首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

This paper describes a simple, inexpensive, highly sensitive, selective, and efficient electrochemical method to determine glyphosate (GLY) in samples of milk, orange juice, and agricultural formulation. The oxidation reaction on the electrode surface was electrochemically characterised by cyclic voltammetry (CV) and square wave voltammetry (SWV). The investigation of GLY at carbon paste electrode revealed a non-reversible oxidation peak at +0.95 V versus Ag/AgCl, which was used for electrochemical detection of GLY. The operating parameters (pH, frequency, step potential, and amplitude) were optimised in relation to the peak current intensity, and a calibration curve was set up in a concentration range of 4.40?×?10?8–2.80?×?10?6 mol L?1, with a detection limit of 2?×?10?9 mol L?1. After calibration curve was plotted, the developed procedure was applied to determine GLY in previously contaminated samples: milk and orange juice, and in a commercial formulation, obtaining recovery values between 98.31% and 103.75%. These results show that the proposed method can be used for GLY quantification in different samples with high sensitivity, specificity, stability, and reproducibility.  相似文献   

2.
This study describes a novel electrochemical method to determine the herbicide trifluralin in samples of water, fruit juice, and vegetable extracts in the presence of surfactants, using a glassy carbon electrode (GCE). In acidic media, trifluralin was irreversible on the glassy carbon electrode surface at ?0.5 V vs. Ag/AgCl. Surfactant presence on the electrode–solution interface modified current intensities and shifted the reduction peak potential of trifluralin. Different types of surfactant and their concentrations were investigated. The anionic surfactant significantly enhanced the peak current intensity of trifluralin. Under optimal analytical conditions, an analytical curve was obtained in the concentration range of 0.48–32.20 µM. The limits of detection and quantification were estimated at 0.031 and 0.104 µM, respectively. The method was successfully applied to quantify trifluralin in samples of water, orange and tomato juice, and green pepper, carrot, and onion extracts, with recovery rates of 97.9–102.1%. The results were in good agreement with those obtained using high-performance liquid chromatography, indicating that the proposed electrochemical method can be employed to quantify trifluralin in various types foods, with sensitivity, specificity, selectivity and reproducibility.  相似文献   

3.
A method for the identification and quantification of pesticide residues in water, soil, and sediment samples has been developed, validated, and applied for the analysis of real samples. The specificity was determined by the retention time and the confirmation and quantification of analyte ions. Linearity was demonstrated over the concentration range of 20 to 120 µg L?1, and the correlation coefficients varied between 0.979 and 0.996, depending on the analytes. The recovery rates for all analytes in the studied matrix were between 86% and 112%. The intermediate precision and repeatability were determined at three concentration levels (40, 80, and 120 µg L?1), with the relative standard deviation for the intermediate precision between 1% and 5.3% and the repeatability varying between 2% and 13.4% for individual analytes. The limits of detection and quantification for fipronil, fipronil sulfide, fipronil-sulfone, and fipronil-desulfinyl were 6.2, 3.0, 6.6, and 4.0 ng L?1 and 20.4, 9.0, 21.6, and 13.0 ng L?1, respectively. The method developed was used in water, soil, and sediment samples containing 2.1 mg L?1 and 1.2% and 5.3% of carbon, respectively. The recovery of pesticides in the environmental matrices varied from 88.26 to 109.63% for the lowest fortification level (40 and 100 µg kg?1), from 91.17 to 110.18% for the intermediate level (80 and 200 µg kg?1), and from 89.09 to 109.82% for the highest fortification level (120 and 300 µg kg?1). The relative standard deviation for the recovery of pesticides was under 15%.  相似文献   

4.
A carbon paste electrode modified with p-chloranil and carbon nanotubes was used for the sensitive and selective voltammetric determination of hydroxylamine (HX) and phenol (PL). The oxidation of HX at the modified electrode was investigated by cyclic voltammetry (CV), chronoamperommetry, and electrochemical impedance spectroscopy. The values of the catalytic rate constant (k), and diffusion coefficient (D) for HX were calculated. Square wave voltammetric peaks current of HX and PL increased linearly with their concentrations at the ranges of 0.1–172.0 and 5.0–512.0 μmol L?1, respectively. The detection limits for HX and PL were 0.08 and 2.0 μmol L?1, respectively. The separation of the anodic peak potentials of HX and PL reached to 0.65 V, using square wave voltammetry. The proposed sensor was successfully applied for the determination of HX and PL in water and wastewater samples.  相似文献   

5.
The electrochemical behavior of new generation fungicide acibenzolar-s-methyl (S-methyl 1,2,3-benzothiadiazole-7-carbothioate, ASM) on the hanging mercury drop electrode (HMDE) was investigated using square wave adsorptive stripping voltammetry. This method of determination is based on the irreversible reduction of ASM at the HMDE. The well-defined ASM peak was observed at ?0.4 V (vs. Ag/AgCl) in BR buffer at pH 2.2. The reduction peak current was proportional to concentration of ASM from 1.0 × 10?8 to 6.0 × 10?8 mol L?1 with detection and quantification limit 3.0 × 10?9 and 1.0 × 10?8 mol L?1, respectively. The applicability of the developed method for analysis of spiked samples of tap water, river water, and soil is illustrated. The effect of adsorption on the mercury electrode was studied in detail using the AC impedance method. Possible interferences with other common pesticides and heavy metal ions were examined. Clarification of the electrode mechanism was made using cyclic voltammetry (CV) technique.  相似文献   

6.
In recent years, increasing awareness of the environmental impact of heavy metals has prompted a demand for monitoring and decontaminating industrial wastes prior to discharging into natural water bodies. This paper describes the preparation and electrochemical application of carbon paste electrode modified with nanocellulosic fibers for the determination of cadmium and lead in water samples using anodic stripping voltammetry. First, cadmium and lead were adsorbed on the carbon paste electrode surface at open circuit potential, followed by anodic stripping voltammetric scan from -1 to 0 V. Different factors affecting sensitivity and precision of the electrode, including accumulating solvent, pH of the accumulating solvent, accumulation time, supporting electrolyte, and scan rate were investigated. The proposed method was also applied to the determination of Cd (II) and Pb (II) in the presence of other interfering metal ions and cetyl trimethyl ammonium bromide, sodium dodecyl sulfate, and Triton X-100 as a representative of cationic, anionic, and neutral surfactants. Linear calibration curves were obtained in the concentration ranges of 150–650 μg?L?1 and 80–300 μg?L?1, respectively, for cadmium and lead at an accumulated time of 10 min with limits of detection 88 and 33 μg?L?1. Optimized working conditions are defined as acetate buffer of pH?5 as accumulating solvent, hydrochloric acid as supporting electrolyte, and scan rate 50 mV/s. This technique does not use mercury and therefore has a positive environmental benefit. The method is reasonably sensitive and selective and has been successfully applied to the determination of trace amounts of Cd (II) and Pb (II) in water samples.  相似文献   

7.
Organochlorine pesticides present in sewage sludge can contaminate soil and water when they are used as either fertilizer or agricultural soil conditioner. In this study, the technique solid–liquid extraction with low temperature purification was optimized and validated for determination of ten organochlorine pesticides in sewage sludge and soil samples. Liquid–liquid extraction with low temperature purification was also validated for the same compounds in water. Analyses were performed by gas chromatography-mass spectrometry operating in the selective ion monitoring mode. After optimization, the methods showed recoveries between 70% and 115% with relative standard deviation lower than 13% for all target analytes in the three matrices. The linearity was demonstrated in the range of 20 to 70 µg L?1, 0.5 to 60 µg L?1, and 3 to 13 µg L?1, for sludge, soil, and acetonitrile, respectively. The limit of quantification ranged between 2 and 40 µg kg?1, 1 and 6 µg kg?1, and 0.5 µg L?1 for sludge, soil, and water, respectively. The methods were used in the study of pesticide lixiviation carried out in a poly vinyl chlorine column filled with soil, which had its surface layer mixed with sludge. The results showed that pesticides are not leached into soil, part of them is adsorbed by the sewage sludge (4–40%), and most pesticides are lost by volatilization.  相似文献   

8.
Abstract

A simple, very efficient method is presented for routine analysis of herbicide Krovar I? (active components bromacil and diuron) in water and soil samples. Water samples were extracted by liquid–liquid extraction with dichloromethane (DCM) as extraction solvent. For soil samples two different extraction techniques were compared: microwave-assisted solvent extraction and a shaking technique using a platform shaker. Extracts were analyzed by high performance liquid chromatography using a water:methanol gradient. Liquid chromatography was coupled with atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS) for quantification of bromacil and diuron. Optimization of the APCI-MS was done by using standards in the flow injection analysis mode (FIA). Method detection limit for liquid samples for bromacil is 0.04 µg L?1 and for diuron 0.03 µg L?1. Method detection limit for soil samples is 0.01 µg g?1 dry weight for both compounds. Results of analysis of field samples of water and soil are also presented.  相似文献   

9.
In this study, we report preparation of a high sensitive electrochemical sensor for determination of hydrazine in the presence of phenol in water and wastewater samples. In the first step, we describe synthesis and characterization of ZnO/CNTs nanocomposite with different methods such as transmission electron microscopy (TEM) and X-ray diffraction (XRD). In the second step, application of the synthesis nanocomposite describes the preparation of carbon paste electrode modified with n-(4-hydroxyphenyl)-3,5-dinitrobenzamide as a high sensitive and selective voltammetric sensor for determination of hydrazine and phenol in water and wastewater samples. The mediated oxidation of hydrazine at the modified electrode was investigated by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy (EIS). Also, the values of catalytic rate constant (k) and diffusion coefficient (D) for hydrazine were calculated. Square wave voltammetry (SWV) of hydrazine at the modified electrode exhibited two linear dynamic ranges with a detection limit (3σ) of 8.0 nmol L?1. SWV was used for simultaneous determination of hydrazine and phenol at the modified electrode and quantitation of hydrazine and phenol in some real samples by the standard addition method.  相似文献   

10.
The effect of elapsed time between spraying and first leaching event on the leaching behavior of five herbicides (terbuthylazine, S-metolachlor, mesotrione, flufenacet, and isoxaflutole) and two metabolites (desethyl-terbuthylazine and diketonitrile) was evaluated in a 2011–2012 study in northwest Italy. A battery of 12 lysimeters (8.4 m2 long with a depth of 1.8 m) were used in the study, each filled with silty-loam soil and treated during pre-emergence with the selected herbicides by applying a mixture of commercial products Lumax (4 L ha?1) and Merlin Gold (1 L ha?1). During treatment periods, no gravity water was present in lysimeters. Irrigation events capable of producing leaching (40 mm) were conducted on independent groups of three lysimeters on 1 day after treatment (1 DAT), 7 DAT, 14 DAT, and 28 DAT. The series was then repeated 14 days later. Leachate samples were collected a few days after irrigation; compounds were extracted by solid phase extraction and analyzed by high-performance liquid chromatography and gas chromatography–mass spectrometry. Under study conditions, terbuthylazine and S-metolachlor showed the highest leaching potentials. Specifically, S-metolachlor concentrations were always found above 0.25 µg L?1. Desethyl-terbuthylazine was often detected in leached waters, in most cases at concentrations above 0.1 µg L?1. Flufenacet leached only when irrigation occurred close to the time of herbicide spraying. Isoxaflutole and mesotrione were not measured (<0.1 µg L?1), while diketonitrile was detected in concentrations above 0.1 µg L?1 on 1 DAT in 2011 only.  相似文献   

11.
The objective of this study was to develop a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the determination of Ochratoxin A (OTA) and Ochratoxin α (OTα) in poultry tissues and eggs. The two toxins were extracted by a mixture of acetonitrile/water, purified with a reversed phase C18 solid phase extraction column (SPE) and determined by LC-MS/MS. The LC-MS/MS method performances were evaluated in terms of linearity in solvent and in matrix (ranged from 0.5 to 15.10 µg L?1 for OTA and from 0.60 to 17.85 µg L?1 for OTα), limit of detection (LOD), limit of quantitation (LOQ), specificity, accuracy and precision in repeatability conditions. Recovery experiments were performed by spiking poultry liver, kidney, muscle and eggs around 1 µg kg?1 and 10 µg kg?1. LODs were 0.27 and 0.26 µg kg?1 while LOQs were fixed at 1.0 and 1.2 µg kg?1 for OTA and OTα, respectively. Main recoveries for OTA ranged from 82 to 109% and for OTα ranged from 55 to 89%. The values of within-laboratory relative standard deviation (RSDr) were equal to or below 20%. Considering the results obtained and that all analytical performance criteria were fulfilled, the new extraction and purification method developed for OTA and OTα determination in animal tissues and eggs was found appropriate for control laboratories and research activities designed to ensure food safety.  相似文献   

12.
An on-line solid phase extraction liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) method for the determination of 12 antimicrobials in sediment and surface water was developed and validated. Furthermore, the spatial and temporal antimicrobials distributions in the sediment and in the water of four fish farms located in the hydroelectric dam of Ilha Solteira Reservoir in Brazil were investigated over four seasons in three sampling sites: at the fish cages, 100 and 1,000 m downstream far from the cages. The method was performed using an Agilent Zorbax 80 SB-C8 column (9.4 × 15 mm, 5 µm) as the loading column, and the Agilent Zorbax Eclipse Plus C18 column (3.0 × 100 mm, 3.5 µm) as a separation column within a run time of 13 min. The limits of quantification were less than 9 ng·L?1 for the antibiotics in water and 16 µg·kg?1 in sediment; the recovery ranged from 80 to 119%, with a variation coefficient less than 11%, and the repeatability was lower than 15%. Oxytetracycline was found in the water in all sample seasons. However, florfenicol was identified in April and October 2013 and January 2014, and tetracycline was present in July 2013. Regarding the sediment, oxytetracycline and tetracycline were found in all sampling periods, but chlortetracycline was only identified in January 2014. The spatial distribution of antimicrobials showed that the main pollution source came from the fish farms. This study demonstrated that the proposed method is reliable for the monitoring of antimicrobials in water and sediments and it showed contamination in both matrices from Ilha Solteira Reservoir.  相似文献   

13.
The electrochemical degradation of the nonsteroidal anti-inflammatory drug ketoprofen in tap water has been studied using electro-Fenton (EF) and anodic oxidation (AO) processes with platinium (Pt) and boron-doped diamond (BDD) anodes and carbon felt cathode. Fast degradation of the parent drug molecule and its degradation intermediates leading to complete mineralization was achieved by BDD/carbon felt, Pt/carbon felt, and AO with BDD anode. The obtained results showed that oxidative degradation rate of ketoprofen and mineralization of its aqueous solution increased by increasing applied current. Degradation kinetics fitted well to a pseudo-first-order reaction. Absolute rate constant of the oxidation of ketoprofen by electrochemically generated hydroxyl radicals was determined to be (2.8?±?0.1)?×?109 M?1 s?1 by using competition kinetic method. Several reaction intermediates such as 3-hydroxybenzoic acid, pyrogallol, catechol, benzophenone, benzoic acid, and hydroquinone were identified by high-performance liquid chromatography (HPLC) analyses. The formation, identification, and evolution of short-chain aliphatic carboxylic acids like formic, acetic, oxalic, glycolic, and glyoxylic acids were monitored with ion exclusion chromatography. Based on the identified aromatic/cyclic intermediates and carboxylic acids as end products before mineralization, a plausible mineralization pathway was proposed. The evolution of the toxicity during treatments was also monitored using Microtox method, showing a faster detoxification with higher applied current values.  相似文献   

14.
This study elucidated the acute toxicity of chlorpyrifos on the early life stages of banded gourami (Trichogaster fasciata). To determine the acute effects of chlorpyrifos on their survival and development, we exposedthe embryos and two-day-old larvae to six concentrations (0, 0.01, 0.10, 1.0, 10 and 100 µg L?1) of chlorpyrifos in plastic bowls. Log-logistic regression was used to calculate LC10 and LC50 values. Results showed that embryo mortality significantly increased with increasing chlorpyrifos concentrations. The 24-h LC10 and LC50 values (with 95% confidence limits) of chlorpyrifos for embryos were 0.89 (0.50–1.58) and 11.8 (9.12–15.4) µg L?1, respectively. Hatching success decreased and mortality of larvae significantly increased with increasing concentrations of chlorpyrifos. The 24-h LC10 and LC50 values (with 95% confidence limits) of chlorpyrifos for larvae were 0.53 (0.27–1.06) and 21.7 (15.9–29.4) µg L?1, respectively; the 48-h LC10 and LC50 for larvae were 0.04 (0.02–0.09) and 5.47 (3.77–7.94) µg L?1, respectively. The results of this study suggest that 1 µg L?1 of chlorpyrifos in the aquatic environment may adversely affect the development and the reproduction of banded gourami. Our study also suggests that banded gourami fish can serve as an ideal model species for evaluating developmental toxicity of environmental contaminants.  相似文献   

15.
The objectives of this study were to investigate the simultaneous bioelectricity generation and decolorization of methyl orange (MO) in the anode chamber of microbial fuel cells (MFCs) in a wide concentration range (from 50 to 800 mg L?1) and to reveal the microbial communities on the anode after the MFC was operated continuously for more than 6 months using MO-glucose mixtures as fuel. Interestingly, the added MO played an active role in the production of electricity. The maximum voltage outputs were 565, 658, 640, 629, 617, and 605 mV for the 1 g L?1 glucose with 0, 50, 100, 200, 300, and 500 mg L?1 of MO, respectively. The results of three groups of comparison experiments showed that accelerated decolorization of methyl orange (MO) was achieved in the MFC as compared to MFC in open circuit mode and MFC without extra carbon sources. The decolorization efficiency decreased with an increase of MO concentration in the studied concentration range for the dye load increased. A 454 high-throughput pyrosequencing revealed the microbial communities. Geobacter genus known to generate electricity was detected. Bacteroidia class, Desulfovibrio, and Trichococcus genus, which were most likely responsible for degrading methyl orange, were also detected.  相似文献   

16.
This study describes a novel wastewater treatment technology suitable for small remote northern communities. The technology is based on an enhanced biodegradation of organic carbon through a combination of anaerobic methanogenic and microbial electrochemical (bioelectrochemical) degradation processes leading to biomethane production. The microbial electrochemical degradation is achieved in a membraneless flow-through bioanode–biocathode setup operating at an applied voltage below the water electrolysis threshold. Laboratory wastewater treatment tests conducted through a broad range of mesophilic and psychrophilic temperatures (5–23 °C) using synthetic wastewater showed a biochemical oxygen demand (BOD5) removal efficiency of 90–97% and an effluent BOD5 concentration as low as 7 mg L?1. An electricity consumption of 0.6 kWh kg?1 of chemical oxygen demand (COD) removed was observed. Low energy consumption coupled with enhanced methane production led to a net positive energy balance in the bioelectrochemical treatment system.  相似文献   

17.
The work was carried out to develop and validate a method based on liquid chromatography tandem mass spectrometry (LC-MS/MS) for the simultaneous detection and quantification of five neonicotinoid insecticides: acetamiprid, clothianidin, imidacloprid, thiacloprid and thiamethoxam in groundwater samples for the purpose of a further column experiment. This experiment will be used to analyze breakthrough curves of neonicotinoids under a saturated water flow to set transport parameters, where the reliability of the results of chemical analysis plays an important role. The validation was performed in a concentration range from 0.09?µg L?1 to 100?µg L?1 using an Infinity 1290 (Agilent, USA) chromatograph coupled with a QTrap 5500 mass spectrometer (Sciex, Canada). The calibration curves were obtained on the basis of the results of six standard solution analyses. Linearity was not lower than 0.998. The limit of detection was set at the lowest concentration which can be determined with an acceptable accuracy and precision. All pesticides had recoveries in the range 85–109% with relative standard deviation values less than 8.1%. The estimated measurement uncertainty did not exceed 30%, so the LC-MS/MS method fits for the intended purpose.  相似文献   

18.
Abstract

An original voltammetric screening method, employing glassy carbon electrode (GCE) with the differential-pulse voltammetry technique (DPV), has been developed to determine residues of the anti-parasitic agent Ronidazole (RNZ) in bovine meat. By using cyclic voltammetry (CV), it has been demonstrated that an irreversible cathodic process occurs at approximately ?0.740?V (vs. Ag|AgCl, KCl 3?mol L?1) in a 0.100?mol L?1 phosphate buffer at pH 6.5 as supporting electrolyte. Furthermore, the behavior of RNZ in CV indicates the occurrence of a diffusion mass transfer process to the working electrode surface. The RNZ reduction mechanism was proposed as a 6-electron transfer, similar to Metronidazole under the same pH range. Quantification of RNZ and method validation were then carried out by DPV. The relative standard deviation (RSD) were 3.21% for intraday precision of 10 consecutive repetitions and 6.78% for interday precision after five analysis. Limits of detection and quantification were also obtained, and the values were 0.107 and 0.358?mg kg?1, respectively. The recovery percentage for three different concentrations of RNZ in the bovine meat matrix ranged between 98.1% and 100.3%. The method proved to be efficient for screening RNZ in bovine meat.  相似文献   

19.
The performance of the electrochemical oxidation process for efficient treatment of domestic wastewater loaded with organic matter was studied. The process was firstly evaluated in terms of its capability of producing an oxidant agent (H2O2) using amorphous carbon (or carbon felt) as cathode, whereas Ti/BDD electrode was used as anode. Relatively high concentrations of H2O2 (0.064 mM) was produced after 90 min of electrolysis time, at 4.0 A of current intensity and using amorphous carbon at the cathode. Factorial design and central composite design methodologies were successively used to define the optimal operating conditions to reach maximum removal of chemical oxygen demand (COD) and color. Current intensity and electrolysis time were found to influence the removal of COD and color. The contribution of current intensity on the removal of COD and color was around 59.1 and 58.8 %, respectively, whereas the contribution of treatment time on the removal of COD and color was around 23.2 and 22.9 %, respectively. The electrochemical treatment applied under 3.0 A of current intensity, during 120 min of electrolysis time and using Ti/BDD as anode, was found to be the optimal operating condition in terms of cost/effectiveness. Under these optimal conditions, the average removal rates of COD and color were 78.9?±?2 and 85.5?±?2 %, whereas 70 % of total organic carbon removal was achieved.  相似文献   

20.
The current environmental legislations recommend monitoring chemical contaminants such as polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans before the use of sewage sludge on the agricultural land. In this study, a solid–liquid extraction with low-temperature purification (SLE-LTP) was optimized and validated to determine 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzofuran in sewage sludge and soil samples. The analyses were performed by gas chromatography-mass spectrometry operating in the selective ion mode (GC-MS-SIM). Acetonitrile:ethyl acetate 6.5:1.5 (v/v) was the best extraction phase, and the recoveries percentages were close to 100%. The linearity was demonstrated in the range of 1.25–25 µg L?1 of 1.25–20 µg L?1 for sewage sludge and soil, respectively. Matrix effect was proved for the two compounds and in the two matrices studied. Extraction percentages were between 78 and 109% and relative standard deviations ≤ 19%. The proposed method is faster than methods described in the literature because showed a few steps. The quantification limits (LOQ) in sewage sludge were 6.4 and 32 ng TEQ kg?1 for 2,3,7,8-TCDF and 2,3,7,8-TCDD, respectively. In soil, LOQs were 0.8 and 8.0 ng TEQ kg?1 for 2,3,7,8-TCDF and 2,3,7,8-TCDD, respectively. These values are lower than the maximum residue limits established by European Legislation. The method was applied to 22 agricultural soil samples from different Brazilian cities and 2,3,7,8-TCDF was detected in one of these samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号