首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The current lack of empirical data on outdoor tobacco smoke (OTS) levels impedes OTS exposure and risk assessments. We sought to measure peak and time-averaged OTS concentrations in common outdoor settings near smokers and to explore the determinants of time-varying OTS levels, including the effects of source proximity and wind. Using five types of real-time airborne particle monitoring devices, we obtained more than 8000 min worth of continuous monitoring data, during which there were measurable OTS levels. Measurement intervals ranged from 2 sec to 1 min for the different instruments. We monitored OTS levels during 15 on-site visits to 10 outdoor public places where active cigar and cigarette smokers were present, including parks, sidewalk cafés, and restaurant and pub patios. For three of the visits and during 4 additional days of monitoring outdoors and indoors at a private residence, we controlled smoking activity at precise distances from monitored positions. The overall average OTS respirable particle concentration for the surveys of public places during smoking was approximately 30 μg m?3. OTS exhibited sharp spikes in particle mass concentration during smoking that sometimes exceeded 1000 μg m?3 at distances within 0.5 m of the source. Some average concentrations over the duration of a cigarette and within 0.5 m exceeded 200 μg m?3, with some average downwind levels exceeding 500 μg m?3. OTS levels in a constant upwind direction from an active cigarette source were nearly zero. OTS levels also approached zero at distances greater than approximately 2 m from a single cigarette. During periods of active smoking, peak and average OTS levels near smokers rivaled indoor tobacco smoke concentrations. However, OTS levels dropped almost instantly after smoking activity ceased. Based on our results, it is possible for OTS to present a nuisance or hazard under certain conditions of wind and smoker proximity.  相似文献   

2.
Abstract

Measurements were made of respirable suspended particles (RSP) in a large sports tavern on 26 dates over approximately two years in which smoking was allowed, followed by measurements on 50 dates during the year after smoking was prohibited. The smoking prohibition occurred without warning when the city government passed a regulation restricting smoking in local restaurants and taverns. Two follow-up field surveys, consisting of 24 and 26 visits, respectively, were conducted to measure changes in RSP levels after smoking was prohibited. No decrease in tavern attendance was evident after smoking was prohibited. During the smoking period, the average RSP concentration was 56.8 |ig/m3 above the outdoor concentrations, but the average abruptly dropped to 5.9 ug/m3 above outdoor levels—a 90% decrease— on 24 visits in the first two months immediately after smoking was prohibited (first follow-up study). A second set of 26 follow-up visits (matched by time of day, day of the week, and season to the earlier smoking visits) yielded an average concentration of 12.9 jig/m3 above the outdoor levels, or an overall decrease in the average RSP concentration of 77% compared with the smoking period. During the smoking period, RSP concentrations more than 100 ug/m3 above outdoor levels occurred on 30.7% of the visits. During the 50 nonsmoking visits, 92% of the RSP concentrations were less than 20 u,g/m3 above outdoor levels, and no concentration exceeded 100 ug/m3 on any nonsmoking visit. The data show there was a striking decline in indoor RSP concentrations in the tavern after smoking was prohibited. The indoor concentration observed in the nonsmoking periods (9.1 u.g/m3 average for all nonsmoking visits) was attributed to cooking and resuspended dust. A mathematical model based on the mass balance equation was developed that included smoking, cooking, and resuspended dust. Using cigarette emission rates from the literature, the tavern volume of 521 m3, and the air exchange rate measured in the tavern under conditions regarded by the management as "typical," the model predicted 42.5 ug/m3 for an average smoking count of 1.17 cigarettes, which compared favorably with the average concentration of 43.9 ng/m3 observed in the tavern. A regression analysis indicated that the active smoking count explained over 50% of the variation of the RSP concentrations measured on different dates. The mathematical model can be used to estimate RSP concentrations from smoking in other similar taverns under similar conditions.  相似文献   

3.
There are few studies measuring exposure to outdoor tobacco smoke (OTS). Tobacco users often gather at the boundaries of tobacco-free campuses, resulting in unintended consequences. The objective of this study was to measure exposure levels from OTS on sidewalks bordering a tobacco-free university campus. Data were collected while walking along a sidewalk adjacent to a medium traffic road between May and August 2011. Monitoring occurred during “background,” “stop,” and “walk-through” conditions at and near hot spot area to measure fine particulate matter (<2.5 μm; PM2.5) from OTS using a portable aerosol monitor. The average PM2.5 levels during stop and walk-through conditions were significantly higher than during background conditions. PM2.5 peak occurrence rate and magnitude of peak concentration were significantly different depending on smoking occurrence. The peak occurrence rate during the stop condition was 10.4 times higher than during the background condition, and 3.1 times higher than during the walk-through condition. Average peak PM2.5 concentrations during the stop condition were 48.7% higher than during the background condition. In conclusion, individuals could be exposed to high levels of PM2.5 when stopping or even passing by smokers outdoors at the perimeter of tobacco-free campuses. The design and implementation of tobacco-free campus policies need to take into account the unintended consequences of OTS exposure at the boundaries.

Implications:In this study, outdoor tobacco smoke (OTS) exposure was measured at the perimeter of tobacco-free campus. OTS exposure could be determined by peak analysis. Peak occurrence rate and peak concentration for OTS exposure were identified by using peak analysis. People could be exposed to high levels of PM2.5 when standing or even passing by smokers at the perimeter of tobacco-free campus. OTS exposure measurement in other outdoor locations with smokers is needed to support outdoor smoking regulation.  相似文献   

4.
Data are lacking on human exposure to air pollutants occurring in ground-level outdoor environments within a few meters of point sources. To better understand outdoor exposure to tobacco smoke from cigarettes or cigars, and exposure to other types of outdoor point sources, we performed more than 100 controlled outdoor monitoring experiments on a backyard residential patio in which we released pure carbon monoxide (CO) as a tracer gas for continuous time periods lasting 0.5–2 h. The CO was emitted from a single outlet at a fixed per-experiment rate of 120–400 cc min?1 (~140–450 mg min?1). We measured CO concentrations every 15 s at up to 36 points around the source along orthogonal axes. The CO sensors were positioned at standing or sitting breathing heights of 2–5 ft (up to 1.5 ft above and below the source) and at horizontal distances of 0.25–2 m. We simultaneously measured real-time air speed, wind direction, relative humidity, and temperature at single points on the patio. The ground-level air speeds on the patio were similar to those we measured during a survey of 26 outdoor patio locations in 5 nearby towns. The CO data exhibited a well-defined proximity effect similar to the indoor proximity effect reported in the literature. Average concentrations were approximately inversely proportional to distance. Average CO levels were approximately proportional to source strength, supporting generalization of our results to different source strengths. For example, we predict a cigarette smoker would cause average fine particle levels of approximately 70–110 μg m?3 at horizontal distances of 0.25–0.5 m. We also found that average CO concentrations rose significantly as average air speed decreased. We fit a multiplicative regression model to the empirical data that predicts outdoor concentrations as a function of source emission rate, source–receptor distance, air speed and wind direction. The model described the data reasonably well, accounting for ~50% of the log-CO variability in 5-min CO concentrations.  相似文献   

5.
As indoor smoking bans have become widely adopted, some U.S. communities are considering restricting smoking outdoors, creating a need for measurements of air pollution near smokers outdoors. Personal exposure experiments were conducted with four to five participants at six sidewalk bus stops located 1.5–3.3 m from the curb of two heavily traveled California arterial highways with 3300–5100 vehicles per hour. At each bus stop, a smoker in the group smoked a cigarette. Gravimetrically calibrated continuous monitors were used to measure fine particle concentrations (aerodynamic diameter ≤2.5 µm; PM2.5) in the breathing zones (within 0.2 m from the nose and mouth) of each participant. At each bus stop, ultrafine particles (UFP), wind speed, temperature, relative humidity, and traffic counts were also measured. For 13 cigarette experiments, the mean PM2.5 personal exposure of the nonsmoker seated 0.5 m from the smoker during a 5-min cigarette ranged from 15 to 153 µg/m3. Of four persons seated on the bench, the smoker received the highest PM2.5 breathing-zone exposure of 192 µg/m3. There was a strong proximity effect: nonsmokers at distances 0.5, 1.0, and 1.5 m from the smoker received mean PM2.5 personal exposures of 59, 40, and 28 µg/m3, respectively, compared with a background level of 1.7 µg/m3. Like the PM2.5 concentrations, UFP concentrations measured 0.5 m from the smoker increased abruptly when a cigarette started and decreased when the cigarette ended, averaging 44,500 particles/cm3 compared with the background level of 7200 particles/cm3. During nonsmoking periods, the UFP background concentrations showed occasional peaks due to traffic, whereas PM2.5 background concentrations were extremely low. The results indicate that a single cigarette smoked outdoors at a bus stop can cause PM2.5 and UFP concentrations near the smoker that are 16–35 and 6.2 times, respectively, higher than the background concentrations due to cars and trucks on an adjacent arterial highway.

Implications: Rules banning smoking indoors have been widely adopted in the United States and in many countries. Some communities are considering smoking bans that would apply to outdoor locations. Although many measurements are available of pollutant concentrations from secondhand smoke at indoor locations, few measurements are available of exposure to secondhand smoke outdoors. This study provides new data on exposure to fine and ultrafine particles from secondhand smoke near a smoker outdoors. The levels are compared with the exposure measured next to a highway. The findings are important for policies that might be developed for reducing exposure to secondhand smoke outdoors.  相似文献   


6.
The carcinogenic tryptophan pyrolysis products, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido-[4,3-b]indole (Trp-P-2), have been measured in condensate of cigarette mainstream smoke by high-performance liquid chromatography. These carcinogens have been detected in indoor air as well as in the air of the outdoor environment. Levels of these carcinogens in indoor air were much higher than those in outdoor air. The source of these carcinogens in indoor air was determined to be cigarette smoke by the application of smoking machine studies. Concentrations of these carcinogens in indoor air increased markedly with an increase in cigarettes smoked. The results in this investigation suggest that cigarette smoking is a source of carcinogenic tryptophan pyrolysis products in the indoor environment. Our data also suggest that smokers are persistently exposed to the carcinogenic heterocyclic amines together with potent carcinogens such as polynuclear aromatic hydrocarbons and N-nitroso compounds.  相似文献   

7.
We studied the concentration of 10 primary aromatic amines (AA), which are classified as suspected carcinogens, in indoor and outdoor air in Italy. The measured AA included: aniline, o-toluidine, m-toluidine, p-toluidine, 2,3-dimethylaniline, 2,4-dimethylaniline, 2,5-dimethylaniline, 2,6-dimethylaniline, 2-naphtylamine and 4-aminobiphenyl. In the indoor environment (homes, offices and public buildings) the level of contamination (expressed as sum of 9 AA, excluding aniline) varied from 3 ng/m3 (hospital ward) to 207 ng/m3 (discotheque). In most indoor environments with no contamination from cigarette smoke the AA levels were below 20 ng/m3, whereas in the presence of smokers higher values were observed. Aniline levels were more erratic (varying from 53 ng/m3 (office of non-smokers) to 1929 ng/m3 (discotheque) and were not related to cigarette smoke. The concentration range of AA (excluding aniline) in the outside air varied from 3 ng/m3 (Siena) to 104 ng/m3 (Brindisi); aniline concentration was extremely variable. Most samples of outdoor air had AA levels lower than 40 ng/m3. In conclusion, AA are widespread air contaminants and attain a high concentration in heavily contaminated indoor environments, due to smoking and poor ventilation. AA occasionally attain a high level in outdoor air as well. Therefore, a strategy of reduction of the exposure to AA should consider the abatement of multiple sources of contamination.  相似文献   

8.
Indoor smoking ban in public places can reduce secondhand smoke (SHS) exposure. However, smoking in cars and homes has continued. The purpose of this study was to assess particulate matter less than 2.5 μm (PM2.5) concentration in moving cars with different window opening conditions. The PM2.5 level was measured by an aerosol spectrometer inside and outside moving cars simultaneously, along with ultrafine particle (UFP) number concentration, speed, temperature and humidity inside cars. Two sport utility vehicles were used. Three different ventilation conditions were evaluated by up to 20 repeated experiments. In the pre-smoking phase, average in-vehicle PM2.5 concentrations were 16–17 μg m?3. Regardless of different window opening conditions, the PM2.5 levels promptly increased when smoking occurred and decreased after cigarette was extinguished. Although only a single cigarette was smoked, the average PM2.5 levels were 506–1307 μg m?3 with different window opening conditions. When smoking was ceased, the average PM2.5 levels for 15 min were several times higher than the US National Ambient Air Quality Standard of 35 μg m?3. It took longer than 10 min to reach the level of the pre-smoking phase. Although UFP levels had a similar temporal profile of PM2.5, the increased levels during the smoking phase were relatively small. This study demonstrated that the SHS exposure in cars with just a single cigarette being smoked could exceed the US EPA NAAQS under realistic window opening conditions. Therefore, the findings support the need for public education against smoking in cars and advocacy for a smoke-free car policy.  相似文献   

9.
Exposure estimates based solely on proximity to air pollution sources are not sound and require confirmation. Accordingly, since a very limited amount of actual data for this type of exposure estimate is currently available, this study was conducted to provide actual data on residents' exposure to two important gasoline constituents [methyl tertiary butyl ether (MTBE) and benzene] relative to their proximity to roadside service stations. The results confirmed that residents in neighborhoods near service stations are exposed to elevated ambient MTBE and benzene levels compared with those living farther from such a source. However, it was also found that the presumed elevated outdoor benzene levels (a mean of 1.7 ppb) even in close proximity to service stations did not exceed the indoor levels (a mean of 2.2 ppb) of exposure for those living nearby. Regardless of residents' distance from service stations, an indoor source (cigarette smoking) appeared to be the major contributor to their benzene exposure. Conversely, for MTBE, roadside service stations were found to be the major contributor to residents' exposure. In addition, the residents close to the stations were exposed to elevated indoor and outdoor MTBE levels. The sampling period (daytime and nighttime) and season (winter and summer) were additional parameters for the outdoor MTBE and benzene levels and the indoor MTBE levels. Meanwhile, the breathing zone air concentrations of service station attendants for both MTBE and benzene were significantly higher than those of drivers (p < 0.05). In addition, the breathing zone concentrations were significantly higher during summer than during winter for both drivers and attendants (p < 0.05).  相似文献   

10.
A chemical mass balance receptor model based on organic compounds has been developed that relates source contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.  相似文献   

11.
Chuang CY  Lee CC  Chang YK  Sung FC 《Chemosphere》2003,52(7):1163-1171
Nitrogen oxides (NOx) and polycyclic aromatic hydrocarbons are common air pollutants generated from automobile exhaust and cigarette smoke. This study was to investigate urinary 8-hydroxydeoxyguanosine (8-OHdG) as an effective biomarker on DNA damage from traffic exhaust and/or smoking in exposed and non-exposed individuals. With subject consents, the levels of plasma NOx, urinary 1-hydroxypyrene (1-OHP) and 8-OHdG were determined for 95 male taxi drivers and 75 male community residents as the reference group. After adjusting for associate variables, there was a significant correlation between the levels of urinary 8-OHdG and 1-OHP but not NOx. The average level of urinary 8-OHdG was significantly higher in drivers than in community men (13.4+/-4.7 vs. 11.5+/-4.7 microg/g creatinine in mean+/-standard deviation). Compared with non-smoking community men, the multivariate logistic regression showed that the odds ratios (OR) of having elevated levels of urinary 8-OHdG (greater than the overall median value, 12.1 microg/g creatinine) were 6.6 (95% confidence interval (CI)=2.1-20.8) for smoking community men, 5.0 (95% CI=1.7-14.7) for non-smoking taxi drivers and 4.6 (95% CI=1.4-15.0) for smoking taxi drivers. Higher risk was also observed for areca quid chewers compared with non-chewers (OR=1.6; 95% CI=1.1-3.6). In conclusion, taxi driving and smoking may contribute independently to elevated DNA damage using urinary 8-OHdG levels as a sensitive biomarker. This effect is most potent on heavy smokers.  相似文献   

12.
beta-Carboline-3-carboxylic acid methylamide (FG 7142), an anxiogenic agent, has been detected in human urine. The urinary excretion level of FG 7142 in non-smokers was found to be 0.503 +/- 0.25 ng per day (mean +/- S.D., n=10), while that in smokers was found to be 2.418 +/- 0.384 ng per day (n=10). This suggests that humans are exposed to FG 7142 and that smokers are exposed to higher levels of FG 7142 than non-smokers. Considering the previous findings that FG 7142 is present in cigarette smoke, indoor and outdoor air and smoke condensate of tree leaves, humans may be exposed to FG 7142 via the airways and lungs, although we cannot exclude the possibility of exposure via foodstuffs. Results of animal experiments suggest that FG 7142 which enters the bloodstream is excreted into the urine via the kidneys within 24 h in an unchanged form. Therefore, monitoring the level of FG 7142 in urine may be useful for monitoring the exposure level of FG 7142.  相似文献   

13.
beta-Carboline-3-carboxylic acid methylamide (FG 7142), an anxiogenic agent, has been measured in airborne particles, automobile-exhaust particles, incinerator ash, smoke condensate of tree leaves and cigarette-smoke-polluted indoor air by high-performance liquid chromatography. This compound has been detected in indoor as well as outdoor air. The source of this compound in indoor air was determined as cigarette smoke, identified from smoking machine studies. This anxiogenic agent was detected in smoke condensate of tree leaves and incinerator ash from garbage burning plants, but not in diesel-exhaust particles. Considering the present results, together with the previous finding that cigarette smoke contains this compound, FG 7142 is likely to be formed through combustion of plants. Our data also suggest that this compound may be widely distributed in the environment.  相似文献   

14.
Measurements of carbonyls in a 13-story building   总被引:1,自引:0,他引:1  
BACKGROUND, AIM AND SCOPE: Formaldehyde and acetaldehyde are emitted by many mobile and stationary sources and secondary aldehydes are intermediates in the photo-oxidation of organic compounds in the atmosphere. These aldehydes are emitted indoors by many materials such as furniture, carpets, heating and cooling systems, an by smoking. Carbonyls, mainly formaldehyde and acetaldehyde, have been studied because of their adverse health effects. In addition, formaldehyde is a suspected carcinogen. Therefore, the concentrations of formaldehyde and acetaldehyde were determined to assess the inhalation exposure doses to carbonyls for people who work in a 13-story building and in order to evaluate the cancer hazard. METHODS: Carbonyl compounds in indoor and outdoor air were measured at a 13-story building located in Mexico City. The mezzanine, fifth and tenth floors, and the third level-parking garage were selected for sampling. Samples were collected in two sampling periods, the first from April 20 to 29, 1998 and the second from December 1 to 20, 1998. Carbonyls were sampled by means of DNHP-coated cartridges at a flow rate of 1 l min(-1) from 9:00 to 19:00 hours, during 2-hour time intervals and analyzed by HPLC with hours, during 2-hour time intervals and analyzed by HPLC with UV/VIS detection. RESULTS: Mean carbonyl concentrations were highest in the 3rd level-parking garage, with the formaldehyde concentration being the highest ranging from 108 to 418 microg m(-3). In working areas, the highest carbonyl arithmetic mean concentrations (AM) were observed on the 5th floor. Acetone and formaldehyde concentrations were highest in April ranging from 161 to 348 microg m(-3) (AM = 226) and from 157 to 270 microg m(-3) (AM = 221), respectively. Propionaldehyde and butyraldehyde were present in smaller concentrations ranging from 2 to 25 and 1 to 28 microg m(-3), respectively, considering all the samples. Mean indoor/outdoor ratios of carbonyls ranged from 1.8 to 9.6. A reduction of inhalation exposure doses of 41% and 45% was observed in the fifth floor air after the air conditioning systems had been repaired. Formaldehyde and acetaldehyde concentrations were higher in smoking environments. CONCLUSION: Indoor carbonyl concentrations were significantly greater than outdoor concentrations. Tobacco smoke seems to be the main indoor source of formaldehyde. After the air conditioning system was maintained and repaired (as was recommended), an important reduction in the emission of formaldehyde and acetaldehyde was achieved on all floors, except for the 3rd level parking garage, thereby reducing the inhalation exposure doses. RECOMMENDATION: The results obtained in this research demonstrated that maintenance of air conditioning systems must be carried out regularly in order to avoid possible adverse effects on health. Additionally, it is mandatory that isolated smoking areas, with air extraction systems, be installed in every public building.  相似文献   

15.
Average concentrations of particulate matter with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5) in Steubenville, OH, have decreased by more than 10 microg/m3 since the landmark Harvard Six Cities Study associated the city's elevated PM2.5 concentrations with adverse health effects in the 1980s. Given the promulgation of a new National Ambient Air Quality Standard (NAAQS) for PM2.5 in 1997, a current assessment of PM2.5 in the Steubenville region is warranted. The Steubenville Comprehensive Air Monitoring Program (SCAMP) was conducted from 2000 through 2002 to provide such an assessment. The program included both an outdoor ambient air monitoring component and an indoor and personal air sampling component. This paper, which is the first in a series of four that will present results from the outdoor portion of SCAMP, provides an overview of the outdoor ambient air monitoring program and addresses statistical issues, most notably autocorrelation, that have been overlooked by many PM2.5 data analyses. The average PM2.5 concentration measured in Steubenville during SCAMP (18.4 microg/m3) was 3.4 microg/m3 above the annual PM2.5 NAAQS. On average, sulfate and organic material accounted for approximately 31% and 25%, respectively, of the total PM2.5 mass. Local sources contributed an estimated 4.6 microg/m3 to Steubenville's mean PM2.5 concentration. PM2.5 and each of its major ionic components were significantly correlated in space across all pairs of monitoring sites in the region, suggesting the influence of meteorology and long-range transport on regional PM2.5 concentrations. Statistically significant autocorrelation was observed among time series of PM2.5 and component data collected at daily and 1-in-4-day frequencies during SCAMP. Results of spatial analyses that accounted for autocorrelation were generally consistent with findings from previous studies that did not consider autocorrelation; however, these analyses also indicated that failure to account for autocorrelation can lead to incorrect conclusions about statistical significance.  相似文献   

16.
Santiago, Chile, is one of the most polluted cities in South America. As a response, over the past 15 yr, numerous pollution reduction programs have been implemented by the environmental authority, Comisión Nacional del Medio Ambiente. This paper assesses the effectiveness of these interventions by examining the trends of fine particulate matter (PM(2.5)) and its associated elements. Daily fine particle filter samples were collected in Santiago at a downtown location from April 1998 through March 2003. Additionally, meteorological variables were measured continuously. Annual average concentrations of PM(2.5) decreased only marginally, from 41.8 microg/m3 for the 1998-1999 period to 35.4 microg/m3 for the 2002-2003 period. PM(2.5) concentrations exceeded the annual U.S. Environmental Protection Agency standard of 15 microg/m3. Also, approximately 20% of the daily samples exceeded the old standard of 65 microg/m3, whereas approximately half of the samples exceeded the new standard of 35 microg/m3 (effective in 2006). Mean PM(2.5) levels measured during the cold season (April through September) were three times higher than those measured in the warm season (October through March). Particulate mass and elemental concentration trends were investigated using regression models, controlling for year, month, weekday, wind speed, temperature, and relative humidity. The results showed significant decreases for Pb, Br, and S concentrations and minor but still significant decreases for Ni, Al, Si, Ca, and Fe. The larger decreases were associated with specific remediation policies implemented, including the removal of lead from gasoline, the reduction of sulfur levels in diesel fuel, and the introduction of natural gas. These results suggest that the pollution reduction programs, especially the ones related to transport, have been effective in reducing various important components of PM(2.5). However, particle mass and other associated element levels remain high, and it is thus imperative to continue the efforts to improve air quality, particularly focusing on industrial sources.  相似文献   

17.
Environmental tobacco smoke (ETS) is a major source of human exposure to airborne particles. To better understand the factors that affect exposure, and to investigate the potential effectiveness of technical control measures, a series of experiments was conducted in a two-room test facility. Particle concentrations, size distributions, and airflow rates were measured during and after combustion of a cigarette. Experiments were varied to obtain information about the effects on exposure of smoker segregation, ventilation modification, and air filtration. The experimental data were used to test the performance of an analytical model of the two-zone environment and a numerical multizone aerosol dynamics model. A respiratory tract particle deposition model was also applied to the results to estimate the mass of ETS particles that would be deposited in the lungs of a nonsmoker exposed in either the smoking or nonsmoking room. Comparisons between the experimental data and model predictions showed good agreement. For time-averaged particle mass concentration, the average bias between model and experiments was less than 10%. The average absolute error was typically 35%, probably because of variability in particle emission rates from cigarettes. For the conditions tested, the use of a portable air filtration unit yielded 65–90% reductions in predicted lung deposition relative to the baseline scenario. The use of exhaust ventilation in the smoking room reduced predicted lung deposition in the nonsmoking room by more than 80%, as did segregating the smoker from nonsmokers with a closed door.  相似文献   

18.
Inhaling particulate matter (PM) in environmental tobacco smoke (ETS) endangers the health of nonsmokers. Menthol, an additive in cigarettes, attenuates respiratory irritation of tobacco smoke. It reduces perceptibility of smoke and therefore passive smokers may inhale ETS unnoticed. To investigate a possible effect of menthol on PM concentrations (PM10, PM2.5, and PM1), ETS of four mentholated cigarette brands (Elixyr Menthol, Winston Menthol, Reyno Classic, and Pall Mall Menthol Blast) with varying menthol content was analyzed. ETS was generated in a standardized way using an automatic environmental tobacco smoke emitter (AETSE), followed by laser aerosol spectrometry. This analysis shows that the tested cigarette brands, despite having different menthol concentrations, do not show differences with regard to PM emissions, with the exception of Reyno Classic, which shows an increased emission, although the menthol level ranged in the midfield. More than 90% of the emitted particles had a size smaller than or equal to 1 µm. Regardless of the menthol level, the count median diameter (CMD) and the mass median diameter (MMD) were found to be 0.3 µm and 0.5 µm, respectively. These results point out that there is no effect of menthol on PM emission and that other additives might influence the increased PM emission of Reyno Classic.

Implications: Particulate matter (PM) in ETS endangers the health of nonsmokers and smokers. This study considers the effect of menthol, an additive in cigarettes, on PM emissions. Does menthol increase the amount of PM? Due to the exposure to secondhand smoke nearly 900,000 people die each year worldwide. The aim of the study is to measure the particle concentration (L?1), mass concentration (µg m?3), and dust mass fractions shown as PM10, PM2.5, and PM1 of five different cigarette brands, including four with different menthol concentrations and one menthol-free reference cigarette, in a well-established standardized system.  相似文献   

19.
The levels reported in diverse publications of byproducts of cigarette combustion (acrolein, aldehydes, aromatic hydrocarbons, carbon monoxide, nicotine, nitrogen oxides, nitrosamines, particulates, and others for which scattered information is available as HCN, ketones, nitriles) are summarized in tabular form. Summaries also include information on test conditions such as ventilation, size and types of premises, monitoring conditions, number of smokers, and rate of smoking. Current methodology emerging from a review of a wide variety of measuring practices is critically evaluated and discussed. Major findings are reviewed. In conclusion, the presently available data are useful for gaining a reasonably accurate perspective of the amount of combustion products contributed by cigarette smoking under different conditions, even though serious methodological problems persist.  相似文献   

20.
Indoor and outdoor air quality investigation at schools in Hong Kong   总被引:7,自引:0,他引:7  
Lee SC  Chang M 《Chemosphere》2000,41(1-2):109-113
Five classrooms in Hong Kong (HK), air-conditioned or ceiling fans ventilated, were chosen for investigation of indoor and outdoor air quality. Parameters such as temperature, relative humidity (RH), carbon dioxide (CO2), sulphur dioxide (SO2), nitric oxide (NO), nitrogen dioxide (NO2), respirable particulate matter (PM10), formaldehyde (HCHO), and total bacteria counts were monitored indoors and outdoors simultaneously. The average respirable particulate matter concentrations were higher than the HK Objective, and the maximum indoor PM10 level exceeded 1000 microg/m3. Indoor CO2 concentrations often exceeded 1000 microl/l in air-conditioning and ceiling fan classrooms, indicating inadequate ventilation. Maximum indoor CO2 level reached 5900 microl/l during class at the classroom with cooling tower ventilation. Increasing the rate of ventilation or implementation of breaks between classes is recommended to alleviate the high CO2 level. Other pollution parameters measured in this study complied with the standards. The two most important classroom air quality problems in Hong Kong were PM10 and CO2 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号