首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Ponds play an important role in urban areas. However, cyanobacterial blooms counteract the societal need for a good water quality and pose serious health risks for citizens and pets. To provide insight into the extent and possible causes of cyanobacterial problems in urban ponds, we conducted a survey on cyanobacterial blooms and studied three ponds in detail. Among 3,500 urban ponds in the urbanized Dutch province of North Brabant, 125 showed cyanobacterial blooms in the period 2009–2012. This covered 79 % of all locations registered for cyanobacterial blooms, despite the fact that urban ponds comprise only 11 % of the area of surface water in North Brabant. Dominant bloom-forming genera in urban ponds were Microcystis, Anabaena and Planktothrix. In the three ponds selected for further study, the microcystin concentration of the water peaked at 77 μg l?1 and in scums at 64,000 μg l?1, which is considered highly toxic. Microcystin-RR and microcystin-LR were the most prevalent variants in these waters and in scums. Cyanobacterial chlorophyll-a peaked in August with concentrations up to 962 μg l?1 outside of scums. The ponds were highly eutrophic with mean total phosphorus concentrations between 0.16 and 0.44 mg l?1, and the sediments were rich in potential releasable phosphorus. High fish stocks dominated by carp lead to bioturbation, which also favours blooms. As urban ponds in North Brabant, and likely in other regions, regularly suffer from cyanobacterial blooms and citizens may easily have contact with the water and may ingest cyanobacterial material during recreational activities, particularly swimming, control of health risk is of importance. Monitoring of cyanobacteria and cyanobacterial toxins in urban ponds is a first step to control health risks. Mitigation strategies should focus on external sources of eutrophication and consider the effect of sediment P release and bioturbation by fish.  相似文献   

2.
Chlorine has been utilized in the early stages of water treatment processes as disinfectant. Disinfection for drinking water reduces the risk of pathogenic infection but may pose a chemical threat to human health due to disinfection residues and their by-products (DBP) when the organic and inorganic precursors are present in water. In the last two decades, many modeling attempts have been made to predict the occurrence of DBP in drinking water. Models have been developed based on data generated in laboratory-scale and field-scale investigations. The objective of this paper is to develop a predictive model for DBP formation in the Alexandria governorate located at the northern west of Egypt based on field-scale investigations as well as laboratory-controlled experimentations. The present study showed that the correlation coefficient between trihalomethanes (THM) predicted and THM measured was R 2?=?0.88 and the minimum deviation percentage between THM predicted and THM measured was 0.8 %, the maximum deviation percentage was 89.3 %, and the average deviation was 17.8 %, while the correlation coefficient between dichloroacetic acid (DCAA) predicted and DCAA measured was R 2?=?0.98 and the minimum deviation percentage between DCAA predicted and DCAA measured was 1.3 %, the maximum deviation percentage was 47.2 %, and the average deviation was 16.6 %. In addition, the correlation coefficient between trichloroacetic acid (TCAA) predicted and TCAA measured was R 2?=?0.98 and the minimum deviation percentage between TCAA predicted and TCAA measured was 4.9 %, the maximum deviation percentage was 43.0 %, and the average deviation was 16.0 %.  相似文献   

3.
Many freshwater bodies worldwide that suffer from harmful algal blooms would benefit for their management from a simple ecological model that requires few field data, e.g. for early warning systems. Beyond a certain degree, adding processes to ecological models can reduce model predictive capabilities. In this work, we assess whether a simple ecological model without nutrients is able to describe the succession of cyanobacterial blooms of different species in a hypereutrophic reservoir and help understand the factors that determine these blooms. In our study site, Karaoun Reservoir, Lebanon, cyanobacteria Aphanizomenon ovalisporum and Microcystis aeruginosa alternatively bloom. A simple configuration of the model DYRESM-CAEDYM was used; both cyanobacteria were simulated, with constant vertical migration velocity for A. ovalisporum, with vertical migration velocity dependent on light for M. aeruginosa and with growth limited by light and temperature and not by nutrients for both species. The model was calibrated on two successive years with contrasted bloom patterns and high variations in water level. It was able to reproduce the measurements; it showed a good performance for the water level (root-mean-square error (RMSE) lower than 1 m, annual variation of 25 m), water temperature profiles (RMSE of 0.22–1.41 °C, range 13–28 °C) and cyanobacteria biomass (RMSE of 1–57 μg Chl a L?1, range 0–206 μg Chl a L?1). The model also helped understand the succession of blooms in both years. The model results suggest that the higher growth rate of M. aeruginosa during favourable temperature and light conditions allowed it to outgrow A. ovalisporum. Our results show that simple model configurations can be sufficient not only for theoretical works when few major processes can be identified but also for operational applications. This approach could be transposed on other hypereutrophic lakes and reservoirs to describe the competition between dominant phytoplankton species, contribute to early warning systems or be used for management scenarios.  相似文献   

4.
Reservoirs are an important source of water supply in many densely populated areas in southeast China. Phytoplankton plays an important role in maintaining the structure and function of these reservoir ecosystems. Understanding of seasonal succession in phytoplankton communities and its driving factors is essential for effective water quality management in drinking-water reservoirs. In this study, water samples were collected monthly at the surface layers of riverine, transitional, and lacustrine zones from May 2010 to April 2011 in Tingxi Reservoir, southeast China. The phytoplankton showed distinct seasonal shifts in community structure at both taxonomic and functional levels. Cyanophyta was the dominant group in summer, especially species of Raphidiopsis in May and Aphanizomenon in June, and cyanobacterial dominance was promoted by both warmer conditions and excessive nutrients loading. Cyanophyta was gradually replaced by Cryptophyta (e.g., Chroomonas caudata) in abundance and by Bacillariophyta (Fragilaria sp. or Synedra sp. and Melosira sp.) in biomass with decreasing temperature. It appeared that seasonal shifts in phytoplankton composition were closely related to climate, nutrient status, and hydrology in this reservoir. Our partial RDA results clearly showed that water temperature and nutrients (TN and TP) were the most critical factors driving phytoplankton community shift in the abundance and biomass data, respectively. Further, with the global warming, cyanobacterial blooms may increase in distribution, duration, and intensity. In our study, the abundance and biomass of cyanobacteria had significant and positive correlations with temperature and phosphorus. Therefore, a stricter limit on nutrient input should be a priority in watershed management to protect drinking water from the effects of cyanobacterial blooms, especially in high-temperature period.  相似文献   

5.
Microcystis aeruginosa is a species of freshwater cyanobacteria which can form harmful algal blooms in freshwater water bodies worldwide. However, in spite its sporadic occurrences for short periods of time in estuarine waters, their influence on zooplankton populations present in these ecosystems has not been extensively studied. In this work, Artemia franciscana was used as test organism model, studying mortality against several strains of M. aeruginosa with different degrees of toxigenicity, measuring whole-live cells and homogenate extracts. Results were compared with microcystin-LR equivalent content, measured by immunoassay. The results show that there were no significant differences between both exposure models (whole cells and extracts), and there are significant differences respect to the toxigenicity of cyanobacterial blooms depending of the M. aerugionosa strain involved in the process. Analysis of microcystin-LR equivalent concentration test immediately below the lowest significant concentration in all M. aerugionosa strains was used to determine the potential risk associated with the cell densities during a bloom. Comparison among the selected M. aerugionsa strains show that these factors have influence in the results obtained, and thus, several differences have been evidenced depending of the microcystin-LR equivalent production and the strain type involved.  相似文献   

6.
A highly tolerant phenol-degrading yeast strain PHB5 was isolated from wastewater effluent of a coke oven plant and identified as Candida tropicalis based on phylogenetic analysis. Biodegradation experiments with C. tropicalis PHB5 showed that the strain was able to utilize 99.4 % of 2,400 mg l?1 phenol as sole source of carbon and energy within 48 h. Strain PHB5 was also observed to grow on 18 various aromatic hydrocarbons. Haldane model was used to fit the exponential growth data and the following kinetic parameters were obtained: μ max?=?0.3407 h?1, K S?=?15.81 mg l?1, K i?=?169.0 mg l?1 (R 2?=?0.9886). The true specific growth rate, calculated from μ max, was 0.2113. A volumetric phenol degradation rate (V max) was calculated by fitting the phenol consumption data with Gompertz model and specific degradation rate (q) was calculated from V max. The q values were fitted with Haldane model, yielding following parameters: q max?=?0.2766 g g?1 h?1, K S ?=?2.819 mg l?1, K i ?=?2,093 (R 2?=?0.8176). The yield factor (Y X/S ) varied between 0.185 to 0.96 g g?1 for different initial phenol concentrations. Phenol degradation by the strain proceeded through a pathway involving production of intermediates such as catechol and cis,cis-muconic acid which were identified by enzymatic assays and HPLC analysis.  相似文献   

7.
Filamentous, nitrogen-fixing cyanobacteria form extensive summer blooms in the Baltic Sea. Their ability to fix dissolved N2 allows cyanobacteria to circumvent the general summer nitrogen limitation, while also generating a supply of novel bioavailable nitrogen for the food web. However, the fate of the nitrogen fixed by cyanobacteria remains unresolved, as does its importance for secondary production in the Baltic Sea. Here, we synthesize recent experimental and field studies providing strong empirical evidence that cyanobacterial nitrogen is efficiently assimilated and transferred in Baltic food webs via two major pathways: directly by grazing on fresh or decaying cyanobacteria and indirectly through the uptake by other phytoplankton and microbes of bioavailable nitrogen exuded from cyanobacterial cells. This information is an essential step toward guiding nutrient management to minimize noxious blooms without overly reducing secondary production, and ultimately most probably fish production in the Baltic Sea.  相似文献   

8.
The application of advanced oxidation process (AOP) in the treatment of wastewater contaminated with oil was investigated in this study. The AOP investigated is the homogeneous photo-Fenton (UV/H2O2/Fe+2) process. The reaction is influenced by the input concentration of hydrogen peroxide H2O2, amount of the iron catalyst Fe+2, pH, temperature, irradiation time, and concentration of oil in the wastewater. The removal efficiency for the used system at the optimal operational parameters (H2O2?=?400 mg/L, Fe+2?=?40 mg/L, pH?=?3, irradiation time?=?150 min, and temperature?=?30 °C) for 1,000 mg/L oil load was found to be 72 %. The study examined the implementation of artificial neural network (ANN) for the prediction and simulation of oil degradation in aqueous solution by photo-Fenton process. The multilayered feed-forward networks were trained by using a backpropagation algorithm; a three-layer network with 22 neurons in the hidden layer gave optimal results. The results show that the ANN model can predict the experimental results with high correlation coefficient (R 2?=?0.9949). The sensitivity analysis showed that all studied variables (H2O2, Fe+2, pH, irradiation time, temperature, and oil concentration) have strong effect on the oil degradation. The pH was found to be the most influential parameter with relative importance of 20.6 %.  相似文献   

9.
Jančula D  Maršálek B 《Chemosphere》2011,85(9):1415-1422
Cyanobacteria proliferation is among the most threatening consequences of freshwater pollution. Health risks from human and other-organism exposure to cyanobacteria have led to an effort to find practical methods for cyanobacterial water-bloom reduction. Hence, methods and techniques have been developed in order to reduce the amount of phosphorus or to decrease the abundance of nuisance phytoplankton species directly in the water bodies (in-lake measures). Although these “acute” methods do not solve the problem of catchment area eutrophication, they are cheaper, easier to manage, and for some areas they are the only way to protect human and environmental health against massive cyanobacterial proliferation. This review summarizes the extent of knowledge and published data about the management using metals (Al, Fe, Cu, Ag, Ca), photosensitizers (hydrogen peroxide, phthalocyanines, TiO2), herbicides and chemicals derived from natural compounds as fast and efficient removal agents of cyanobacteria. This review concludes that some compounds, when non-persistent and ecotoxicologically acceptable may help to manage cyanobacterial blooms in an efficient way compared to previous methods (e.g. copper sulfate).  相似文献   

10.
Background, Aims and Scope Microcystins (MCs) are a family of natural toxins produced by cyanobacteria (blue-green algae). As a result of eutrophication, massive cyanobacterial blooms occur more frequently and MCs represent important contaminants of freshwater ecosystems. Bacterial biodegradation is considered a main mechanism for MC breakdown in environmental conditions. While existing studies were mostly focused on MC biodegradation by planktonic bacteria, our experiments examined the fate and kinetics of MC degradation in river-originated phototrophic biofilms and investigated factors influencing the rate of MC removal. Methods The fate of dissolved MCs was studied in laboratory microcosms with different composition (containing water only, water with phytoplankton and/or phototrophic biofilms). Biofilms originated from river ecosystem were pre-incubated under various conditions (with/without presence of cyanobacterial biomass or model organic substrates: glucose and protein - casein). Changes in MC concentration (0-14 days) in water columns were measured by HPLC DAD after external additions of purified MCs (160 μg L-1, MC-LR and MC YR), and halftimes (t1/2) of MC removal were estimated. Results and Discussion The slow degradation of MC was revealed in tap water (t1/2 ~ 14 days) and river water without cyanobacteria (t1/2 ~ 8 days). Enhanced removal occurred in the presence of natural planktonic cyanobacteria (t1/2 ~ 44 h), most probably due to microorganisms associated with the biomass of cyanobacterial bloom. More rapid MC elimination occurred in the variants containing phototrophic biofilms, and was particularly pronounced at those biofilms pre-cultivated in the presence of cyanobacterial blooms (t1/2 ~ 20 h). Much slower removal was observed in the variants simulating possible substrate-dependent induction of microorganism metabolism (biofilms pre-incubated with glucose: t1/2 ~ 35 h, and casein: t1/2 ~ 80 h). After termination of experiments, total amounts of MCs accumulated in the biofilms were below 5% of the initial toxin level revealing significant biodegradation processes. Conclusion The microcosm studies contributed to understanding of the environmental fate of MCs and revealed a rapid biodegradation by phototrophic biofilms. The rate of MC elimination depends on history of biofilm community, previous contact with cyanobacteria seems to be a selective factor improving the biodegradation potential. Recommendation and Outlook Our results experimentally showed a positive role of biofilms in MC elimination during water treatment processes such as bank filtration or slow sand filtration, and could eventually serve for further research of biofilm-based technological applications for MCs removal in small-scale drinking water treatment facilities.  相似文献   

11.
Dense blooms of diazotrophic filamentous cyanobacteria are formed every summer in the Baltic Sea. We estimated their contribution to nitrogen fixation by combining two decades of cyanobacterial biovolume monitoring data with recently measured genera-specific nitrogen fixation rates. In the Bothnian Sea, estimated nitrogen fixation rates were 80 kt N year−1, which has doubled during recent decades and now exceeds external loading from rivers and atmospheric deposition of 69 kt year−1. The estimated contribution to the Baltic Proper was 399 kt N year−1, which agrees well with previous estimates using other approaches and is greater than the external input of 374 kt N year−1. Our approach can potentially be applied to continuously estimate nitrogen loads via nitrogen fixation. Those estimates are crucial for ecosystem adaptive management since internal nitrogen loading may counteract the positive effects of decreased external nutrient loading.  相似文献   

12.
Eruption of blue-green algal blooms occurs frequently in eutrophic lakes and fish ponds, with associated unpleasant odor and horrid scums. In the present study, we conducted a pre-test experiment in 3 m3 outdoor concrete ponds to determine the optimum concentration of aluminum sulfate (alum) required for reduction of the cyanobacterial blooms without negative effect on fish growth. As a consequence, 10 mg L?1 alum was named as the optimum concentration that was applied in 1000 m3 earthen fish ponds. Obtained results showed that Secchi disc values significantly increased from 10 to 24 cm after 14 days of alum application. Alum-treated ponds showed a reduction in total phytoplankton counts by 94 and 96 % compared to the corresponding controls after 10 and 14 days, respectively. Abundance of blue-green algae in the treated ponds was decreased by 98 % compared to the corresponding control after 14 days of alum application. Consequently, dissolved oxygen, pH, total phosphorus, orthophosphate, and chlorophyll “a” content declined significantly. Our study revealed that using 10 mg L?1 of alum is an effective way to control cyanobacterial blooms in eutrophic waters, especially in fish ponds, without negative effect in water quality.  相似文献   

13.
Short-term hydrodynamic fluctuations caused by extreme weather events are expected to increase worldwide because of global climate change, and such fluctuations can strongly influence cyanobacterial blooms. In this study, the cyanobacterial bloom disappearance and reappearance in Lake Taihu, China, in response to short-term hydrodynamic fluctuations, was investigated by field sampling, long-term ecological records, high-frequency sensors and MODIS satellite images. The horizontal drift caused by the dominant easterly wind during the phytoplankton growth season was mainly responsible for cyanobacterial biomass accumulation in the western and northern regions of the lake and subsequent bloom formation over relatively long time scales. The cyanobacterial bloom changed slowly under calm or gentle wind conditions. In contrast, the short-term bloom events within a day were mainly caused by entrainment and disentrainment of cyanobacterial colonies by wind-induced hydrodynamics. Observation of a westerly event in Lake Taihu revealed that when the 30 min mean wind speed (flow speed) exceeded the threshold value of 6 m/s (5.7 cm/s), cyanobacteria in colonies were entrained by the wind-induced hydrodynamics. Subsequently, the vertical migration of cyanobacterial colonies was controlled by hydrodynamics, resulting in thorough mixing of algal biomass throughout the water depth and the eventual disappearance of surface blooms. Moreover, the intense mixing can also increase the chance for forming larger and more cyanobacterial colonies, namely, aggregation. Subsequently, when the hydrodynamics became weak, the cyanobacterial colonies continuously float upward without effective buoyancy regulation, and cause cyanobacterial bloom explosive expansion after the westerly. Furthermore, the results of this study indicate that the strong wind happening frequently during April and October can be an important cause of the formation and expansion of cyanobacterial blooms in Lake Taihu.  相似文献   

14.
The cyanobacterial cytotoxin cylindrospermopsin (CYN) has become increasingly common in fresh waters worldwide. It was originally isolated from Cylindrospermopsis raciborskii in Australia; however, in European waters, its occurrence is associated with other cyanobacterial species belonging to the genera Aphanizomenon and Anabaena. Moreover, cylindrospermopsin-producing strains of widely distributed C. raciborskii have not yet been observed in European waters. The aims of this work were to assess the occurrence of CYN in lakes of western Poland and to identify the CYN producers. The ELISA tests, high-performance liquid chromatography (HPLC)-DAD, and HPLC-mass spectrometry (MS)/MS were conducted to assess the occurrence of CYN in 36 lakes. The cyrJ, cyrA, and pks genes were amplified to identify toxigenic genotypes of cyanobacteria that are capable of producing CYN. The toxicity and toxigenicity of the C. raciborskii and Aphanizomenon gracile strains isolated from the studied lakes were examined. Overall, CYN was detected in 13 lakes using HPLC-MS/MS, and its concentrations varied from trace levels to 3.0 μg?L?1. CYN was widely observed in lakes of western Poland during the whole summer under different environmental conditions. Mineral forms of nutrients and temperature were related to CYN production. The molecular studies confirmed the presence of toxigenic cyanobacterial populations in all of the samples where CYN was detected. The toxicity and toxigenicity analyses of isolated cyanobacteria strains revealed that A. gracile was the major producer of CYN.  相似文献   

15.
Turbidity presented by phenol solutions oxidized with Fenton reagent shows the tendency of a first order intermediate kinetics. Thus, turbidity can be considered a representative parameter of the presence of intermediate oxidation species, which are generated along the decomposition of toxic and reluctant contaminants, such as phenol. Moreover, that parameter presents a linear dependence with the catalyst dosage, but is also determined by the initial contaminant load. When analyzing the oxidation mechanism of phenol, it is found that the maximum turbidity occurs when the treatment is carried out at oxidant to phenol molar ratios R?=?4.0. These oxidation conditions correspond to the presence of a reaction mixture mainly composed of dihydroxylated rings, precursors of the muconic acid formation. The oxidation via “para” comprises the formation reactions of charge transfer complexes (quinhydrone), between the para-dihydroxylated intermediates (hydroquinone) and the para-substituted quinones (p-benzoquinone), which are quite unstable and reactive species, quickly decomposed into hydroxyhydroquinones. Working with oxidant ratios up to R?=?6.0, the maximum observed value of turbidity in the oxidized solutions is kept almost constant. It is found that, in these conditions, the pyrogallol formation is maximal, what is generated through the degradation of ortho-species (catechol and ortho-benzoquinone) and meta-substituted (resorcinol). Operating with ratios over R?=?6.0, these intermediates are decomposed into biodegradable acids, generating lower turbidity in the solution. Then, the residual turbidity is a function of the molar ratio of the ferrous ions vs. moles of oxidant utilized in the essays, that lets to estimate the stoichiometric dosage of catalyst as 20 mg/L at pH?=?3.0, whereas operating in stoichiometric conditions, R?=?14.0, the residual turbidity of water results almost null.  相似文献   

16.
As the eutrophication of lakes becomes an increasingly widespread phenomenon, cyanobacterial blooms are occurring in many countries. Although some research has been reported, there is currently no good method for bloom removal. We propose here a new two-step integrated approach to resolve this problem. The first step is the inactivation of the cyanobacteria via the addition of H(2)O(2). We found 60 mg/L was the lowest effective dose for a cyanobacterial concentration corresponding to 100 μg/L chlorophyll-a. The second step is the flocculation and sedimentation of the inactivated cyanobacteria. We found the addition of lake sediment clay (2 g/L) plus polymeric ferric sulfate (20 mg/L) effectively deposited them on the lake bottom. Since algaecides and flocculants had been used separately in previous reports, we innovatively combined these two types of reagents to remove blooms from the lake surface and to improve the dissolved oxygen content of lake sediments.  相似文献   

17.
Ho L  Tang T  Monis PT  Hoefel D 《Chemosphere》2012,87(10):1149-1154
The fate of multiple cyanobacterial metabolites was assessed in two Australian source waters. The saxitoxins were the only metabolites shown to be non-biodegradable in Myponga Reservoir water, while microcystin-LR (MCLR) and geosmin were biodegradable in this water source. Likewise, cylindrospermopsin (CYN) was shown to be biodegradable in River Murray water. The order of ease of biodegradability followed the trend: MCLR > CYN > geosmin > saxitoxins. Biodegradation of the metabolites was affected by temperature and seasonal variations with more rapid degradation at 24 °C and during autumn compared with 14 °C and during winter. A microcystin-degrading bacterium was isolated and shown to degrade four microcystin variants within 4 h. This bacterium, designated as TT25, was shown to be 99% similar to a Sphingopyxis sp. based on a 16S rRNA gene fragment. Isolate TT25 was shown to contain a homologue of the mlrA gene; the sequence of which was 99% similar to that of a previously reported microcystin-degrader. Furthermore, isolate TT25 could degrade the microcystins in the presence of copper sulphate (0.5 mg L−1 as Cu2+) which is advantageous for water authorities dosing such algicides into water bodies to control cyanobacterial blooms.  相似文献   

18.
Lake Erhai is the second largest lake of Southwest China and an important drinking water source. The lake is currently defined as the preliminary stage of eutrophic states, but facing a serious threat with transfer into intensive eutrophication. The present study examined the dynamics of Microcystis blooms and toxic Microcystis in Lake Erhai during 2010, based on quantitative real-time PCR method using 16S rRNA gene specific for Microcystis and microcystin systhesis gene (mcy), and chemical analysis on microcystin (MC) concentrations. Total Microcystis cell abundance at 16 sampling sites were shown as an average of 1.7?×?107 cells l?1 (1.3?×?102–3.8?×?109 cells l?1). Microcystin LR (MC-LR) and microcystin RR (MC-RR) were the main variants. The strong southwesterly winds, anticlockwise circular flows and geographical characteristics of lake and phytoplankton community succession impacted the distribution patterns of Chl a and MC in the lake. The concentration of Chl a and MC and abundances of total Microsytis and MC-producing Microsystis (MCM) were shown to be positively correlated with pH, DO and TP, negatively correlated with SD, NO3-N, TN/Chl a and TN/TP, and not correlated with NH4-N, TN, dissolved total nitrogen (DTN) and water temperatures. When TN/TP decrease, Microcystis tended to dominate and MC concentrations tended to increase, suggesting that the “TN/TP rule” can be partially applied to explain the correlation between the cyanobacterial blooms and nutrients N and P only within a certain nutrient level. It is speculated that N and P nutrients and the associated genes (e.g., mcy) may jointly drive MC concentration and toxigenicity of Microcystis in Lake Erhai.  相似文献   

19.
In Burkina Faso where cooking with biomass is very common, little information exists regarding kitchen characteristics and their impact on air pollutant levels. The measurement of air pollutants such as respirable particulate matter (PM10), an important component of biomass smoke that has been linked to adverse health outcomes, can also pose challenges in terms of cost and the type of equipment needed. Carbon monoxide could potentially be a more economical and simpler measure of air pollution. The focus of this study was to first assess the association of kitchen characteristics with measured PM10 and CO levels and second, the relationship of PM10 with CO concentrations, across these different kitchen characteristics in households in Nouna, Burkina Faso. Twenty-four-hour concentrations of PM10 (area) were measured with portable monitors and CO (area and personal) estimated using color dosimeter tubes. Data on kitchen characteristics were collected through surveys. Most households used both wood and charcoal burned in three-stone and charcoal stoves. Mean outdoor kitchen PM10 levels were relatively high (774 μg/m3, 95 % CI 329–1,218 μg/m3), but lower than indoor concentrations (Satterthwaite t value, ?6.14; p?<?0.0001). In multivariable analyses, outdoor kitchens were negatively associated with PM10 (OR?=?0.06, 95 % CI 0.02–0.16, p value <0.0001) and CO (OR?=?0.03, 95 % CI 0.01–0.11, p value <0.0001) concentrations. Strong area PM10 and area CO correlations were found with indoor kitchens (Spearman’s r?=?0.82, p?<?0.0001), indoor stove use (Spearman’s r?=?0.82, p?<?0.0001), and the presence of a smoker in the household (Spearman’s r?=?0.83, p?<?0.0001). Weak correlations between area PM10 and personal CO levels were observed with three-stone (Spearman’s r?=?0.23, p?=?0.008) and improved stoves (Spearman’s r?=?0.34, p?=?0.003). This indicates that the extensive use of biomass fuels and multiple stove types for cooking still produce relatively high levels of exposure, even outdoors, suggesting that both fuel subsidies and stove improvement programs are likely necessary to address this problem. These findings also indicate that area CO color dosimeter tubes could be a useful measure of area PM10 concentrations when levels are influenced by strong emission sources or when used in indoors. The weaker correlation observed between area PM10 and personal CO levels suggests that area exposures are not as useful as proxies for personal exposures, which can vary widely from those recorded by stationary monitors.  相似文献   

20.
《Chemosphere》2010,78(11):1585-1593
Although Microcystis-based toxins have been intensively studied, previous studies using laboratory cultures of Microcystis strains are difficult to explain the phenomenon that microcystin concentrations and toxin variants in natural blooms differ widely and frequently within a short-term period. The present study was designed to unravel the mechanisms for the frequent variations of intracellular toxins related to the differences in cyanobacterial colonies during bloom seasons in Lake Taihu, China. Monitoring of Microcystis colonies during warm seasons indicated that the variations in microcystins in both concentrations and toxin species were associated with the frequent alteration of Microcystis colonies in Lake Taihu. High concentration of microcystins in the blooms was always associated with two Microcystis colonies, Microcystis flos-aquae and Microcystis aeruginosa, whereas when Microcystis wesenbergii was the dominant colonial type, the toxin production of the blooms was low. Additionally, environmental factors such as temperature and nutrition were also shown to have an effect on the toxin production of the blooms, and may also potentially influence the Microcystis species present. The results of the present study provides insight into a new consideration for quick water quality monitoring, assessment and risk alert in cyanobacterium- and toxin-contaminated freshwaters, which will be beneficial not only for water agencies but also for public health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号