首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
水生生态系统在污水处理中的应用   总被引:2,自引:0,他引:2  
利用水生生态系统治理水体污染是污水处理领域的研究热点之一.综述了水生生态系统在处理污水中的应用现状,分析了影响处理效果的主要因素,并探讨了水生生态系统处理废水的运行机理,展望了水生生态系统的发展前景.  相似文献   

2.
利用水生生态系统治理水体污染是污水处理领域的研究热点之一.综述了水生生态系统在处理污水中的应用现状,分析了影响处理效果的主要因素,并探讨了水生生态系统处理废水的运行机理,展望了水生生态系统的发展前景.  相似文献   

3.
Environmental fate of amitrole: influence of dissolved organic matter   总被引:1,自引:0,他引:1  
In this study the environmental fate of amitrole in terrestrial and aquatic model ecosystems was investigated. Under aerobic conditions mineralization of amitrole is the main degradation pathway. The experiments revealed that the leaching behaviour is low in the presence or the absence of dissolved organic matter (DOM) despite the high water solubility due to a strong binding of amitrole to soil constituents. Under anaerobic conditions the addition of DOM increases the transport of amitrole in soil columns. The tests with water/sediment model ecosystems showed that the mineralization of amitrole is lower in comparison to aerobic soil experiments. Up to 80.6% of the applied 14C-labelled amitrole transfer into the sediment and about 1/3 of this amount formed bound residues, which are not extractable.  相似文献   

4.
E.V. Kalmaz  G.D. Kalmaz 《Chemosphere》1981,10(10):1163-1175
During the past several years, chlorine residuals and chlorinated organic compounds in drinking waters and aquatic environments have become a significant topic of study for scientists concerned about the quality of life in aquatic ecosystems as well as general public health. The effects of direct toxicity and/or carcinogenicity to human and aquatic life are the focal points for this concern.The effects of chloramines and chlorinated organic compounds present in the water distribution system after chlorination treatments are reviewed. Also discussed are the effects of chlorinated discharges from municipal secondary treatment plants and power plants on human health and aquatic life. The toxic significance of environmental chemicals are described.  相似文献   

5.
Curran SR  Cruz MC 《Ambio》2002,31(4):373-376
Our synthesis focuses on how markets influence the population and environment relationship within coastal ecosystems by considering the differential valuing of environmental resources and ecosystem services through 3 perspectives: livelihood, globalization, and public goods and externalities. These are not new perspectives when considering how markets shape demographic and environmental outcomes. However, we suggest that the insight offered by viewing coastal and marine health through these combined lenses brings into focus with renewed urgency the perils facing these vital ecosystems.  相似文献   

6.
Polychlorinated bornanes, the main components of Toxaphene, are bioconcentrated in aquatic organisms to a high extent. However, up to this time no bioconcentration tests with individual chlorinated bornanes in aquatic organisms have been performed. Therefore, the bioconcentration factors (BCFs) of seven selected persistent chlorinated bornane congeners which are regularly found in aquatic organisms, were predicted from their n-octanol/water partition coefficients (log Kow). Furthermore, these BCF values were compared with the measured bioaccumulation factors (BAFs) in zooplankton and different fish species from the aquatic environment.  相似文献   

7.
Densely occupied drainage basins and coastal zones in developing countries that are facing economic growth are likely to suffer from moderate to severe environmental impacts regarding different issues. The catchment basins draining towards the Atlantic coast from northeastern to southern Brazil include a wide range of climatic zones and diverse ecosystems. Within its borders lies the Atlantic rain forest, significant extensions of semiarid thorn forests (caatinga), vast tree and scrub woodlands (cerrado) and most of the 6670 km of the Brazilian coast and its marine ecosystems. In recent decades, human activities have increasingly advanced over these natural resources. Littoralization has imposed a burden on coastal habitats and communities. Most of the native vegetation of the cerrado and caatinga was removed and only 7% of the original Atlantic rainforest still exists. Estuaries, bays and coastal lagoons have been irreversibly damaged. Land uses, damming and water diversion have become the major driving forces for habitat loss and aquatic ecosystem modification. Regardless of the contrast between the drought-affected northeastern Brazil and the much more prosperous and industrialized southeastern/southern Brazil, the impacts on habitat and communities were found equally severe in both cases. Attempts to halt environmental degradation have not been effective. Instead of focusing on natural resources separately, it is suggested that more integrated environmental policies that focus on aquatic ecosystems integrity are introduced.  相似文献   

8.
Leong KH  Tan LL  Mustafa AM 《Chemosphere》2007,66(6):1153-1159
In Malaysia, rivers are the main source of public water supplies. This study was conducted from 2002 to 2003 to determine the levels of selected organochlorine and organophosphate pesticides in the Selangor River in Malaysia. Surface water samples have been collected seasonally from nine sites along the river. A liquid-liquid extraction followed by gas chromatography-mass spectrometry technique was used to determine the trace levels of these pesticide residues. The organochlorine pesticides detected were lindane, heptachlor, endosulfan, dieldrin, endosulfan sulfate, o,p'-DDT, p,p'-DDT, o,p'-DDE and p,p'-DDE whereas for organophosphate pesticides, they were chlorpyrifos and diazinon. At the river upstream where a dam is located for public water supply, incidents of pesticide levels exceeding the European Economic Community Directive of water quality standards have occurred. Furthermore, the wetland ecosystems located at the downstream of the river which houses the fireflies community is being threatened by occasional pesticide levels above EPA limits for freshwater aquatic organisms. The occurrence of these residual pesticides in the Selangor River can be attributed to the intense agriculture and urban activity.  相似文献   

9.
Gao C  Zhang T 《Ambio》2010,39(5-6):385-393
Eutrophication is now a ubiquitous water quality impairment in China. The first step toward restoration of eutrophicated water bodies is a marked reduction of nutrient loadings in their drainage basins. However, the combination of a number of physical and socio-economic factors is now producing compounded increases in nutrient loads while the nutrient assimilation capacities of natural systems are decreasing. Meanwhile, most of the lakes in densely populated part of China are shallow and very susceptible to anthropogenic alteration. Therefore, in spite of ascending efforts in eutrophication control upward trends of algal blooms in both fresh and coastal waters have been observed for the past two decades. Huge knowledge gap exists in our understanding of the sources and pathways of nutrient losses to aquatic ecosystems. Successful water quality restoration of China's eutrophic waters relies not only on more resource input but also more emphasis on basic, integrated, and management-oriented research.  相似文献   

10.
Precipitation is one of the most important factors determining the nature and productivity of terrestrial and aquatic ecosystems. Detailed historical and contemporary records are available indicating the amount of water deposited at thousands of locations throughout the world. Comparatively, however, knowledge of the changing chemistry of precipitation has developed only recently and is still very fragmentary. Our present ignorance of the total impact of changes in precipitation quality on the productivity and stability of ecosystems is especially profound. This paper has a fourfold purpose: (1) to describe the myriad of trace chemical constituents transferred from the atmosphere into the biosphere of the earth; (2) to define the range of beneficial and injurious ecological effects of perturbations in atmospheric deposition; (3) to explain the concepts of sensitive areas, life stages, and life forms; and (4) to describe briefly plans for a National Deposition Network and associated research on the terrestrial and aquatic ecosystems of the United States.  相似文献   

11.
Metagenomics refers to the analysis of DNA from a whole community. Metagenomic sequencing of environmental DNA has greatly improved our knowledge of the identity and function of microorganisms in aquatic, terrestrial, and human biomes. Although open oceans have been the primary focus of studies on aquatic microbes, coastal and brackish ecosystems are now being surveyed. Here, we review so far published studies on microbes in the Baltic Sea, one of the world’s largest brackish water bodies, using high throughput sequencing of environmental DNA and RNA. Collectively the data illustrate that Baltic Sea microbes are unique and highly diverse, and well adapted to this brackish-water ecosystem, findings that represent a novel base-line knowledge necessary for monitoring purposes and a sustainable management. More specifically, the data relate to environmental drivers for microbial community composition and function, assessments of the microbial biodiversity, adaptations and role of microbes in the nitrogen cycle, and microbial genome assembly from metagenomic sequences. With these discoveries as background, prospects of using metagenomics for Baltic Sea environmental monitoring are discussed.  相似文献   

12.
Nitrogen (N) availability plays multiple roles in the boreal landscape, as a limiting nutrient to forest growth, determinant of terrestrial biodiversity, and agent of eutrophication in aquatic ecosystems. We review existing research on forest N dynamics in northern landscapes and address the effects of management and environmental change on internal cycling and export. Current research foci include resolving the nutritional importance of different N forms to trees and establishing how tree–mycorrhizal relationships influence N limitation. In addition, understanding how forest responses to external N inputs are mediated by above- and belowground ecosystem compartments remains an important challenge. Finally, forestry generates a mosaic of successional patches in managed forest landscapes, with differing levels of N input, biological demand, and hydrological loss. The balance among these processes influences the temporal patterns of stream water chemistry and the long-term viability of forest growth. Ultimately, managing forests to keep pace with increasing demands for biomass production, while minimizing environmental degradation, will require multi-scale and interdisciplinary perspectives on landscape N dynamics.  相似文献   

13.
Background, aim, and scope  Dissolved humic substances (HS) usually comprise 50–80% of the dissolved organic carbon (DOC) in aquatic ecosystems. From a trophic and biogeochemical perspective, HS has been considered to be highly refractory and is supposed to accumulate in the water. The upsurge of the microbial loop paradigm and the studies on HS photo-degradation into labile DOC gave rise to the belief that microbial processing of DOC should sustain aquatic food webs in humic waters. However, this has not been extensively supported by the literature, since most HS and their photo-products are often oxidized by microbes through respiration in most nutrient-poor humic waters. Here, we review basic concepts, classical studies, and recent data on bacterial and photo-degradation of DOC, comparing the rates of these processes in highly humic ecosystems and other aquatic ecosystems. Materials and methods  We based our review on classical and recent findings from the fields of biogeochemistry and microbial ecology, highlighting some odd results from highly humic Brazilian tropical lagoons, which can reach up to 160 mg C L−1. Results and discussion  Highly humic tropical lagoons showed proportionally lower bacterial production rates and higher bacterial respiration rates (i.e., lower bacterial growth efficiency) than other lakes. Zooplankton showed similar δ13C to microalgae but not to humic DOC in these highly humic lagoons. Thus, the data reviewed here do not support the microbial loop as an efficient matter transfer pathway in highly humic ecosystems, where it is supposed to play its major role. In addition, we found that some tropical humic ecosystems presented the highest potential DOC photo-chemical mineralization (PM) rates reported in the literature, exceeding up to threefold the rates reported for temperate humic ecosystems. We propose that these atypically high PM rates are the result of a joint effect of the seasonal dynamics of allochthonous humic DOC input to these ecosystems and the high sunlight incidence throughout the year. The sunlight action on DOC is positive to microbial consumption in these highly humic lagoons, but little support is given to the enhancement of bacterial growth efficiency, since the labile photo-chemical products are mostly respired by microbes in the nutrient-poor humic waters. Conclusions  HS may be an important source of energy for aquatic bacteria in humic waters, but it is probably not as important as a substrate to bacterial growth and to aquatic food webs, since HS consumption is mostly channeled through microbial respiration. This especially seems to be the case of humic-rich, nutrient-poor ecosystems, where the microbial loop was supposed to play its major role. Highly humic ecosystems also present the highest PM rates reported in the literature. Finally, light and bacteria can cooperate in order to enhance total carbon degradation in highly humic aquatic ecosystems but with limited effects on aquatic food webs. Recommendations and perspectives  More detailed studies using C- and N-stable isotope techniques and modeling approaches are needed to better understand the actual importance of HS to carbon cycling in highly humic waters.  相似文献   

14.
The fate of mercury (Hg) and tin (Sn) compounds in ecosystems is strongly determined by their alkylation/dealkylation pathways. However, the experimental determination of those transformations is still not straightforward and methodologies need to be refined. The purpose of this work is the development of a comprehensive and adaptable tool for an accurate experimental assessment of specific formation/degradation yields and half-lives of elemental species in different aquatic environments. The methodology combines field incubations of coastal waters and surface sediments with the addition of species-specific isotopically enriched tracers and a mathematical approach based on the deconvolution of isotopic patterns. The method has been applied to the study of the environmental reactivity of Hg and Sn compounds in coastal water and surface sediment samples collected in two different coastal ecosystems of the South French Atlantic Coast (Arcachon Bay and Adour Estuary). Both the level of isotopically enriched species and the spiking solution composition were found to alter dibutyltin and monomethylmercury degradation yields, while no significant changes were measurable for tributyltin and Hg(II). For butyltin species, the presence of light was found to be the main source of degradation and removal of these contaminants from surface coastal environments. In contrast, photomediated processes do not significantly influence either the methylation of mercury or the demethylation of methylmercury. The proposed method constitutes an advancement from the previous element-specific isotopic tracers’ approaches, which allows for instance to discriminate the extent of net and oxidative Hg demethylation and to identify which debutylation step is controlling the environmental persistence of butyltin compounds.  相似文献   

15.
A contamination of off-site aquatic environments with pesticides has been observed in the tropics, yet only sparse information exists about pesticide fate in such ecosystems. The objective of our semi-field study was to elucidate the fate of alachlor, atrazine, chlorpyrifos, endosulfan, metolachlor, profenofos, simazine, and trifluralin in the aqueous environment of the Pantanal wetland (MT, Brazil). To this aim, water and water/sediment microcosms of two sizes (0.78 and 202 l) were installed in the outskirts of this freshwater lagoon environment and pesticide dissipation was monitored for up to 50 d after application. The physical-chemical water conditions that developed in the microcosms were reproducible among field replicates for both system sizes. Pesticide dissipation was substantially enhanced for most pesticides in small microcosms relative to the large ones (reduced DT(50) by a factor of up to 5.3). The presence of sediment in microcosms led to increased persistence of chlorpyrifos, endosulfan, and trifluralin in the test systems, while for polar pesticides (alachlor, atrazine, metolachlor, profenofos, and simazine) a lesser persistence was observed. Atrazine, simazine, metolachlor, and alachlor were identified as the most persistent pesticides in large water microcosms (DT(50) > or = 47 d); in large water/sediment systems endosulfan beta, atrazine, metolachlor, and simazine showed the slowest dissipation (DT(50) > or = 44 d). A medium-term accumulation in the sediment of tropical ecosystems can be expected for chlorpyrifos and endosulfan isomers (11-35% of applied amount still extractable at 50 d after application). We conclude that the persistence of the studied pesticides in aquatic ecosystems of the tropics is not substantially lower than during summer in temperate regions.  相似文献   

16.
This paper questions the assumption that public participation in integrated assessment (IA) means finding (better) ways to make the public engage with IA. Following other studies about public perceptions of expert/scientific knowledge, it is unclear why the public should - or even want to - approach issues (such as climate change) from the epistemologically privileged expert-framed perspectives of IA. The objective of this paper is to reverse the order and re-centre the problematique of public participation and IA toward a public-centred perspective, toward a 'folk integrated assessment'. In order to undertake this task, illustrations of how groups of lay members of the public perceive and think about issues such as climate change are presented and analysed. They reveal the already existing, always context-dependent complexity, diversity, richness and ambiguity of lay knowledge and 'integration' skills.  相似文献   

17.
湖岸缓冲带反硝化作用的研究进展   总被引:2,自引:0,他引:2  
反硝化作用是湖岸缓冲带去除硝酸盐的重要途径。湖岸缓冲带是联系陆地与湖泊生态系的纽带,不仅为许多动植物提供适宜生境,而且通过反硝化作用能去除地下水中的硝酸盐,提高湖泊水质。概述不同检测反硝化速率的方法,并对比各种方法的优点与缺点。阐述反硝化作用的影响因素:厌氧环境、有机碳、湖岸坡度、缓冲带坡度、pH与温度、硝酸盐浓度。介绍反硝化速率模型的研究开发状况。最后,提出了目前国内外反硝化研究中存在的不足及发展方向。  相似文献   

18.
Environmental Science and Pollution Research - Submerged macrophytes have been found to be promising in removing cadmium (Cd) from aquatic ecosystems; however, the mechanism of Cd detoxification in...  相似文献   

19.
This study suggested the first Korean site-specific ecological surface water quality criteria for the protection of ecosystems near an artillery range at a Korean military training facility. Surface water quality (SWQ) criteria in Korea address human health protection but do not encompass ecological criteria such as limits for metals and explosives. The first objective of this study was to derive site-specific SWQ criteria for the protection of aquatic ecosystems in Hantan River, Korea. The second objective was to establish discharge criteria for the artillery range to protect the aquatic ecosystems of Hantan River. In this study, we first identified aquatic organisms living in the Hantan River, including fishes, reptiles, invertebrates, phytoplankton, zooplankton, and amphibians. Second, we collected ecotoxicity data for these aquatic organisms and constructed an ecotoxicity database for Cd, Cu, Zn, TNT, and RDX. This study determined the ecological maximum permissible concentrations for metals and explosives based on the ecotoxicity database and suggested ecological surface water quality criteria for the Hantan River by considering analytical detection limits. Discharge limit criteria for the shooting range were determined based on the ecological surface water quality criteria suggested for Hantan River with further consideration of the dilution of the contaminants discharged into the river.  相似文献   

20.
The platinum group metals (PGM) Pt and Rh are emitted into the environment mainly by catalytic exhaust gas converters of cars and by effluents of hospitals, which use Pt based anti-cancer drugs. However, there is still a lack of information on the availability of these precious metals to the biosphere. As PGM accumulate in sediments of aquatic ecosystems we focused our study on the uptake of the noble metals by European eels, Anguilla anguilla. Therefore, eels were exposed in tap water and humic water containing Pt(4+) and Rh(3+) at a concentration of 170 and 260 microg/l, respectively. After an exposure period of 6 weeks the mean Pt levels in bile, liver, kidney and intestine of the exposed eels ranged between 68 ng/g and 840 ng/g and the mean Rh levels between 35 ng/g and 155 ng/g whereas the PGM levels of the unexposed controls were below the detection limit of 50 ng/g for Pt and 5 ng/g for Rh. Rh was also taken up by gill and spleen. No PGM uptake was found for muscle and blood. The pattern of metal distribution within the eel differed between Pt and Rh and was dependent on the water type. Due to their accumulation capacity for PGM eels are suitable as accumulation indicators to detect PGM pollution in aquatic ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号