首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A total of 168 bacterial strains isolated from soil of the La Laguna area (Tenerife Island, Spain) were characterized and assayed for phenol-oxidase enzymes (as an indicator of lignolytic capability).  相似文献   

2.
《Chemosphere》2009,74(11):1708-1715
In this paper, the oxidation of tert-butyl formate (TBF) in aqueous solution by an ozone/UV process was described. The oxidation process was investigated experimentally in a semibatch reactor. The results of the study indicated that the ozone/UV process was very effective in oxidizing TBF. tert-Butyl alcohol (TBA), hydroxy-iso-butyraldehyde (HiBA), acetone, formaldehyde, and formic acid were identified as major primary intermediates during the oxidation of TBF. About 90% organic carbon balance was obtained indicating that most reaction intermediates have been identified and quantified. Some of the primary intermediates were also oxidized in the ozone/UV system. Accordingly, HiBA, acetone, formaldehyde, and formic acid were the primary intermediates of TBA oxidation. The oxidation of acetone in the ozone/UV system generated formaldehyde, pyruvaldehyde, acetic acid, formic acid as primary intermediates. It was also observed that the reaction intermediates formed during the oxidation of TBF react well in the ozone/UV system and complete mineralization could be achieved by the process.  相似文献   

3.
Garoma T  Gurol MD  Thotakura L  Osibodu O 《Chemosphere》2008,73(11):1708-1715
In this paper, the oxidation of tert-butyl formate (TBF) in aqueous solution by an ozone/UV process was described. The oxidation process was investigated experimentally in a semibatch reactor. The results of the study indicated that the ozone/UV process was very effective in oxidizing TBF. tert-Butyl alcohol (TBA), hydroxy-iso-butyraldehyde (HiBA), acetone, formaldehyde, and formic acid were identified as major primary intermediates during the oxidation of TBF. About 90% organic carbon balance was obtained indicating that most reaction intermediates have been identified and quantified. Some of the primary intermediates were also oxidized in the ozone/UV system. Accordingly, HiBA, acetone, formaldehyde, and formic acid were the primary intermediates of TBA oxidation. The oxidation of acetone in the ozone/UV system generated formaldehyde, pyruvaldehyde, acetic acid, formic acid as primary intermediates. It was also observed that the reaction intermediates formed during the oxidation of TBF react well in the ozone/UV system and complete mineralization could be achieved by the process.  相似文献   

4.
Zhang F  Yediler A  Liang X 《Chemosphere》2007,67(4):712-717
In this study, an aqueous solution of purified, hydrolyzed C.I. Reactive Red 120 (RR 120, Color Index), was selected as a model to investigate the degradation pathways and to obtain additional information on the reaction intermediate formation. The dye was purified to avoid the influence of the impurities on the ozonation process and on the formation of oxidation by-products. To simulate the dye-bath effluents from dyeing processes with azo reactive dyes, a hydrolyzed form of the dye was chosen as a representative compound. High performance liquid chromatography/mass spectrometry and its tandem mass spectrometry was chosen to identify the decomposition pathways and reaction intermediate formation during the ozonation process. In addition total organic carbon and high performance ion chromatography analysis were employed to obtain further information on the reaction processes during ozonation. Purified, hydrolyzed RR 120 was decomposed under the direct nucleophilic attack by ozone resulting in oxidation and cleavage of azo group and aromatic ring, while the triazine group still remained in the solution even after prolonged oxidation time (120 min) due to its high resistance to ozonation. Phenol, 1,2-dihydroxysulfobezene, 1-hydroxysulfonbezene were detected as the degradation intermediates, which were further oxidized by O(3) and *OH to other open-ring products and then eventually led to simple oxalic and formic acid identified by HPIC.  相似文献   

5.
The photocatalytic degradation of crotamiton in aqueous solution using TiO2 was investigated. To investigate the effect of initial pH, the photodegradation behaviors of three types of pharmaceuticals were compared (crotamiton, clofibric acid, sulfamethoxazole). The degradation rates of crotamiton in the pH range 3-9 were nearly equal, but those of clofibric acid and sulfamethoxazole were affected by pH. At pH > 6.5, TiO2 particles, clofibric acid and sulfamethoxazole had negative charge, therefore, the repulsive force between TiO2 particles and anionic pharmaceuticals occurred and a low reaction rate at high pH was observed. The effect of UV intensity and TiO2 concentration on photodegradation efficiency was also investigated. Linear and logarithmical relationships between UV intensity, TiO2 concentration and the reaction rate constant were confirmed. Furthermore, the structures of photodegradation intermediates formed concomitantly with the disappearance of crotamiton were estimated. Seven intermediates were characterized by LC/MS/MS analyses, and it was assumed that the photocatalytic degradation of crotamiton was initiated by the attack of electrophilic hydroxyl radicals on aromatic rings and alkyl chains.  相似文献   

6.
Photo-Fenton treatment of water containing natural phenolic pollutants   总被引:10,自引:0,他引:10  
Phenolic compounds are known to be present in high concentrations in various types of agro-industrial wastes. As they are highly biorecalcitrant, the possibility of treatment by advanced oxidation processes should be investigated. In this work, six model phenolic compounds (vanillin, protocatechuic acid, syringic acid, p-coumaric acid, gallic acid and L-tyrosine) were chosen for a demonstration of degradation by photo-Fenton reaction, under artificial light in laboratory experiments in Vienna and under sunlight in pilot-plant experiments at the Plataforma Solar de Almería in Spain. All compounds were completely mineralised. No non-degradable intermediates were produced, either in experiments with single substances or in a more complex matrix of a mixture of phenolic compounds. The expected selectivity of the photo-Fenton reaction for aromatic compounds was proven by comparison of the decrease in total organic carbon with the removal of total phenolic content.  相似文献   

7.
Stöffler B  Luft G 《Chemosphere》1999,38(5):1035-1047
The oxidative degradation of p-toluenesulfonic acid using thermally activated hydrogen peroxide was investigated. The concentrations of all aromatic and aliphatic intermediates were determined by means of HPLC. From the identification of all intermediates, a detailed reaction mechanism for the oxidative degradation of p-toluenesulfonic acid is proposed. Experiments show that the oxidation with hydrogen peroxide is an effective process for the destruction of organic pollutants. Only substoichiometric amounts of hydrogen peroxide are required to convert this refractory model compound to easily biodegradable substances.  相似文献   

8.
以钛酸丁酯为钛源、MCM-41分子筛为载体,采用溶胶-凝胶法制备了掺杂与负载相结合的光催化剂Ba/TiO2/MCM-41。结果表明:Ba/TiO2/MCM-41是一种比表面积高达341.2 m2/g的介孔材料,主要晶相为锐钛矿相,比P25有更强的紫外光吸收。将Ba/TiO2/MCM-41用于光催化氧化水中的对硝基苯甲酸,当催化剂投加量为0.5 g/L,对硝基苯甲酸初始pH为4、浓度为2×10-4mol/L时,紫外光照30 min后,对硝基苯甲酸降解率达到96.0%。用紫外光谱、红外光谱和高效液相色谱分析对硝基苯甲酸降解前后的变化,发现随着光照时间延长,苯环上的硝基、羧基吸收峰逐渐减弱;对硝基苯甲酸首先被降解为一些中间小分子产物,随着反应进行,小分子物质也逐渐被降解。  相似文献   

9.
Phenolic acids constitute an important group of pollutants which are reluctant to biological treatment. Solutions containing a mixture of cinnamic acid, p-coumaric acid, caffeic acid and ferulic acid were submitted to ozonisation. Then, the changes in biodegradability along the process were studied by means of respirometry. There is an optimum ozone dosage in the interval 3-5 min of treatment which allows to achieve the maximum increase in biodegradability (more than 10 times) and a high efficiency of the ozonisation process (COD decreases to a half of its initial value). Further ozonisation does not help to increase biodegradability and is clearly disadvantageous. Similar results are obtained with actual samples of olive oil wastewaters. This behaviour is explained based on the formation of highly biodegradable benzaldehydes as key ozonisation intermediates, in the early reaction stages.  相似文献   

10.
以钛酸丁酯为钛源、MCM-41分子筛为载体,采用溶胶-凝胶法制备了掺杂与负载相结合的光催化剂Ba/TiO2/MCM-41。结果表明:Ba/TiO2/MCM-41是一种比表面积高达341.2 m2/g的介孔材料,主要晶相为锐钛矿相,比P25有更强的紫外光吸收。将Ba/TiO2/MCM-41用于光催化氧化水中的对硝基苯甲酸,当催化剂投加量为0.5 g/L,对硝基苯甲酸初始pH为4、浓度为2×10-4mol/L时,紫外光照30 min后,对硝基苯甲酸降解率达到96.0%。用紫外光谱、红外光谱和高效液相色谱分析对硝基苯甲酸降解前后的变化,发现随着光照时间延长,苯环上的硝基、羧基吸收峰逐渐减弱;对硝基苯甲酸首先被降解为一些中间小分子产物,随着反应进行,小分子物质也逐渐被降解。  相似文献   

11.
This research examines the degradation of atrazine by photocatalytic oxidation (PCO) under different experimental conditions. Deisopropylatrazine, deethylatrazine and deethyldeisopropylatrazine were formed as major intermediates based on gas chromatography-mass spectrometry. The reaction mixture was found to be toxic towards two bioassays, i.e. the Microtox and amphipods survival tests even when atrazine was completely degraded by PCO within 2 h under optimized conditions. The results indicate that adding H2O2 could significantly enhance the degradation of atrazine by PCO. Ammeline, ammelide and cyanuric acid (CA) became the major intermediates/products as detected by high performance liquid chromatography from 6th to the 40th h of PCO treatment. After 72 h PCO treatment, only CA was detectable in the reaction mixture. Further degradation of CA was carried out by a newly isolated CA-degrading bacterium, Sphingomonas capsulata. The photochemical pretreatment integrated with microbial degradation lead to the complete degradation and detoxification of atrazine.  相似文献   

12.
A solvent tolerant bacterium Serratia marcescens NCIM 2919 has been evaluated for degradation of DDT (1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane). The bacterium was able to degrade up to 42% of initial 50 mg L?1 of DDT within 10 days of incubation. The highlight of the work was the elucidation of DDT degradation pathway in S. marcescens. A total of four intermediates metabolites viz. 2,2-bis (chlorophenyl)-1,1-dichloroethane (DDD), 2,2-bis (chlorophenyl)-1,1-dichloroethylene (DDE), 2,2-bis (chlorophenyl)-1-chloroethylene (DDMU), and 4-chlorobenzoic acid (4-CBA) were identified by GC-Mass and FTIR. 4-CBA was found to be the stable product of DDT degradation. Metabolites preceding 4-CBA were not toxic to strain as reveled through luxuriant growth in presence of varying concentrations of exogenous DDD and DDE. However, 4-CBA was observed to inhibit the growth of bacterium. The DDT degrading efficiency of S. marcescens NCIM 2919 hence could be used in combination with 4-CBA utilizing strains either as binary culture or consortia for mineralization of DDT. Application of S. marcescens NCIM 2919 to DDT contaminated soil, showed 74.7% reduction of initial 12.0 mg kg?1 of DDT after 18-days of treatment.  相似文献   

13.
The Fenton-like degradation of nalidixic acid was studied in this work. The effects of Fe3+ concentration and initial H2O2 concentration were investigated. Increasing the initial H2O2 concentration enhances the degradation and mineralization efficiency for nalidixic acid, while Fe3+ shows an optimal concentration of 0.25 mM. A complete removal of nalidixic acid and a TOC removal of 28 % were achieved in 60 min under a reaction condition of [Fe3+]?=?0.25 mM, [H2O2]?=?10 mM, T?=?35 °C, and pH?=?3. LC–MS analysis technique was used to analyze the possible degradation intermediates. The degradation pathways of nalidixic acid were proposed according to the identified intermediates and the electron density distribution of nalidixic acid. The Fenton-like degradation reaction of nalidixic acid mainly begins with the electrophilic attack of hydroxyl radical towards the C3 position which results in the ring-opening reaction; meanwhile, hydroxyl radical attacking to the branched alkyl groups of nalidixic acid leads to the oxidation at the branched alkyl groups.  相似文献   

14.
Germs, xenobiotics and organic matter that influence the colour, turbidity and organoloeptic properties of water are removed by chlorination. Unfortunately, chlorine oxidants including sodium hypochlorite, used in water treatment induce processes that partly convert the treated compounds to unwanted chlorinated derivatives. The purpose of this work was to analyse the efficiency of transformation of phenol, catechol, guaiacol and syringol exposed to sodium hypochlorite and determine the intermediates formed during oxidative conversion of these compounds. The analysis was performed in aerobic conditions, both in acidic (pH 4.0) and alkaline (pH 8.0) medium. The effectiveness of transformation was slightly higher in acidic in comparison to alkaline conditions. Some chlorophenols, such as 2-chlorophenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol and pentachlorophenol were determined as the products of phenol conversion. Chlorophenols were also formed during catechol, guaiacol and syringol transformation by replacement of hydroxy and methoxy residues by chlorine atoms. Moreover, some chlorocatechols and chlorinated methoxyphenols were determined during catechol and methoxyphenols transformations. Higher concentrations of chlorinated compounds were observed in the alkaline environment during phenol transformation. Conversion of catechol and methoxyphenols generated higher amounts of chlorinated intermediates in the acidic medium. In samples carboxylic acids like acetic and formic acids were determined. The formation of these compounds was the result of the cleavage of aromatic structure of phenols.  相似文献   

15.
染料废水生物降解的产物分析   总被引:1,自引:0,他引:1  
介绍了含酸性蒽醌蓝324染料废水在兼氧-好氧系统中的生物转化.产物分析结果表明:80.5%的母体染料大分子能在兼氧条件下降解成较为简单的中间产物,并且这些中间产物能在好氧条件下进一步矿化.对各反应器中主要的代谢产物分别进行紫外-可见、红外(FT-IR)和高效液相色-质联谱仪(HPLC-MS)检测分析后发现,母体染料经兼氧水解首先生成1-氨基-2-羟基蒽醌以及还原态的-OH基取代蒽醌隐色体,进一步水解生成3,4-二羟基苯甲酸.再经好氧处理,降解终产物中检测到了质荷比为101、102的脂肪类碳氢化合物、胺及醇等物质,未见有共轭结构存在.  相似文献   

16.
采用臭氧高级氧化处理高浓度苯乙烯有机废气,研究了进气苯乙烯浓度、臭氧浓度、停留时间、O3/C8H8摩尔比对苯乙烯去除效率的影响。研究结果表明,臭氧氧化能有效净化苯乙烯有机废气,苯乙烯去除效率可达66.6%。适宜运行条件为:停留时间为3.6 s,O3/C8H8摩尔比为0.46。采用GC-MS分析臭氧氧化苯乙烯出口气样,研究结果表明,苯甲醛(C6H5CHO)和苯甲酸(C6H5COOH)为臭氧氧化苯乙烯的中间产物。臭氧高级氧化苯乙烯机制为苯乙烯气体被臭氧氧化为苯甲醛和苯甲酸,然后继续臭氧氧化为最终产物二氧化碳和水。  相似文献   

17.
The biological degradation behaviour of the aliphatic-aromatic copolyester Ecoflex was investigated with regard to the degree of degradation and the intermediates formed during the degradation process. The individual thermophilic strain Thermomonospora fusca, isolated from compost material, was used for the degradation experiments in a defined synthetic medium at 55 degrees C. After 22 days of degradation more than 99.9% of the polymer had depolymerized and with regard to the degradation of the diacid and diol components of Ecoflex only the monomers of the copolyesters (1,4-butanediol, terephthalate and adipate) could be detected by gas chromatography/mass spectroscopy (GC-MS) measurements in the medium. In interrupted degradation experiments predominantly the monoesters of adipic acid and terephthalic acid with 1,4-butanediol were observed in addition to the monomers. In toxicological tests with Daphnia magna and Photobacterium phosphoreum no significant toxicological effect was observed, neither for the monomeric intermediates nor for the oligomeric intermediates. From a risk assessment it can be concluded that there is no indication for an environmental risk when aliphatic-aromatic copolyesters of the Ecoflex-type are introduced into composting processes.  相似文献   

18.
It has been shown that manganese dioxide (MnO2) can mediate transformation of phenolic contaminants to form phenoxyl radical intermediates, and subsequently, these intermediates intercouple to form oligomers via covalent binding. However, the reaction kinetics and transformation mechanisms of phenolic contaminants with humic molecules present in nano-MnO2-mediated systems were still unclear. In this study, it was proven that nano-MnO2 were effective in transforming triclosan under acidic conditions (pH 3.5–5.0) during manganese reduction, and the apparent pseudo first-order kinetics rate constants (k?=?0.0599–1.5314 h?1) increased as the pH decreased. In particular, the transformation of triclosan by nano-MnO2 was enhanced in the presence of low-concentration humic acid (1–10 mg L?1). The variation in the absorption of humic molecules at 275 nm supported possible covalent binding between humic molecules and triclosan in the nano-MnO2-mediated systems. A total of four main intermediate products were identified by high-resolution mass spectrometry (HRMS), regardless of humic molecules present in the systems or not. These products correspond to a suite of radical intercoupling reactions (dimers and trimers), ether cleavage (2,4-dichlorophenol), and oxidation to quinone-like products, triggered by electron transfer from triclosan molecules to nano-MnO2. A possible reaction pathway in humic acid solutions, including homo-coupling, decomposition, oxidation, and cross-coupling, was proposed. Our findings provide valuable information regarding the environmental fate and transformation mechanism of triclosan by nano-MnO2 in complex water matrices.  相似文献   

19.
A 17alpha-ethynylestradiol (EE2)-degrading bacterium was isolated from the activated sludge of the wastewater treatment plant (WWTP) of an oral contraceptives producing factory in Beijing, China. On the basis of its morphology, biochemical properties and the 16S rDNA sequence analysis, this strain was identified as Sphingobacterium sp. JCR5. This strain grew on EE2 as sole source of carbon and energy, and metabolized up to 87% of the substrate added (30 mgl-1) within 10 d at 30 degrees C. In addition to EE2 the strain could be cultivated on steroidal estrogens like estrone (E1), 17beta-estradiol (E2), estriol (E3) and mestranol (MeEE2), the intermediates of contraceptive medicine processing and on some aromatic compounds. Mass spectrum analysis of the EE2 degradation showed that in the first step it is oxygenized to E1, 2-hydroxy-2,4-dienevaleric acid and 2-hydroxy-2,4-diene-1,6-dioic acid, which are the main catabolic intermediates. The former was analogous to the pathway of a previously reported testosterone-degrading bacterium Comamonas testosteroni TA441 and the latter is a metabolite with a different cleavage position of 3-hydroxy-4,5-9,10-disecoestrane-1(10),2-diene-5,9,17-trione-4-oic acid from the former.  相似文献   

20.
Mai J  Sun W  Xiong L  Liu Y  Ni J 《Chemosphere》2008,73(4):600-606
Photocatalytic degradation of 17beta-estradiol (E2) in aqueous medium mediated with titanium dioxide (TiO(2)) was studied. Moreover, effect of TiO(2) dosage on the degradation efficiency was investigated. Particular attention was paid to the identification of intermediates and analysis of photocatalytic degradation mechanism of E2 under neutral and alkaline conditions. The degradation efficiency of E2 increased with increasing concentration of TiO(2) but decreased due to light scattering as TiO(2) concentration was greater than 0.5mgml(-1). Several intermediates were formed during photocatalytic degradation of E2. However, only a few of the compounds could be identified and confirmed by LC-MS and LC-MS/MS. Six intermediates were observed by photocatalytic oxidation under alkaline conditions, namely 2-hydroxyestradiol, 10epsilon-17beta-dihydroxy-1,4-estradien-3-one (DEO), 10epsilon-hydroperoxide-17beta-hydroxy-1,4-estradien-3-one and three kinds of dicarboxylic acids formed by the opening of aromatic ring. In addition to the six intermediates mentioned above, 17beta-hydroxy-1,4-estradien-3-one (EO) was observed under neutral conditions and in the presence of methanol. Based on these intermediates, which were hardly degraded even after E2 was fully degraded, the mechanism of E2 degradation by TiO(2) photocatalysis was elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号