首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper examines the use of zinc isotopes as tracers of atmospheric sources and focuses on the potential fractionation of Zn isotopes through anthropogenic processes. In order to do so, Zn isotopic ratios are measured in enriched ores and airborne particles associated with pyrometallurgical activities of one of the major Pb–Zn refineries in France. Supporting the isotopic investigation, this paper also compares morphological and chemical characteristics of Zn particles collected on dry deposition plates (“environmental samples”) placed within a 5 km radius of the smelter, with those of Zn particles collected inside the plant (“process samples”), i.e. dust collected from the main exhaust system of the plant. To ensure a constant isotopic “supply”, the refinery processed a specific set of ores during the sampling campaigns, as agreed with the executive staff of the plant. Enriched ores and dust produced by the successive Zn extraction steps show strong isotope fractionation (from ?0.66 to +0.22‰) mainly related to evaporation processes within the blast furnaces. Dust from the main chimney displays a δ66Zn value of ?0.67‰. Application of the Rayleigh equation to evaluate the fractionation factor associated with the Zn vapor produced after a free evaporation gives a range of αore/vapor from 1.0004 to 1.0008. The dry deposits, collected on plates downwind of the refinery, display δ66Zn variations of up to +0.7‰. However, it is to be noted that between 190 and 1250 m from the main chimney of the refinery, the dry deposits show a high level of large (>10 μm) Zn, S, Fe and O bearing aggregates characterized by positive δ66Zn values (+0.02 to +0.19‰). These airborne particles probably derive from the re-suspension of slag heaps and local emissions from the working-units. In contrast, from 1720 to 4560 m, the dry deposits are comprised of small (PM10) particles, including spherical Zn-bearing aggregates, showing negative δ66Zn values (?0.52 to ?0.02‰). Our results suggest that the source of the distal dry fallouts is the main chimney plume, whose light Zn isotopic signature they preserve. Based on Zn isotopic analysis in combination with morphological and chemical characteristics of airborne particles, the present study suggests the traceability of smelter dusts by Zn isotopes.  相似文献   

2.
Estimates of the atmospheric deposition to Galveston Bay of polycyclic aromatic hydrocarbons (PAHs) are made using precipitation and meteorological data that were collected continuously from 2 February 1995 to 6 August 1996 at Seabrook, TX, USA. Particulate and vapor phase PAHs in ambient air and particulate and dissolved phases in rain samples were collected and analyzed. More than 95% of atmospheric PAHs were in the vapor phase and about 73% of PAHs in the rain were in the dissolved phase. Phenanthrene and napthalene were the dominant compounds in air vapor and rain dissolved phases, respectively, while 5 and 6 ring PAH were predominant in the particulate phase of both air and rain samples. Total PAH concentrations ranged from 4 to 161 ng m−3 in air samples and from 50 to 312 ng l−1 in rain samples. Temporal variability in total PAH air concentrations were observed, with lower concentrations in the spring and fall (4–34 ng m −3) compared to the summer and winter (37–161 ng m−3). PAHs in the air near Galveston Bay are derived from both combustion and petroleum vaporization. Gas exchange from the atmosphere to the surface water is estimated to be the major deposition process for PAHs (1211 μg m− 2 yr− 1), relative to wet deposition (130 μg m−2 yr− 1) and dry deposition (99 μg m−2 yr− 1). Annual deposition of PAHs directly to Galveston Bay from the atmosphere is estimated as 2  t yr−1.  相似文献   

3.
Chemical composition of precipitation was measured with wet-only samplers at a rural site at Bhubaneswar in eastern India during 1997–1998. All rain events were compared with trajectories and precipitation fields from the ECMWF. The pH and ionic concentrations were found to vary systematically with the origin of air and the amount of rainfall along the trajectory. A seasonal cycle for pH was found with a monthly median pH below 5.0 during October–December. The highest monthly median concentration of Ca2+ was found in May with 20 μmol l−1 and for SO42− in January with 52 μmol l−1. Samples with trajectories within 400 km from Bhubaneswar during the last 5 days were found to have a median pH slightly below 5.0 as an average. These samples also had the highest concentration for all measured ions, indicating large pollution sources within the region. Samples with continental origin showed a decrease of ∼70% in concentration if there had been rain during >50% of the last 5 days compared to rain during <50% of the last 5 days. High concentrations of Na+ and Cl were also found in continental samples. Resuspension of previously deposited sea salt is believed to be the reason. The data were compared with data from three other sites in western India and higher concentrations of almost all ions (NH4+ being the exception) compared to Bhubaneswar were found at the west coast in monsoon samples.  相似文献   

4.
《Chemosphere》2009,74(11):1793-1798
A study on tropospheric aerosols involving Fe particles with an industrial origin is tackled here. Aerosols were collected at the largest exhausts of a major European steel metallurgy plant and around its near urban environment. A combination of bulk and individual particle analysis performed by SEM–EDX provides the chemical composition of Fe-bearing aerosols emitted within the factory process (hematite, magnetite and agglomerates of these oxides with sylvite (KCl), calcite (CaCO3) and graphite carbon). Fe isotopic compositions of those emissions fall within the range (0.08‰ < δ56Fe < +0.80‰) of enriched ores processed by the manufacturer (−0.16‰ < δ56Fe < +1.19‰). No significant evolution of Fe fractionation during steelworks processes is observed. At the industrial source, Fe is mainly present as oxide particles, to some extent in 3–4 μm aggregates. In the close urban area, 5 km away from the steel plant, individual particle analysis of collected aerosols presents, in addition to the industrial particle type, aluminosilicates and related natural particles (gypsum, quartz, calcite and reacted sea salt). The Fe isotopic composition (δ56Fe = 0.14 ± 0.11‰) measured in the close urban environment of the steel metallurgy plant appears coherent with an external mixing of industrial and continental Fe-containing tropospheric aerosols, as evidenced by individual particle chemical analysis. Our isotopic data provide a first estimation of an anthropogenic source term as part of the study of photochemically promoted dissolution processes and related Fe fractionations in tropospheric aerosols.  相似文献   

5.
Black carbon (soot) concentrations have been measured in rain water, snow samples and near surface air at several locations in Nova Scotia, Canada. The average black carbon concentration in near surface air in summer was found to be 0.54 μg m-3 compared to 1.74 μg m-3 in the winter season. These values are comparable to black carbon concentrations found in other mid-size urban areas. The black carbon concentration in rain water and snow samples varied between an undetectable amount to about 20 μg kg-1 of rain (or melt) water. The relatively low concentrations of black carbon in precipitation are attributed to extratropical cyclones that often develop off-shore to the east and south of Nova Scotia in relatively clean conditions of the marine boundary layer.  相似文献   

6.
Bulk precipitation samples were collected at Montseny (Catalonia, NE Spain) from 1983 to 1994 and analysed for major cations and anions. The samples were classified for provenance based on meteorological synoptic maps and back trajectory analysis to identify the source areas of pollutants in precipitation. The meteorological classification was compared to an independent grouping based on multivariate data analysis (Clustering and Principal Component Analysis). Alkaline rain (mean pH=7.2) was associated to African trajectories. Local events produced neutral rains (mean pH=5.5). Acid rain was associated to rains of Atlantic origin (mean pH=4.8) and to European rains (mean pH=4.4), which also presented the highest mean concentrations of NH+4 (57 μeq -1), NO-3(49 μeq -1) and SO2-4(103 μeq -1). However, European events were only a small fraction of the total precipitation (10% of the cases). Marine rains accounted for 52% of the events, and African and Local for 20 and 18%, respectively. During the 11 year period there was a decreasing trend for the frequency of European events.  相似文献   

7.
《Chemosphere》2013,90(11):1407-1413
This study presents carbon (δ13C) and hydrogen (δD) isotope values of volatile organic compounds (VOCs) in various emission sources using thermal desorption–gas chromatography–isotope ratio mass spectrometry (TD–GC–irMS). The investigated VOCs ranged from C6 to C10. Samples were taken from (i) car exhaust emissions as well as from plant combustion experiments of (ii) various C3 and (iii) various C4 plants. We found significant differences in δ values of analysed VOCs between these sources, e.g. δ13C of benzene ranged between (i) −21.7 ± 0.2‰, (ii) −27.6 ± 1.6‰ and (iii) −16.3 ± 2.2‰, respectively and δD of benzene ranged between (i) −73 ± 13‰, (ii) −111 ± 10‰ and (iii) −70 ± 24‰, respectively. Results of VOCs present in investigated emission sources were compared to values from the literature (aluminium refinery emission). All source groups could be clearly distinguished using the dual approach of δ13C and δD analysis. The results of this study indicate that the correlation of compound specific carbon and hydrogen isotope analysis provides the potential for future research to trace the fate and to determine the origin of VOCs in the atmosphere using thermal desorption compound specific isotope analysis.  相似文献   

8.
Stable sulfur isotope ratios and major ions in bulk snowpack samples were monitored at a network of 52 high-elevation sites along and near the Continental Divide from 1993 to 1999. This information was collected to better define atmospheric deposition to remote areas of the Rocky Mountains and to help identify the major source regions of sulfate in winter deposition. Average annual δ34S values at individual sites ranged from +4.0 to +8.2‰ and standard deviations ranged from 0.4 to 1.6‰. The chemical composition of all samples was extremely dilute and slightly acidic; average sulfate concentrations ranged from 2.4 to 12.2 μeq l−1 and pH ranged from 4.82 to 5.70. The range of δ34S values measured in this study indicated that snowpack sulfur in the Rocky Mountains is primarily derived from anthropogenic sources. A nearly linear relation between δ34S and latitude was observed for sites in New Mexico, Colorado, and southern Wyoming, which indicates that snowpack sulfate in the southern part of the network was derived from two isotopically distinct source regions. Because the major point sources of SO2 in the region are coal-fired powerplants, this pattern may reflect variations in the isotopic composition of coals burned by the plants. The geographic pattern in δ34S for sites farther to the north in Wyoming and Montana was much less distinct, perhaps reflecting the paucity of major point sources of SO2 in the northern part of the network.  相似文献   

9.
In the present study, controlled laboratory column experiments were conducted to understand the biogeochemical changes during the microbial sulfate reduction. Sulfur and oxygen isotopes of sulfate were followed during sulfate reduction in zero valent iron incubated flow through columns at a constant temperature of 20 ± 1 °C for 90 d. Sulfur isotope signatures show considerable variation during biological sulfate reduction in our columns in comparison to abiotic columns where no changes were observed. The magnitude of the enrichment in δ34S values ranged from 9.4‰ to 10.3‰ compared to initial value of 2.3‰, having total fractionation δS between biotic and abiotic columns as much as 6.1‰. Sulfur isotope fractionation was directly proportional to the sulfate reduction rates in the columns. Oxygen isotopes in this experiment seem less sensitive to microbial activities and more likely to be influenced by isotopic exchange with ambient water. A linear relationship is observed between δ34S and δ18O in biotic conditions and we also highlight a good relationship between δ34S and sulfate reduction rate in biotic columns.  相似文献   

10.
Major ion concentrations and Sr isotope ratios (87Sr/86Sr) were measured in rainwater samples collected at an urban site in Beijing over a period of one year. The pH value and major ion concentrations of samples varied considerably, and about 50% of the rainwater studied here were acidic rain with pH values less than 5.0. Ca2+ and NH4+ were the dominant cations in rainwaters and their volume weighted mean (VWM) values were 608 μeq l?1 (14–1781 μeq l?1) and 186 μeq l?1 (48–672 μeq l?1), respectively. SO42? was the predominant anion with VWM value of 316 μeq l?1 (65–987 μeq l?1), next was NO3? with VWM value of 109 μeq l?1 (30–382 μeq l?1).Using Na as an indicator of marine origin, and Al for the terrestrial inputs, the proportions of sea salt and terrestrial elements were estimated from elemental ratios. More than 99% of Ca2+ and 98% of SO42? in rainwater samples are non-sea-salt origin. The 87Sr/86Sr ratios were used to characterize the different sources based on the data sets of this study and those from literatures. Such sources include sea salts (87Sr/86Sr~0.90917), soluble soil dust minerals originating from either local or the desert and loess areas (~0.7111), and anthropogenic sources (fertilizers, coal combustion and automobile exhausts). The high concentrations of alkaline ions (mainly Ca2+) in Beijing atmosphere have played an important role to neutralize the acidity of rainwater. However, it is worth noting that there is a remarkable acidification trend of rainwater in Beijing recent years.  相似文献   

11.
Trace metals were assessed in atmospheric particulates at Burnaby Lake, in the greater Vancouver area of British Columbia to assess concentrations, particle size distributions and deposition rates to an urban watershed. Week-long samples were collected over a period of 18 weeks in 1995 using a 13 stage low pressure impactor (LPI). Samples were analysed using inductively coupled plasma atomic emission spectroscopy (ICP). Aluminum, boron, calcium, iron, magnesium, manganese, sodium and strontium had a similar time series pattern and particle size distribution. For these metals, maximum concentrations occurred during weeks of low precipitation and exhibited a large peak in mid June. Their particle size distribution was mostly dominated by a large peak between 1.7–18.4 μm with a secondary peak at <0.08 μm. Metal concentrations were generally one to three orders of magnitude higher than those measured in a rural location 100 km away from Burnaby Lake but similar to those measured in urban Taipei, Taiwan. Concentrations of the highly toxic metals, arsenic, cadmium and lead were within current air quality guidelines, however boron exceeded the Ontario Ministry of Environment ambient air quality standard in two of the 16 samples. Deposition velocities ranged between 0.22 and 13 cm s−1 with the largest values corresponding to the coarse particle mode. Mean deposition rates ranged between 4.0 μg m−2 d−1 and 650 mg m−2 d−1. Depending on the metal, yearly loadings to the watershed ranged from 90 kg to several thousand tonnes. Calcium, aluminum, boron and magnesium had the highest metal loadings to the watershed. Manganese also had relatively high loadings, a reflection of the high traffic density in the area. The relatively high metal deposition rates indicate that metal contribution from atmospheric sources may represent a significant portion of the total metal load to the Burnaby Lake watershed.  相似文献   

12.
Scavenging coefficients are obtained for sea-salt particles at rainfall intensity of 5, 10, 15, 20 and 45 mm h−1. Evolutions of size distributions for sea-salt particles by precipitation scavenging are simulated using theoretically estimated scavenging coefficients. Results indicate that below-cloud scavenging affects mainly sea-salt particles in coarse mode. Observed concentrations of Na+ and Cl in rainwater increased with rainfall intensity and aerosol size. Comparison of predicted concentrations of Na+ and Cl in rainwater with observed ionic concentrations of short-timed wet-only samples collected during rain events on 2 August 2002 over Arabian Sea (ARMEX-2002) supports the model result.  相似文献   

13.
In a peat bog from Black Forest, Southern Germany, the rate of atmospheric Pb accumulation was quantified using a peat core dated by 210Pb and 14C. The most recent Pb accumulation rate (2.5 mg m−2 y−1) is similar to that obtained from a snowpack on the bog surface, which was sampled during the winter 2002 (1 to 4 mg m−2 y−1). The Pb accumulation rates recorded by the peat during the last 25 yr are also in agreement with published values of direct atmospheric fluxes in Black Forest. These values are 50 to 200 times greater than the “natural” average background rate of atmospheric Pb accumulation (20 μg m−2 y−1) obtained using peat samples from the same bog dating from 3300 to 1300 cal. yr B.C. The isotopic composition of Pb was measured in both the modern and ancient peat samples as well as in the snow samples, and clearly shows that recent inputs are dominated by anthropogenic Pb. The chronology and isotopic composition of atmospheric Pb accumulation recorded by the peat from the Black Forest is similar to the chronologies reported earlier using peat cores from various peat bogs as well as herbarium samples of Sphagnum and point to a common Pb source to the region for the past 150 years. In contrast, Pb contamination occurring before 1850 in southwestern Germany, differs from the record published for Switzerland mainly due to the mining activity in Black Forest. Taken together, the results show that peat cores from ombrotrophic bogs can yield accurate records of atmospheric Pb deposition, provided that the cores are carefully collected, handled, prepared, and analysed using appropriate methods.  相似文献   

14.
The efficiency of different methods for the decontamination of glassware used for the analysis of dissolved organic carbon (DOC) was tested using reported procedures as well as new ones proposed in this work. A Fenton solution bath (1.0 mmol L−1 Fe2+ and 100 mmol L−1 H2O2) for 1 h or for 30 min employing UV irradiation showed to combine simplicity, low cost and high efficiency. Using the optimized cleaning procedure, the DOC for stored UV-irradiated ultra-pure water reached concentrations below the limit of detection (0.19 μmol C L−1). Filtered (0.7 μm) rain samples maintained the DOC integrity for at least 7 days when stored at 4 °C. The volatile organic carbon (VOC) fraction in the rain samples collected at two sites in São Paulo state (Brazil) ranged from 0% to 56% of their total DOC content. Although these high-VOC concentrations may be derived from the large use of ethanol fuel in Brazil, our results showed that when using the high-temperature catalytic oxidation technique, it is essential to measure DOC rather than non-purgeble organic carbon to estimate organic carbon, since rainwater composition can be quite variable, both geographically and temporally.  相似文献   

15.
Carbonyl compounds exist in the atmosphere as either gases or aerosols. Some of them are water soluble and known as oxidation products of biogenic and/or anthropogenic hydrocarbons. Five carbonyl compounds, glyoxal (GO), 4-oxopentanal (4-OPA), glycolaldehyde (GA), hydroxyacetone (HA) and methylglyoxal (MG) have been identified in a temporal series of 12 rain samples. The concentrations of the compounds in the samples were high at the beginning of the rain event and decreased with time to relatively low and fairly constant levels, indicating that the compounds were washed out from the atmosphere at the start of the rain event. Possibly, these compounds also existed in the cloud condensation nuclei (CCN). Wet deposition rates of the carbonyl compounds were calculated for nine samples collected during a 20 h period. The deposition rates ranged from 0 (4-OPA) to 1.2×10−1 mg C m−2 h−1 (MG) with the average of 2.9×10−2 mg C m−2 h−1. Production rates of isoprene oxidation products (GA, HA and MG) in the area surrounding the sampling site were estimated with a chemical box model. The deposition rates exceeded the production rates in most samples. This indicates that the rainfall causes a large net flux of the water soluble compounds from the atmosphere to the ground. Insoluble carbonyl compounds such as n-nonanal and n-decanal were expected to be present in the atmosphere, but were not detected in the rain during the sampling period, suggesting that an aerosol containing these insoluble compounds does not effectively act as a CCN.  相似文献   

16.
Photochemical production of formaldehyde (HCHO) was measured in rainwater from 13 precipitation events in Wilmington, North Carolina, USA under conditions of simulated sunlight. HCHO concentrations increased in all samples irradiated with no changes observed in dark controls. HCHO photoproduction rates were strongly correlated with dissolved organic carbon (DOC) suggesting HCHO was derived from direct or indirect photolysis of rainwater DOC. The higher photoproduction rates (0.03–2.9 μM h?1) relative to those reported for surface waters suggests that rainwater DOC is more photolabile in terms of HCHO production than surface waters. HCHO photoproduction rates were higher in growing season (1.0 ± 1.0 μM h?1) compared to non-growing season (0.08 ± 0.05 μM h?1) even when rates were normalized for DOC (6.8 ± 3.6 μM h?1 mM C?1 versus 1.8 ± 1.0 μM h?1 mM C?1). The higher growing season rate may be related to seasonal differences in the composition of DOC as evidenced by differences in fluorescence per unit carbon of rainwater samples. Irradiation of C18 extracts of rainwater also produced HCHO, but at lower rates compared to corresponding whole rain samples, suggesting that hydrophyllic components of rainwater play a role in HCHO photoproduction. Our results indicate that photolysis of rainwater DOC produces significant amounts of HCHO, and possibly other low molecular weight organic compounds, likely increasing its reactivity and bioavailability.  相似文献   

17.
Formaldehyde (HCHO) concentrations were measured in 116 rain samples in Wilmington, NC from June 1996 to February 1998. Concentrations ranged from below the detection limit of 10 nM, to 13 μM, in the range of HCHO levels reported at other locations worldwide. The volume-weighted annual average rainwater formaldehyde concentration was 3.3±0.3 μM and comprised approximately 3% of the measured dissolved organic carbon. Using the volume weighted average HCHO concentration and annual precipitation of 1.4 m, an annual formaldehyde deposition of 4.6 mmol m−2 yr−1 was determined. Rainwater is a significant source of formaldehyde to surface waters and may contribute as much as 30 times the resident amount found in natural waters of southeastern North Carolina during the summer. Formaldehyde concentrations did not correlate with precipitation volume suggesting continuous supply during rain events. Evidence is presented which indicates part of this supply may be from direct photochemical production in the aqueous phase. Formaldehyde levels exhibited a distinct seasonal oscillation, with higher concentrations during the summer. This pattern is similar to that observed with other rainwater parameters at this site including pH, nitrate, and ammonium, and is most likely the result of increased photochemical production, as well as biogenic and anthropogenic emissions during summer months. The concentration of formaldehyde in both winter El Nino rains and summer tropical rains was less than half its concentration in non-El Nino or non-tropical events, suggesting significant terrestrial input. Formaldehyde was correlated with hydrogen peroxide and non-sea-salt sulfate deposition suggesting a relationship between HCHO, H2O2, S(VI) within the troposphere.  相似文献   

18.
Dissolved organic carbon (DOC), surface active substances (SAS) and copper complexing capacity (CuCC) were studied in bulk precipitations collected periodically from 2003 to 2007 in the continental city of Croatia (Zagreb: n = 27) and in the city at the Adriatic coast (?ibenik: n = 38). DOC concentrations (Zagreb: 0.67–4.03 mgC/L with average concentration of 1.93 ± 0.76 mgC/L; ?ibenik: 0.44–4.13 mgC/L with average concentration of 1.83 ± 0.83 mgC/L) are similar to those measured in other samples of continental rainwater in the northern hemisphere. The concentrations of SAS in samples from Zagreb ranged from 0.055 to 0.45 eq. Triton-X-100 mg/L with average concentration of (0.14 ± 0.06) eq. Triton-X-100 mg/L. SAS fractions were of a similar range in ?ibenik (0.02–0.60 eq. Triton-X-100 mg/L) with an average concentration of 0.11 ± 0.06 eq. Triton-X-100 mg/L. However, the lowest values of SAS (between 0.02 and 0.04 eq. Triton-X-100 mg/L) were observed only in ?ibenik (27%). We have estimated that the higher pH values were responsible for lower surface activity of organic matter in bulk samples from ?ibenik. DOC may form complexes that control the transport and solubility of heavy metals in natural water. CuCC measured in ?ibenik in the range 0.066–1.4 μM Cu2+ was in general higher, compared to the one in Zagreb (0.010–0.586 μM Cu2+) which is the result of biogenically driven organic contribution to the precipitation, especially in the warmer period of the year.  相似文献   

19.
The sources and distribution of carbon in ambient suspended particles (PM2.5 and PM10) of Mexico City Metropolitan Area (MCMA) air were traced using stable carbon isotopes (13C/12C). Tested potential sources included rural and agricultural soils, gasoline and diesel, liquefied-petroleum gas, volcanic ash, and street dust. The complete combustion of LP gas, diesel and gasoline yielded the lightest δ13C values (?27 to ?29‰ vs. PDB), while street dust (PM10) represented the isotopically heaviest endmember (?17‰). The δ13C values of rural soils from four geographically separated sites were similar (?20.7 ± 1.5‰). δ13C values of particles and soot from diesel and gasoline vehicle emissions and agricultural soils varied between ?23 and ?26‰. Ambient PM samples collected in November of 2000, and March and December of 2001 at three representative receptor sites of industrial, commercial and residential activities had a δ13C value centered around ?25.1‰ in both fractions, resulting from common carbon sources. The predominant carbon sources to MCMA atmospheric particles were hydrocarbon combustion (diesel and/or gasoline) and particles of geological origin. The significantly depleted δ13C values from the industrial site reflect the input of diesel combustion by mobile and point source emissions. Based on stable carbon isotope mass balance, the carbon contribution of geological sources at the commercial and residential sites was approximately 73% for the PM10 fraction and 54% for PM2.5. Although not measured in this study, biomass-burning emissions from nearby forests are an important carbon source characterized by isotopically lighter values (?29‰), and can become a significant contributor (67%) of particulate carbon to MCMA air under the prevalence of southwesterly winds. Alternative sources of these 13C-depleted particles, such as cooking fires and municipal waste incineration, need to be assessed. Results show that stable carbon isotope measurements are useful for distinguishing between some carbon sources in suspended particles to MCMA air, and that wind direction has an impact on the distribution of carbon sources in this basin.  相似文献   

20.
Atmospheric monitoring of PCBs and chlorinated pesticides (e.g., HCHs, chlordanes, and DDTs) in Galveston Bay was conducted at Seabrook, Texas. Air and wet deposition samples were collected from 2 February 1995 and continued through 6 August 1996. Vapor total PCB (tPCB) concentrations in air ranged from 0.21 to 4.78 ng m−3 with a dominance of tri-chlorinated PCBs. Dissolved tPCBs in rain ranged from 0.08 to 3.34 ng l−1, with tetra-chlorinated PCBs predominating. The predominant isomers found in air and rain were α- and γ-HCH, α- and γ-chlordanes, 4,4′-DDT, and dieldrin. The concentrations of PCBs and pesticides in the air and rain revealed no clear seasonal trend. Elevated levels of PCBs in the air occurred when temperatures were high and wind came from urban and industrialized areas (S, SW, NW, and W of the site). Concentrations of HCHs were elevated in April, May, and October, perhaps due to local and/or regional applications of γ-HCH (lindane). Other pesticides showed no notable temporal variation. When winds originated from the Gulf of Mexico (southeasterly), lower concentrations of organochlorines were detected in the air. The direct deposition rate (wet+dry) of PCBs to Galveston Bay (6.40 μg m−2 yr−1) was significantly higher than that of pesticides by a factor of 5–10. The net flux from gas exchange estimated for PCBs was from Galveston Bay water to the atmosphere (78 μg m−2 yr−1). Gas exchange of PCBs from bay water to the atmosphere was the dominant flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号