首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Within the context and scope of the forthcoming European Union chemical regulations (REACH), there is a need to be able to prioritise the chemicals for evaluation. Therefore, a simple, pragmatic and adequately conservative approach for the identification of substances of very low or no immediate concern at an early stage is presented. The fundamental principles and basic concepts are derived from the EU Technical Guidance Document and EUSES, and are translated into an easy-to-use rule-based system. For this development, the effect on risk characterisation ratios (RCRs) of the key environmental parameters in EUSES was quantified (taking into account several standardised chemical release scenarios). Using statistical analysis, ranges were identified for each key parameter, within which the end result of the assessment was not significantly affected. This information was then translated into a lookup table from which environmental risk characterisation ratios can be directly read as a function of a few parameters.  相似文献   

2.
In risk assessment of new and existing substances, it is current practice to characterise risk using a deterministic quotient of the exposure concentration, or the dose, and a no-effect level. A sense of uncertainty is tackled by introducing worst-case assumptions in the methodology. Since this procedure leads to an assessment with an unknown degree of conservatism, it is advisable to deal quantitatively with uncertainties. This paper discusses the advantages and possibilities of a probabilistic risk assessment framework, illustrated with an example calculation. Furthermore, representatives of EU Member States and the chemical industry were interviewed to find out their views on applying uncertainty analysis to risk assessment of industrial chemicals.  相似文献   

3.
Wind T 《Chemosphere》2004,54(8):1145-1153
The aim of this study was the comparison between predicted environmental concentrations (PEC) derived using a generic aspacial model, European Union System for the Evaluation of Substances (EUSES), and a geo-referenced model, the Geo-referenced Regional Environmental Assessment Tool for European Rivers (GREAT-ER). The PECs of some consumer-product ingredients (boron, LAS) and professional uses (EDTA, NTA and Triclosan) were calculated for the river catchment of the Itter, a small tributary to the river Rhine. The PEClocal and PECregional for the water compartment generated by EUSES (default scenario) were subsequently refined with data that realistically reflects the region of North Rhine-Westphalia (NRW scenario) and the Itter catchment (Itter scenario). The results of the three scenarios were then compared with the PECinitial and PECcatchment calculated by GREAT-ER, that was designed as a higher-tiered exposure assessment tool, and with concrete concentrations in the Itter, measured as 24-h composite samples. While the PECregional of all scenarios was close to the lower end of the measured concentrations, the geo-referenced PECs described equally well the real spacial situation. The measured environmental concentrations confirmed the built-in conservatism of the PEClocal calculations by EUSES showing for all investigated chemicals an unrealistically high PEClocal (default). The refinement in the more realistic scenarios could not provide a straight forward general improvement of the PEClocal. In conclusion, when the EUSES prognosis is refined using more detailed substance and regional specific data, it may provide a fairly accurate modelling especially of substances that are not eliminated in the environment. However, in the case of eliminable substances, it does not match the accuracy of higher-tiered geo-referenced exposure models like GREAT-ER.  相似文献   

4.
According to directive 93/67/EEC of the European Commission, this paper deals with the generic exposition evaluation of the environmental concentration of cooling Lubricant chemicals from the metal working industry into the hydrosphere. After considering the relevant life-cycle steps and the selection of a representative point source for the 'reasonable worst case', the emission per day Elocal(water) is determined. It leads to the predicted environmental concentration (PEClocal(water)) for the local stage in the compartment water. In order to gain the PEClocal(water) for an example--a corrosion inhibitor as additive in a cooling lubricant--, the relevant emission paths and the corresponding representative point source are described for the reasonable worst case. For non-water-miscible cooling lubricants, none of the operations in the life cycle leads to a release into the compartment water. To evaluate the hazard potential for cooling lubricant chemicals, the complete risk assessment has to be done. Also, the assessment has to be done for all high production volume chemicals, new substances and existing hazard chemicals. This means that even industrial categories like chemicals used in the textile industry or biocides and others have to be evaluated.  相似文献   

5.
An evaluation was performed on the first group (41) of completed risk assessments for chemicals of the EU priority lists (Existing Chemicals; EC Regulation 793/93). The evaluation focussed on the conclusions of the risk assessments. The EU risk assessment process detected a high number of substances of concern. Furthermore priority chemicals may pose potential risks to the whole range of protection goals of the risk assessment. The predictability of the risk assessments for priority chemicals was investigated. Our a priori knowledge on possible risks of priority chemicals is found to be poor, especially for consumers. Both for environment and human health the potential risks were linked with a broad spectrum of use patterns. It is concluded that no industry category can in advance be excluded from performing risk assessments. For a great number of chemicals, additional testing was found to be needed to finalize the risk assessment. This evokes questions about the completeness of the current base-set, but also about the suitability of some of the submitted human health tests that should initially fulfil the base-set needs. The results of this evaluation are useful for ongoing discussions on risk assessment processes for chemicals.  相似文献   

6.
REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) is the new European chemical legislation which aims to assess risk or safety of tens of thousands of chemicals to improve the protection of human health and the environment. The chemical safety assessment process is of an iterative nature. First, an initial, worst-case assessment is conducted after which refinements are made until no risk has been estimated or the risk is adequately controlled. Wasting time and resources on additional testing and implementing risk management measures with low effect on risk conclusions should be avoided as much as possible. This paper demonstrates the usefulness of an intelligent data collection strategy based on a sensitivity (and uncertainty) analysis on the risk assessment model EUSES to identify and order the most important "within-EU-TGD-reducible" input parameters influencing the local and regional risk characterisation ratios. The ordering can be adjusted for the costs involved in additional testing (e.g. ecotoxicity, physico-chemical properties, emission estimates, etc.). The risk refinement tool therefore reduces the resources needed to obtain a realistic risk estimate (both less conservative and less uncertain) as efficient as possible.  相似文献   

7.
The European Union System for Evaluation of Substances (EUSES) and the ChemCAN chemical fate model are applied to describe the fate of 68 chemicals on two spatial scales in Japan. Emission information on the chemicals has been obtained from Japan's Pollutant Release and Transfer Registry and available monitoring data gathered from government reports. Environmental concentrations calculated by the two models for the four primary environmental media of air, water, soil and sediment agree within a factor of 3 for over 70% of the data, and within a factor of 10 for over 87% of the data. Reasons for certain large discrepancies are discussed. Concentrations calculated by the models are generally consistent with the lower range of concentrations that are observed in the environment. Agreement between modeled and observed concentrations is considerably improved by including an estimate of the advective input of chemicals in air from outside Japan. The agreement between the EUSES and ChemCAN models suggests that results of individual chemical assessments are not likely to be significantly affected by the choice of chemical fate model. Primary sources of discrepancy between modeled and observed concentrations are believed to be uncertainties in emission rates, degradation half-lives, and the lack of data on advective inflow of contaminants in air.  相似文献   

8.
Methyl tertiary hexyl ether (MtHxE) and methyl tertiary octyl ether (MtOcE) are currently being developed as replacement oxygenates for methyl tertiary butyl ether (MtBE) in gasoline. As was the case with MtBE, the introduction of these ethers into fuel supplies guarantees their introduction into the environment as well. In this study, a screening-level risk assessment was performed by comparing predicted environmental concentrations (PEC) of these ethers to concentrations that might cause adverse effects to humans or ecosystems. A simple box model that has successfully estimated urban air concentrations of MtBE was adapted to predict atmospheric concentrations of MtHxE and MtOcE. Expected atmospheric concentrations of these ethers were also estimated using the European Union System for the Evaluation of Substances (EUSES) multimedia fate model, which simultaneously calculates PECs in the various environmental compartments of air, water, soil, and sediment. Because little or no data are available on the physicochemical, environmental, and toxicological properties of MtHxE and MtOcE, estimation methods were used in conjunction with EUSES to predict both the PECs and the concentrations at which these ethers might pose a threat. The results suggest that these ethers would contaminate the air of a moderately sized U.S. city (Boston, MA) at levels similar to those found previously for MtBE. The risk assessment module in EUSES predicted risk characterization ratios of 10(-3) and 10(-2) for MtHxE and MtOcE, respectively, in Boston, and 10(-2) and 10(-1) in very large urban centers, suggesting that these ethers pose only a minimal threat to ecosystems at the anticipated environmental concentrations. The assessment also indicates that these compounds are possible human carcinogens and that they may be present in urban air at concentrations that pose an unacceptable cancer risk. Therefore, testing of the toxicological properties of these compounds is recommended before they replace MtBE in gasoline.  相似文献   

9.
Abstract

Methyl tertiary hexyl ether (MtHxE) and methyl tertiary octyl ether (MtOcE) are currently being developed as replacement oxygenates for methyl tertiary butyl ether (MtBE) in gasoline. As was the case with MtBE, the introduction of these ethers into fuel supplies guarantees their introduction into the environment as well. In this study, a screening-level risk assessment was performed by comparing predicted environmental concentrations (PEC) of these ethers to concentrations that might cause adverse effects to humans or ecosystems. A simple box model that has successfully estimated urban air concentrations of MtBE was adapted to predict atmospheric concentrations of MtHxE and MtOcE. Expected atmospheric concentrations of these ethers were also estimated using the European Union System for the Evaluation of Substances (EUSES) multimedia fate model, which simultaneously calculates PECs in the various environmental compartments of air, water, soil, and sediment. Because little or no data are available on the physicochemical, environmental, and toxicological properties of MtHxE and MtOcE, estimation methods were used in conjunction with EUSES to predict both the PECs and the concentrations at which these ethers might pose a threat. The results suggest that these ethers would contaminate the air of a moderately sized U.S. city (Boston, MA) at levels similar to those found previously for MtBE. The risk assessment module in EUSES predicted risk characterization ratios of 10?3 and 10?2 for MtHxE and MtOcE, respectively, in Boston, and 10?2 and 10?1 in very large urban centers, suggesting that these ethers pose only a minimal threat to ecosystems at the anticipated environmental concentrations. The assessment also indicates that these compounds are possible human carcinogens and that they may be present in urban air at concentrations that pose an unacceptable cancer risk. Therefore, testing of the toxicological properties of these compounds is recommended before they replace MtBE in gasoline.  相似文献   

10.
11.
Background Different types of indicators have been developed to describe the impact of chemicals on society and environment. Due to the high number of substances and their different types of use, most of these indicators are directed to specific areas of interest – regarding workplace safety, environmental health or consumer health. They address a specific subset of chemicals and can be used for monitoring enterprise-specific, national or international management measures. Main Features A survey of existing indicators for chemicals has shown that indicators already exist for a remarkable number of problem fields. As soon as the release and the environmental fate of chemicals are taken into account, the complexity of the approaches increases considerably. The distinction between indicators for drivers, pressures, state, impacts and responses, as proposed by the European Environmental Agency, supports the identification of proper indicators for a specific type of problem. Discussion and Conclusions. No single indicator exists which is able to cover the whole range of chemicals and their applications. Several indicator approaches cover at least a subset of the most relevant substances. If they are intended to be used for European monitoring, robust data must be provided by EU Member States. Chemicals in enterprises (ancillary inputs as well as process chemicals) are an important element of in-plant material flow management – in terms of occupational safety and health as well as environmental protection. Existing indicators for hazardous chemicals can be a valuable tool for process and product refinement regarding hazardous chemicals, especially for enterprises. Outlook Indicators for production and impact of chemicals, as well as policy performance indicators, are essential elements in order to monitor the management of chemicals. They have to be established for the national and for the EU level.  相似文献   

12.
With the implementation of the new EU environmental framework directives, high tier risk assessments of chemicals will be increasingly needed. For high production chemicals, additional tests will complement the standard battery for aquatic toxicity assessments (daphnids, algae, and fish). In the context of a new chemical notification at the European Union level, we have developed a seed germination and root elongation toxicity test with the freshwater aquatic plant Rorippa nasturtium-aquaticum (water cress) to confirm the low environmental risk of the chelant [S,S]-EDDS. A 14 day semi-static growth inhibition test was conducted with daily renewal of the test solution. No concentration related inhibition was found on the basis of any of the criteria investigated, i.e., time and extent of germination, biomass, number of leaves, stalk and root lengths. The no-observed effect concentration was considered to be >or=387 mg SS-EDDS/l. Although germination was selected as an appropriate endpoint to assess the effect of a chelant on an aquatic plant (other endpoints would have been dependant on essential metals that are chelated in standard culture tests), the absence of dose related effects requires further tests with higher exposure concentrations and/or other toxicant(s) to assess the validity of the test as a general tool for aquatic risk assessment.  相似文献   

13.
Integrated testing and intelligent assessment—new challenges under REACH   总被引:1,自引:1,他引:0  
BACKGROUND, AIM AND SCOPE: Due to a number of drawbacks associated with the previous regime for the assessment of new and existing chemicals, the European Union established a new regulation concerning the registration, evaluation, authorisation and restriction of chemicals (REACH). All relevant industrial chemicals must now be assessed. Instead of the authorities, industry itself is responsible for the risk assessment. To achieve better and more efficient assessments while reducing animal testing, all information-standard, non-standard and non-testing-has to be used in an integrated manner. To meet these challenges, the current technical guidance documents for risk assessment of new and existing chemicals had to be updated and extended considerably. This was done by experts in a number of REACH Implementation Projects. This paper presents the most relevant results of the expert Endpoint Working Group on Aquatic Toxicity in order to illustrate the change of paradigm in the future assessment of hazards to the aquatic environment by chemical substances. MAIN FEATURES AND CHALLENGES: REACH sets certain minimum data requirements in order to achieve a high level of protection for human health and the environment. It encourages the assessor to use alternative information instead of or in addition to standard one. This information has to be equivalent to the standard information requirement and adequate to draw overall conclusions with respect to the regulatory endpoints classification and labelling, persistent, bioaccumulative and toxic (PBT) assessment and predicted no-effect concentrations (PNEC) derivation. The main task of the expert working group was to develop guidance on how to evaluate the toxicity of a substance based on integration of information from different sources and of various degrees of uncertainty in a weight of evidence approach. INTEGRATED TESTING AND INTELLIGENT ASSESSMENT: In order to verify the equivalence and adequacy of different types of information, a flexible sequence of steps was proposed, covering characterisation of the substance, analysis of modes of action, identification of possible analogues, evaluation of existing in vivo and in vitro testing data as well as of QSAR results. Finally, all available data from the different steps have to be integrated to come to an overall conclusion on the toxicity of the substance. This weight of evidence approach is the basis for the development of integrated testing strategies (ITS), in that the available evidence can help to determine subsequent testing steps and is essential for an optimal assessment. Its flexibility helps to meet the different requirements for drawing conclusions on the endpoints classification and labelling, PNEC derivation as well as PBT assessment. The integration of all kinds of additional information in a multi-criteria assessment reduces the uncertainties involved with extrapolation to the ecosystem level. The weight of evidence approach is illustrated by practical examples. CONCLUSIONS AND PERSPECTIVES: REACH leads to higher challenges in order to make sound decisions with fewer resources, i.e. to move away from extensive standard testing to an intelligent substance-tailored approach. Expert judgement and integrated thinking are key elements of the weight of evidence concept and ITS, potentially leading to better risk assessments. Important sub-lethal effects such as endocrine disruption, which are not covered by the current procedure, can be considered. Conclusions have to be fully substantiated: Risk communication will be an important aspect of future assessments.  相似文献   

14.
We assess the implications which research on endocrine disrupting chemicals (EDCs) has for the regulation of synthetic substances and for the protection of the environment, particularly under the forthcoming European Union (EU) REACH legislation. EDCs present regulatory problems inter alia because they can act additively at concentrations which are individually harmless, and they may have non-classical dose (concentration)-response relationships at low exposure levels. Furthermore, current in vivo testing routines were not specifically designed to assess the endocrine disrupting properties of chemicals, whilst in silico and in vitro methods have only limited applicability and availability for this purpose. We need to ensure that the assessment approaches specified in the draft REACH legislation and Technical Guidance are able to evaluate EDCs efficiently. However, it must also be recognised that environmental monitoring procedures in Europe will need to be improved to detect EDCs that have evaded identification, and where appropriate, control, under REACH.  相似文献   

15.
Kawamoto K  Park KA 《Chemosphere》2006,63(7):1154-1164
The environmental fate of 40 existing chemicals is discussed using the EUSES multimedia distribution and risk assessment model with site-specific parameter setting in an urban area of Japan including a highly industrial region. There has been a strong need to assess the environmental fate of a huge number of existing chemicals. Data on the emission amounts of chemicals are essential for such prediction, and PRTR surveys may yield this data. The study delivered the following results: (1) Volatile compounds with large amounts of emission showed higher predicted concentrations in air, and the concentrations of several compounds agreed well with averaged monitoring data within an order of magnitude. (2) A close relationship was found between the concentration of water and that of sediment, suggesting that the fate of chemicals in sediment essentially depended on the water environment. (3) A group of volatile solvents had high mass distribution ratio to air. Some compounds having high solubility in water were also included in that group due to the high ratio of air emission. Highly hydrophobic compounds with logK(OW) larger than 6.0 showed a high distribution ratio to soil and sediment. (4) Volatile compounds were mostly taken through air. The exposure through fish is a dominant pathway for highly hydrophobic compounds. (5) Exposure ratio could be gathered from physicochemical properties. The exposure from fish intake was roughly estimated by logK(OW), whereas exposure from air and water intake was difficult to estimate simply by vapor pressure and solubility in water, respectively.  相似文献   

16.
Bioaccumulation of persistent organic pollutants (POPs) leads to high levels in human milk and high doses of POPs for nursing infants. This is currently not considered in chemical risk assessment. A coupled model for bioaccumulation of organic chemicals in breast-feeding mother and nursing infant was developed and tested for a series of organic compounds. The bioaccumulation factors (BAFs) in mother, breast milk and child were predicted to vary with log KOW and, for volatile compounds, with KAW and concentration in air. The concentrations of POPs in the infant body increase the first half year to about factor 3 above mother and decline thereafter to lower levels. The predicted results are close to empirical data and to an empirical regression. The new mother–child model is compact due to its easy structure and the analytical matrix solution. It could be added to existing exposure and risk assessment systems, such as EUSES.  相似文献   

17.
Exposure to chemicals via diet is a major uptake pathway for many compounds but is often estimated in a rather generic way. We use a new model framework (NMF) with crop-specific models to predict the dietary intake by 4-5-year-old children and 14-75-year-old women of three environmental compounds from their background concentrations in soil and air. Calculated daily intakes of benzo(a)pyrene and 2,3,7,8-TCDD are in good agreement with measured results from diet studies. The major source of both compounds in human diet is deposition from air. Inhalation of air and ingestion of soil play a minor role. Children take up more than twice the amount than adults per kg bodyweight, due to higher consumption per kg bodyweight. Contrary, the methods for indirect human exposure suggested in the Technical Guidance Document (TGD) for chemical risk assessment in the EU lead to overprediction, due to unrealistic consumption data and a false root model.  相似文献   

18.
Environmental Science and Pollution Research - In the European Union, more than 100,000 man-made chemical substances are awaiting an environmental risk assessment (ERA). Simultaneously, ERA of...  相似文献   

19.
20.
Current water quality standards for the protection of human health in Korea include 17 substances found in rivers and streams. Due to increasing concern over the release of hazardous chemicals into the aquatic environment, there has been a demand for additional water quality standards. Therefore, the Korean Ministry of the Environment plans to gradually increase the number of water quality standards to 30 substances, including 22 substances for protection of human health and 8 substances for protection of aquatic ecosystems by 2015. In this study, new water quality standards for protection of human health were established for 1,4-dioxane, formaldehyde, and hexachlorobenzene. We selected candidate hazardous chemicals, conducted a human health risk assessment to determine priority chemicals, established water quality standards based on technical analyses and comparison with domestic and developed countries’ water quality standards, and conducted an expert review. Water quality standards for protection of aquatic ecosystems will be derived in the near future. This study describes how the water quality standards for protection of human health were developed and implemented. Current status, recent expansion, and future plans for water quality standards in Korea are also covered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号