m)) from 1 to 2, the total nitrogen (TN) removal efficiency at a lower volumetric loading rate (VLR=0.21 NH(4)(+)-N m(-3) d(-1)) increased, but the TN removal efficiency at a higher VLR (0.35 kg NH(4)(+)-N m(-3) d(-1)) decreased. A kinetic model that accounts for the mass fractions of Nitrosomonas, Nitrobacter, nitrate reducer and nitrite reducer (f(n1), f(n2), f(dn1), and f(dn2)) in the SSNRS and an experimental approach for the estimation of the mass fractions of nitrogen-related microbial groups are also proposed. The estimated f(dn1) plus f(dn2) (0.65-0.83) was significantly larger than the f(n1) plus f(n2) (0.28-0.32); the f(n1) (0.21-0.26) was larger than the f(n2) (0.05-0.07); and the f(dn1) (0.32-0.45) varied slightly with the f(dn2) (0.33-0.38). At the lower VLR, the f(dn1) plus f(dn2) increased with increasing R(m); however at the higher VLR, the f(dn1) plus f(dn2) did not increase with increasing R(m). By using the kinetic model, the calculated residual NH(4)(+)-N and NO(2)(-)-N in the anoxic reactor and NO(2)(-)-N and NO(3)(-)-N in the aerobic reactor were in fairly good agreement with the experimental data; the calculated NO(3)(-)-N in the anoxic reactor was over-estimated and the calculated NH(4)(+)-N in the aerobic reactor was under-estimated.  相似文献   

13.
The effects of CO(2) enrichment and O(3) induced stress on wheat (Triticum aestivum L.) and corn (Zea mays L.) were studied in field experiments using open-top chambers to simulate the atmospheric concentrations of these two gases that are predicted to occur during the coming century. The experiments were conducted at Beltsville, MD, during 1991 (wheat and corn) and 1992 (wheat). Crops were grown under charcoal filtered (CF) air or ambient air + 40 nl liter(-1) O(3) (7 h per day, 5 days per week) having ambient CO(2) concentration (350 microl liter(-1) CO(2)) or + 150 microl liter(-1) CO(2) (12 h per day.). Averaged over O(3) treatments, the CO(2)-enriched environment had a positive effect on wheat grain yield (26% in 1991 and 15% in 1992) and dry biomass (15% in 1991 and 9% in 1992). Averaged over CO(2) treatments, high O(3) exposure had a negative impact on wheat grain yield (-15% in 1991 and -11% in 1992) and dry biomass (-11% in 1991 and -9% in 1992). Averaged over CO(2) treatments, high O(3) exposure decreased corn grain yield by 9%. No significant interactive effects were observed for either crop. The results indicated that CO(2) enrichment had a beneficial effect in wheat (C(3) crop) but not in corn (C(4) crop). It is likely that the O(3)-induced stress will be diminished under increased atmospheric CO(2) concentrations; however, maximal benefits in crop production in wheat in response to CO(2) enrichment will not be materialized under concomitant increases in tropospheric O(3) concentration.  相似文献   

14.
An YJ  Lee JH  Jeong SW 《Chemosphere》2007,68(7):1377-1381
Gas-liquid phase partitioning is a key physical property that can predict the environmental fate of a compound between two phases. Several environmental factors have been known to affect the gas-liquid phase partitioning. We investigated the influence of surfactant on the gas-liquid phase partitioning of hydrogen peroxide (H(2)O(2)). The surfactant used was ammonium perfluorooctanoate (APFO). H(2)O(2) solution containing the surfactant was equilibrated in a closed system and gas phase H(2)O(2) concentration was measured by the peroxyoxalate chemiluminescence (PO-CL) method. Gas phase H(2)O(2) concentrations remained constant below the critical micelle concentration (CMC) and increased linearly with surfactant concentration above the CMC, which indicated that surfactant micelles influenced the gas-liquid phase partitioning of H(2)O(2). This result showed that H(2)O(2)-micelle interactions are less favorable than H(2)O(2)-H(2)O interactions. Surfactant monomers did not affect the gas-liquid phase partitioning of H(2)O(2) due to the absence of micelles. Solvent (methanol) effect was also investigated and showed that gas phase H(2)O(2) concentrations increased with the addition of solvent. This indicated the unfavorable interaction of H(2)O(2) with hydrophobic medium compared to hydrophilic one. It is consistent with the result that H(2)O(2)-micelles has a weaker interaction than H(2)O(2)-water because surfactant micelles are hydrocarbon-like organic phase rather than aqueous phase.  相似文献   

15.
Benzo(a)pyrene [B(a)P] air levels were measured in Florence (Italy) in the period 1992-2001. For the period 1999-2000 seven polycyclic aromatic hydrocarbons (PAH) (benzo(a)anthracene, crysene, benzo(a)pyrene (B(a)P), benzo(b)fluoranthene (B(b)F), benzo(k)fluoranthene, dibenzo(a,h)anthracene (DBA) and benzo(g,h,i)perylene (BGP)), were measured in the air in four different sites (one with heavy traffic (A), one in a park (B), one in a residential area (C) and one in a hill area (D)). B(a)P levels were elevated in 1992-1998 (maximum average value of winter months: 5.8 ng/ m3) but a decreasing trend was observed in the following years, probably due to improvement in vehicle emissions. The sum of PAH in the air in the period 1999-2000 was about one order of magnitude lower in the hill site (D) relative to the urban sites, and residential areas (B and C) had values 2.5-3 times lower compared to site A with a heavy traffic. PAH concentrations decreased in the warmer seasons of 2000 in all sites. A negative correlation was found between PAH levels and ozone. A positive correlation with carbon monoxide (CO) (r = 0.862, P < 0.001) and low B(a)P/BGP ratios, ranging from 0.44 to 0.51, indicated that vehicular traffic was the major PAH source in all monitored sites. Using B(a)P(TEF) values (toxic equivalency factors) for evaluating the biological activity of PAH, we found that the highest PAH contributors in terms of potential air carcinogenic activity were B(a)P and DBA. Therefore, in addition to B(a)P, DBA concentration should be considered in the evaluation of air quality in terms of PAH contamination.  相似文献   

16.
Ichiura H  Kitaoka T  Tanaka H 《Chemosphere》2003,51(9):855-860
The photocatalytic oxidation of nitrogen oxides (NO(x)) over titanium dioxide (TiO(2)) sheets containing metal compounds (MCs) had been studied. Calcium oxide (CaO), magnesium oxide (MgO), calcium carbonate (CaCO(3)), aluminium oxide (Al(2)O(3)) and ferric oxide (Fe(2)O(3)) were used as MCs. Al(2)O(3) and Fe(2)O(3) added to the TiO(2) sheet did not affect the photooxidation of nitrogen oxides (NO(x)). The CaO sheet treated with TiO(2) sol had the greatest efficiency as a NO(x) remover under UV irradiation. It is believed that CaO has a high adsorptivity for nitrogen dioxide (NO(2)) and nitric acid (HNO(3)). The amount of NO(x) removed by a TiO(2) sheet including MC showed a tendency to increase with increasing pH of the MC suspension, i.e. there is a good correlation between the alkalinity of the MC and the retention of NO(2) and HNO(3).  相似文献   

17.
A series of novel synthetic monohydroxy polychlorinated biphenyls (OH-PCBs) (5 trichloro-, 5 tetrachloro- and 5 pentachloro-compounds) have been characterized (1H and 13C NMR and high resolution MS) and their estrogenic and thyroid hormone activities assessed using a yeast two-hybrid assay, both with and without possible metabolic activation by rat liver S9 preparation. Moderate estrogenic activity was found for 2,3,4(')-trichlorobiphenyl-4-ol (compound 5) but this was eliminated when exposed to the S9 mix. 2,2('),3('),4,6-Pentachlorobiphenyl-3-ol (13) and 2('),3,3('),6-tetrachlorobiphenyl-4-ol (10) both showed weak estrogenicity in the absence of the S9 mix. The estrogenicity of compound (10) was enhanced 10-fold by exposure to S9 metabolic activation but that of compound (13) remained unchanged. 2('),4,5('),6-Tetrachlorobiphenyl-2-ol (6) showed strong thyroid hormonal activity (5% of that of T4) whereas 3('),4,6-trichlorobiphenyl-3-ol (4), compound (10) and 2,3('),4,5('),6-pentachlorobiphenyl-3-ol (14) showed moderate activity, and 2('),3,3('),5-tetrachlorobiphenyl-2-ol (8) and 3,3('),5,5('),6-pentachlorobiphenyl-2-ol (11) showed weak activity. The activity of (4) was eliminated by S9 metabolic activation whereas those of (6) and (14) were weakened and that of (10) remained unchanged.  相似文献   

18.
ABSTRACT

The present study investigated the content of 62 elements in the fruiting bodies of Lentinula edodes (Shiitake mushroom) cultivated commercially in Poland on various substrates from 2007–2015. The general mean content (mg kg?1 dry weight (DW)) of the studied elements ranked in the following order: K (26,335) > P (11,015) > Mg (2,284) > Ca (607) > Na (131) > Zn (112) > Fe (69) > Mn (33) > B (32) > Rb (17) > Cu (14.5) > Al (11.2) > Te (2.9) > As (1.80) > Cd (1.76) > Ag (1.73) > Nd (1.70) > Sr (1.46) > Se (1.41) > U (1.11) > Pt (0.90) > Ce (0.80) > Ba (0.61) > Co (0.59) > Tl (0.58) > Er (0.50) > Pb (0.42) > Li (0.40) > Pr (0.39) > Ir (0.37) > In (0.35) > Mo (0.31) > Cr (0.29) > Ni (0.28) > Sb (0.26) > Re (0.24) > Ti (0.19) > Bi (0.18) > Th (0.12) > La (0.10) = Pd (0.10) > Os (0.09) = Zr (0.09) > Rh (0.08) > Ho (0.07) > Ru (0.06) > Sm (0.04) = Eu (0.04) = Tm (0.04) > Gd (0.03) > Sc (0.02) = Y (0.02) > Lu (0.01) = Yb (0.01) = V (0.01). The contents of Au, Be, Dy, Ga, Ge, Hf, and Tb were below the limits of detection (0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.02 mg kg?1 respectively). The concentrations of Al, As, B, Ba, Ca, Cd, Cr, Er, Fe, In, Lu, Mn, Nd, Sr, Ti, Tm, and Zr were comparable over the period the mushrooms were cultivated. The study revealed that Lentinula edodes contained As and Cd at levels potentially adverse to human health. This highlights the need to monitor these elements in food products obtained from this mushroom species and ensure that only low levels of these elements are present in cultivation substrates.  相似文献   

19.
The fate of (14)C-labeled sulfadiazine ((14)C-SDZ) residues was studied in time-course experiments for 218 days of incubation using two soils (A(p) horizon of loamy sand, orthic luvisol; A(p) horizon of silt loam, cambisol) amended with fresh and aged (6 months) (14)C-manure [40 g kg(-1) of soil; 6.36 mg of sulfadiazine (SDZ) equivalents per kg of soil], which was derived from two shoats treated with (14)C-SDZ. Mineralization of (14)C-SDZ residues was below 2% after 218 days depending little on soil type. Portions of extractable (14)C (ethanol-water, 9:1, v/v) decreased with time to 4-13% after 218 days of incubation with fresh and aged (14)C-manure and both soils. Non-extractable residues were the main route of the fate of the (14)C-SDZ residues (above 90% of total recovered (14)C after 218 days). These residues were high immediately after amendment depending on soil type and aging of the (14)C-manure, and were stable and not remobilized throughout 218 days of incubation. Bioavailable portions (extraction using CaCl(2) solution) also decreased with increasing incubation period (5-7% after 218 days). Due to thin-layer chromatography (TLC), 500 microg of (14)C-SDZ per kg soil were found in the ethanol-water extracts immediately after amendment with fresh (14)C-manure, and about 50 microg kg(-1) after 218 days. Bioavailable (14)C-SDZ portions present in the CaCl(2) extracts were about 350 microg kg(-1) with amendment. Higher concentrations were initially detected with aged (14)C-manure (ethanol-water extracts: 1,920 microg kg(-1); CaCl(2) extracts: 1,020 microg kg(-1)), probably due to release of (14)C-SDZ from bound forms during storage. Consistent results were obtained by extraction of the (14)C-manure-soil samples with ethyl acetate; portions of N-acetylated SDZ were additionally determined. All soluble (14)C-SDZ residues contained in (14)C-manure contributed to the formation of non-extractable residues; a tendency for persistence or accumulation was not observed. SDZ's non-extractable soil residues were associated with the soluble HCl, fulvic acids and humic acids fractions, and the insoluble humin fraction. The majority of the non-extractable residues appeared to be due to stable covalent binding to soil organic matter.  相似文献   

20.
Geraedts K  Maes A 《Chemosphere》2008,73(4):491-497
The interaction between colloidal Tc(IV) species and colloidal Gorleben humic substances (HS) was quantified after application of the La-precipitation method on supernatant solutions obtained under various experimental conditions but at constant ionic strength of the Gorleben groundwater (0.04M). The determined interaction constant LogK(HS) (2.3+/-0.3) remained unchanged over a large range of Tc(IV) and HS concentrations and was independent of the pH of the original supernatant solution (pH range 6-10), Tc(IV)-HS loading (10(-3)-10(-6)molTcg(-1) HS) and the nature of the reducing surface (Magnetite, Pyrite and Gorleben sand) used for the pertechnetate reduction. The LogK(HS) value determined by the La-precipitation method is lower than the LogK value obtained from a previous study where the interaction between colloidal Tc(IV) species and Gorleben humic substances was quantified using a modified Schubert approach (2.6+/-0.3). The La-precipitation method allows to accurately determine the amount of Tc(IV) associated with HS but leads to a (small) overestimation of the free inorganic Tc(IV) species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号