首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
D Brown  RS Thompson 《Chemosphere》1982,11(4):427-435
Mussels (Mytilus edulis) were exposed to di-2-ethylhexyl phthalate (DEHP) and to di-isodecyl phthalate (DIDP) over a period of 28 days. The bioconcentration factor (BCF) as measured by 14C analysis, reached estimated plateau levels corresponding to mean BCF values of approximately 2500 and 3500 for the DEHP and DIDP respectively. The mussels were then held in clean seawater for a further 14 days and 14C analysis showed a depuration half-life of approximately 3.5 days for both phthalates. During the whole 42 days of the experiment general observations on the health of the animals showed no evidence of any adverse effects.  相似文献   

2.
Diester phthalates are industrial chemicals used primarily as plasticizers to import flexibility to polyvinylchloride plastics. In this study, we examined the hydrolysis of di-n-butyl phthalate (DBP), butylbenzyl phthalate (BBzP) and di(2-ethylhexyl) phthalate (DEHP) in human liver microsomes. These diester phthalates were hydrolyzed to monoester phthalates (mono-n-butyl phthalate (MBP) from DBP, mono-n-butyl phthalate (MBP) and monobenzyl phthalate (MBzP) from BBzP, and mono(2-ethylhexyl) phthalate (MEHP)) by human liver microsomes. DBP, BBzP and DEHP hydrolysis showed sigmoidal kinetics in V-[S] plots, and the Hill coefficient (n) ranged 1.37-1.96. The S50, Vmax and CLmax values for DBP hydrolysis to MBP were 99.7 μM, 17.2 nmol min−1 mg−1 protein and 85.6 μL min−1 mg−1 protein, respectively. In BBzP hydrolysis, the values of S50 (71.7 μM), Vmax (13.0 nmol min−1 mg−1 protein) and CLmax (91.3 μL min−1 mg−1 protein) for MBzP formation were comparable to those of DBP hydrolysis. Although the S50 value for MBP formation was comparable to that of MBzP formation, the Vmax and CLmax values were markedly lower (<3%) than those for MBzP formation. The S50, Vmax and CLmax values for DEHP hydrolysis were 8.40 μM, 0.43 nmol min−1 mg−1 protein and 27.5 μL min−1 mg−1 protein, respectively. The S50 value was about 10% of DBP and BBzP hydrolysis, and the Vmax value was also markedly lower (<3%) than those for DBP hydrolysis and MBzP formation for BBzP hydrolysis. The ranking order of CLmax values for monoester phthalate formation in DBP, BBzP and DEHP hydrolysis was BBzP to MBzP ? DBP to MBP > DEHP to MEHP > BBzP to MBP. These findings suggest that the hydrolysis activities of diester phthalates by human liver microsomes depend on the chemical structure, and that the metabolism profile may relate to diester phthalate toxicities, such as hormone disruption and reproductive effects.  相似文献   

3.
In vitro fertilization (IVF) is one of the most important treatments of infertility to provide a chance of conceiving. In IVF treatment, sperm are washed and motile sperm are isolated with sperm washing media (SWM) for the purpose of fertilization; fertilized ova are then incubated for a maximum of 5 or 6 d in media for IVF (IVFM). The exposure of fertilized ova to chemicals via such media has not been studied. We determined the concentrations of two contaminants; di(2-ethylhexyl)phthalate (DEHP) and its hydrolyzed product mono(2-ethylhexyl)phthalate (MEHP) in IVFM, SWM, and protein sources (PS: human serum albumin or serum substitute) for IVFM and SWM. The DEHP and MEHP in these media were extracted by a liquid-liquid extraction method and their concentrations determined by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Fifteen IVFM, nine SWM, and six PS obtained in Japan were examined. The concentrations of DEHP and MEHP in IVFM and SWM were <10-114 and <2.0-263 ng mL−1, respectively. The concentrations of both DEHP and MEHP were higher in the media containing PS than in those without PS. Either MEHP alone or both DEHP and MEHP were detected in PS. The concentrations of DEHP and MEHP in PS were <10-982 and 47.0-1840 ng mL−1, respectively. The DEHP and MEHP detected in these media were derived from PS. This is the first study on the chemical contamination of IVFM, SWM, and PS.  相似文献   

4.
Abstract

The pervasiveness of the plasticizer di‐(2‐ethylhexyl) phthalate (DEHP) in the environment and especially in the laboratory results in a background that may cause severe interference with analytical studies. Animal‐to‐animal variability in the distribution of DEHP metabolites in excreta normally makes it necessary to use large groups of animals when different treatments are compared. Finally, radioactive tracers are usually considered undesirable for metabolic studies involving human subjects. All of these problems can be overcome through the use of muliple isotopic labels, especially 12C/13C/14C. Examples are given involving rats and monkeys, and applicability to humans is discussed. The principles involved are not limited to any particular class of test compounds. In rats, the competing pathways for metabolism of phthalate esters produce a different distribution of metabolites from a small intravenous dose of DEHP than from a large oral dose.  相似文献   

5.
The presence of bis(2-ethylhexyl) phthalate (DEHP) and its metabolites, i.e. 2-ethylhexanol, 2-ethylhexanal, and 2-ethylhexanoic acid in wastewater sludge (WWS) were investigated during aerobic digestion and Bacillus thuringiensis (Bt)-based fermentation of WWS. Ultrasonication and Fenton oxidation pre-treatment was applied to improve biodegradability of WWS and bioavailability of the target compounds for digestion and fermentation. DEHP and 2-ethylhexanoic acid were observed at higher concentration, meanwhile 2-ethylhexanol and 2-ethylhexanal were observed at lower concentration in WWS. After 20-day aerobic digestion, DEHP removal was 72%, 89%, and 85%, and 2-ethylhexanoic acid removal was 71%, 84%, 79%, respectively for raw, ultrasonicated, and Fenton-oxidized sludges. Bt was found to degrade DEHP, leading to DEHP removal of 21%, 40%, and 30%, respectively for raw, ultrasonicated, and Fenton-oxidized sludges in the fermentation. The results suggested that aerobic stabilization and Bt-based fermentation can remove the phthalates, and pre-treatment of WWS was also effective in improvement of DEHP biodegradation. Hence, Bt-based biopesticide production from WWS can be applied safely when taking into consideration the phthalate contaminants.  相似文献   

6.
This paper reports, for the first time, the concentrations of selected phthalates in drinking water consumed in Portugal. The use of bottled water in Portugal has increased in recent years. The main material for bottles is polyethylene terephthalate (PET). Its plasticizer components can contaminate water by leaching, and several scientific studies have evidenced potential health risks of phthalates to humans of all ages. With water being one of the most essential elements to human health and because it is consumed by ingestion, the evaluation of drinking water quality, with respect to phthalate contents, is important. This study tested seven commercial brands of bottled water consumed in Portugal, six PET and one glass (the most consumed) bottled water. Furthermore, tap water from Lisbon and three small neighbor cities was analyzed. Phthalates (di-n-butyl phthalate ester (DnBP), bis(2-ethylhexyl) phthalate ester (DEHP), and di-i-butyl phthalate ester (DIBP)) in water samples were quantified (PET and glass) by means of direct immersion solid-phase microextraction and ionic liquid gas chromatography associated with flame ionization detection or mass spectrometry due to their high boiling points and water solubility. The method utilized in this study showed a linear range for target phthalates between 0.02 and 6.5 μg L?1, good precision and low limits of detection that were between 0.01 and 0.06 μg L?1, and quantitation between 0.04 and 0.19 μg L?1. Only three phthalates were detected in Portuguese drinking waters: dibutyl (DnBP), diisobutyl (DIBP), and di(ethylhexyl) phthalate (DEHP). Concentrations ranged between 0.06 and 6.5 μg L?1 for DnBP, between 0.02 and 0.16 μg L?1 for DEHP, and between 0.1 and 1.89 μg L?1 for DIBP. The concentration of DEHP was found to be up to five times higher in PET than in glass bottled water. Surprisingly, all the three phthalates were detected in glass bottled water with the amount of DnBP being higher (6.5 μg L?1) than in PET bottled water. These concentrations do not represent direct risk to human health. Regarding potable tap water, only DIBP and DEHP were detected. Two of the cities showed concentration of all three phthalates in their water below the limits of detection of the method. All the samples showed phthalate concentrations below 6 μg L?1, the maximum admissible concentration in water established by the US Environmental Protection Agency. The concentrations measured in Portuguese bottled waters do not represent any risk for adult's health.  相似文献   

7.
A method for trace analysis of two plasticizers, di-2-ethylhexyl phthalate (DEHP) and di-2-ethylhexyl adipate (DEHA), contaminated in packaged curry paste were investigated by gas chromatography with flame ionization detector (GC-FID). Curry paste samples were extracted by ultrasonic and solid phase extraction using Florisil® cartridge. Analysis by the GC-FID system provided limits of detection for DEHA and DEHP at 12 and 25 μ g L? 1 and a linear dynamic range between 25 μ g L? 1 to 60 mg L? 1 with a coefficient of determination (R2) greater than 0.99. High recoveries were obtained, ranged from 91 to 99% and 88 to 98% for DEHP and DEHA with RSD lower than 7 and 10% respectively. The method detection limit and limits of quantitation were ranged from 27 to 30 and 90 to 100 μ g L? 1. The analysis of curry paste samples showed concentrations of DEHP and DEHA in the range of 4.0 ng g? 1 to 0.61 μg g? 1.  相似文献   

8.
This study investigated the biodegradation of the phthalate esters (PAEs) di-n-butyl phthalate (DBP) and di-(2-ethyl hexyl) phthalate (DEHP) in sludge and sludge-amended soil. DBP (100 mg kg?1) and DEHP (100 mg kg?1) were added to sewage sludge, which was subsequently added to soil. The results showed that sewage sludge can degrade PAEs and the addition of sewage sludge to soil enhanced PAE degradation. Sludge samples were separated into fractions with various particle size ranges, which spanned 0.1–0.45 μm to 500–2000 μm. The sludge fractions with smaller particle sizes demonstrated higher PAE degradation rates. However, when the different sludge fractions were added to soil, particle size had no significant effect on the rate of PAE degradation. The results from this study showed that microbial strains F4 (Rhodococcus sp.) and F8 (Microbacterium sp.) were constantly dominant in the mixtures of soil and sludge.  相似文献   

9.
Abstract

This work reports the development of a very-simple-to-construct stir-bar extraction device so called “a dumbbell-shaped stainless steel stir-bar.” The extraction device was assembled from a rolled up stainless steel net filled with an XAD-2 sorbent and a metal rod to allow the use of a magnetic stirrer during extraction. The dumbbell-shaped stainless steel stir-bar was used to extract diethyl phthalate (DEP), dibutyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP) before analysis by a gas chromatograph equipped with an electron capture detector (GD-ECD). Under the optimal conditions, the developed method provided a good linearity from 10.0 to 1,000.0?ng mL?1 for all three compounds. Limits of detection and limits of quantification were 9.37?±?0.29?ng mL?1 and 31.22?±?0.95?ng mL?1 for DEP, 5.73?±?0.31?ng mL?1 and 19.1?±?1.0?ng mL?1 for DBP and 3.30?±?0.06?ng mL?1 and 11.0?±?0.19?ng mL?1 for DEHP, respectively. Good recoveries in the range of 81.89?±?0.17 to 109.5?±?2.0% were achieved when the method was used to extract phthalate esters in five instant noodle and two rice soup samples.  相似文献   

10.
Phthalate esters are used as plasticizer in many plastics, and several studies have shown their toxicity. Phthalate esters are gradually emitted over time, and so it is conceivable that they pose a significant health risk. This study aims to investigate the temperature dependence of the emissions of various phthalate esters and to estimate the health risks of these emissions at various temperatures. A passive-type sampler was developed to measure the flux of phthalate esters from the surface of plastic materials. With this sampler, we examined three widely used plastic materials: synthetic leather, wallpaper and vinyl flooring. The observed maximum emissions of diethyl phthalate, dibutyl phthalate, and diethylhexyl phthalate (DEHP) from these materials at 20°C were 0.89, 0.77, and 14 μg m−2 h−1, respectively. Emissions at 80°C were 2.8, 4.5×102, and 1.5×103 μg m−2 h−1, respectively. The results showed this temperature dependence is determined primarily by the type of phthalate ester and less so by the type of material. The estimation from the results of temperature dependence indicated the concentration of DEHP in a vehicle left out in the sunshine during the day can exceed the recommended levels of Japan Ministry of Health, Labour and Welfare.  相似文献   

11.
Phthalic acid esters (PAEs) pollution in agricultural soils caused by widely employed plastic products is becoming more and more widespread in China. PAEs polluted soil can lead to phytotoxicity in higher plants and potential health risks to human being. We evaluated the individual toxicity of di-n-butyl phthalate (DnBP) and bis(2-ethylhexyl) phthalate (DEHP), two representative PAEs, to sown rape (Brassica chinensis L.) seeds within 72 h (as germination stage) and seedlings after germination for 14 days by monitoring responses and trends of different biological parameters. No significant effects of six concentrations of PAE ranging from 0 (not treated/NT) to 500 mg?kg?1 on germination rate in soil were observed. However, root length, shoot length, and biomass (fresh weight) were inhibited by both pollutants (except root length and biomass under DEHP). Stimulatory effects of both target pollutants on malondialdehyde (MDA) content, superoxide dismutase (SODase) activity, ascorbate peroxidase (APXase) content, and polyphenoloxidase (PPOase) activity in shoots and roots (SODase activity in shoots excluded) were in the same trend with the promotion of proline (Pro) but differed with acetylcholinesterase activity (except in shoots under DnBP) for analyzed samples treated for 72 h and 14 days. Responses of representative storage compounds free amino acids (FAA) and total soluble sugar (TSS) under both PAEs were raised. Sensitivity of APXase and Pro in roots demonstrates their possibility in estimation of PAE phytotoxicity and the higher toxicity of DnBP, which has also been approved by the morphological photos of seedlings at day 14. Higher sensitivity of the roots was also observed. The recommended soil allowable concentration is 5 mg DnBP?kg?1 soil for the development of rape. We still need to know the phytotoxicity of DEHP at whole seedling stage for both the growing and development; on the other hand, soil criteria for PAE compounds are urgently required in China.  相似文献   

12.
Chang BV  Liao CS  Yuan SY 《Chemosphere》2005,58(11):1000-1607
We investigated anaerobic degradation rates for three phthalate esters (PAEs), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), and di-(2-ethylhexyl) phthalate (DEHP), from river sediment in Taiwan. The respective anaerobic degradation rate constants for DEP, DBP, and DEHP were observed as 0.045, 0.074, and 0.027 1/day, with respective half-lives of 15.4, 9.4, and 25.7 days under optimal conditions of 30 °C and pH 7.0. Anaerobic degradation rates were enhanced by the addition of the surfactants brij 35 and triton N101 at a concentration of 1 critical micelle concentration (CMC), and by the addition of yeast extract. Degradation rates were inhibited by the addition of acetate, pyruvate, lactate, FeCl3, MnO2, NaCl, heavy metals, and nonylphenol. Our results indicate that methanogen, sulfate-reducing bacteria, and eubacteria are involved in the degradation of PAEs.  相似文献   

13.
For a number of phthalates and especially for di(2-ethylhexyl)phthalate (DEHP), surprisingly high house dust concentrations are reported in the literature. Therefore, the uptake of the most prominent compounds DEHP and di-n-butylphthalate (DnBP) from plasticized indoor materials into house dust samples of different organic content has been experimentally determined. The experiments have been performed within 45 days which is sufficient for the more volatile phthalate (DnBP) to reach equilibrium conditions. DnBP reaches considerably higher concentrations in the chamber air compared to real room measurements and, thus, also elevated dust concentrations. In contrast, the mass transfer of DEHP in the dust via the gas phase was significantly lower. However, small chamber experiments showed elevated mass transfer of DEHP in case of direct contact between emission source and sink. This aspect is experimentally determined using an plasticized PVC polymer with and without direct contact to house dust. A transfer into the dust could be observed in dependence of the initial concentration in the material. However, the results do not allow the differentiation between the two uptake mechanisms via capillary forces and contact to the material’s boundary layer. The results illustrate that the reasons for elevated DEHP concentrations in dust indoors can be traced back to direct contact of source and sink, abrasion from the source, and transport via airborne particles.  相似文献   

14.
Asthma in children appears to be associated with both phthalate esters and dampness in buildings. An important question is whether the concentrations of phthalate esters correlate with dampness (expressed as relative humidity—RH) in indoor air. The objective was to study the influence of RH on the specific emission rate (SER) of di-(2-ethylhexyl)phthalate (DEHP) from one type of vinyl flooring in the well characterized Field and Laboratory Emission Cell (FLEC). The vinyl flooring with ca. 17% (w/w) DEHP as plasticizer was tested in 6 FLECs at 22 °C. The RH in the 6 FLECs was 10%, 30%, 50% (in triplicate) and 70%. The RH was changed after 248 d in 2 of the 50%-FLECs to 10% and 70%, and to 50% in the 10%-and 70%-FLECs. The data show that the SER of DEHP from vinyl flooring in FLECs during a 1 yr period is independent of the RH. A new physically based emission model for semivolatile organic compounds was found to be consistent with the experimental data and independent of the RH. The model helps to explain the RH results, because it appears that RH does not significantly influence any of the identified controlling mechanisms.  相似文献   

15.
Yuan SY  Liu C  Liao CS  Chang BV 《Chemosphere》2002,49(10):1295-1299
Concentrations and microbial degradation rates were measured for eight phthalate esters (PAEs) found in 14 surface water and six sediment samples taken from rivers in Taiwan. The tested PAEs were diethyl phthalate (DEP), dipropyl phthalate (DPP), di-n-butyl phthalate (DBP), diphenyl phthalate (DPhP), benzylbutyl phthalate (BBP), dihexyl phthalate (DHP), dicyclohexyl phthalate (DCP), and di-(2-ethylhexyl) phthalate (DEHP). In all samples, concentrations of DEHP and DBP were found to be higher than the other six PAEs. DEHP concentrations in the water and sediment samples ranged from ND to 18.5 μg/l and 0.5 to 23.9 μg/g, respectively; for DBP the concentration ranges were 1.0–13.5 μg/l and 0.3–30.3 μg/g, respectively. Concentrations of DHP, BBP, DCP and DPhP were below detection limits. Under aerobic conditions, average degradation half-lives for DEP, DPP, DBP, DPhP, BBP, DHP, DCP and DEHP were measured as 2.5, 2.8, 2.9, 2.6, 3.1, 9.7, 11.1 and 14.8 days, respectively; under anaerobic conditions, respective average half-lives were measured as 33.6, 25.7, 14.4, 14.6, 19.3, 24.1, 26.4 and 34.7 days. In other words, under aerobic conditions we found that DEP, DPP, DBP, DPhP and BBP were easily degraded, but DEHP was difficult to degrade; under anaerobic conditions, DBP, DPhP and BBP were easily degraded, but DEP and DEHP were difficult to degrade. Aerobic degradation rates were up to 10 times faster than anaerobic degradation rates.  相似文献   

16.
Atmospheric deposition of phthalate esters in a subtropical city   总被引:1,自引:0,他引:1  
In Chinese cities, air pollution has become a serious and aggravating environmental problem undermining the sustainability of urban ecosystems and the quality of urban life. Bulk atmospheric deposition samples were collected two-weekly, from February 2007 to January 2008, at three representative areas, one suburban and two urbanized, in the subtropical city, Guangzhou, China, to assess the deposition fluxes and seasonal variations of phthalate esters (PAEs). Sixteen PAE congeners in bulk deposition samples were measured and the depositional fluxes of ∑16PAEs ranged from 3.41 to 190 μg m?2 day?1, and were highly affected by local anthropogenic activities. The significant relationship between PAEs and particulate depositional fluxes (correlation coefficient R2 = 0.72, P < 0.001) showed PAEs are associated primarily with particles. Temporal flux variations of PAEs were influenced by seasonal changes in meteorological parameters, and the deposition fluxes of PAEs were obviously higher in wet season than in dry season. Diisobutyl phthalate (DiBP), Di-n-butyl phthalate (DnBP), and Di(2-ethylhexyl) phthalate (DEHP) dominated the PAE pattern in bulk depositions, which is consistent with a high consumption of the plasticizer market in China. PAE profiles in bulk deposition showed similarities exhibited in both time and space, and a weak increase of high molecular weight PAE (HMW PAE) contribution in the wet season compared to those in the dry season. Average atmospheric deposition fluxes of PAEs in the present study were significantly higher than those from other studies, reflecting strong anthropogenic inputs as a consequence of rapid industrial and urban development in the region.  相似文献   

17.

This study is the first report describing the occurrence of 15 phthalate acid esters (PAEs) in the three typical water sources of YiXing City, Taihu Upper-River Basin, East China. The fate of target PAEs in the Jiubin drinking water treatment plant (JTP) was also analyzed. The amounts of Σ15PAE in the Hengshan (HS), Youche (YC), and Xijiu (XJ) water sources were relatively moderate, with mean values of 360, 357, and 697 ng L−1, respectively. Bis(2-ethylhexyl) phthalate (DEHP) dominated the PAE concentration, making up 80% of the 15 total PAEs. The highest levels of Σ15PAE were found in HS, YC, and XJ in March 2015, January 2015, and July 2014, respectively. The occurrence and concentrations of these compounds were spatially dependent, and the mean concentrations of Σ15PAE in HS, YC, and XJ samples increased from the surface layer to the bottom layer with varied percentage increases. The removal efficiency of the PAEs in the finished water varied markedly, and the removal of PAEs by the JTP ranged from 12.8 to 64.5%. The potential ecosystem risk assessment indicated that the risk of PAEs was relatively low in these three water sources. However, risks posed by PAEs due to drinking water still exist; therefore, special attention should be paid to source control in the JTP, and advanced treatment processes for drinking water supplies should be implemented.

  相似文献   

18.
Chao WL  Cheng CY 《Chemosphere》2007,67(3):482-488
Four previously isolated di-butyl-phthalate (DBP) degraders were tested for their abilities to degrade di-(2-ethylhexyl) phthalate (DEHP). In aqueous medium supplemented with 100mg/l of DEHP, both isolate G1 and Rhodococcus rhodochrous G2 showed excellent degradative activity; in three days they were able to degrade more than 97% of the added DEHP. Rhodococcus rhodochrous G7 degraded 32.5% of the added DEHP and Corynebacterium nitrilophilus G11 showed the least amount of DEHP degradation. The addition of surfactant Brij 30 at 0.1x critical micelle concentration (2mg/l) significantly improved DEHP degradation by Rhodococcus rhodochrous G2 (more than 90% of the added DEHP was degraded within 24 hours), but slightly inhibited the degradation of DEHP by the isolate G1 and Rhodococcus rhodochrous G7. Based on the 16S rDNA sequence data, isolate G1 was identified as Gordonia polyisoprenivorans. Soil inhibited DEHP degradation by G. polyisoprenivorans G1; fourteen days after a second addition of DEHP, 11.5% of the total added DEHP (i.e., 243.4 microg/g soil) remained detectable. Changes in the bacterial community were monitored using denaturing gradient gel electrophoresis (DGGE) and respective dendrogram analysis. It is clear that DEHP and DEHP plus G. polyisoprenivorans G1 substantially affected the bacterial community structure in the soils. However, as the population of indigenous DEHP degraders increased in the DEPH-treated soil, its bacterial communities resembled those in the DEHP plus G. polyisoprenivorans G1-inoculated soil by Day 17.  相似文献   

19.
Accumulation of 14C labelled bis(tributyltin) oxide (TBTO) by the mud crab, Rhithropanopeusharrisii, was determined through short-term exposure to labelled water and food. The potential for trophic accumulation during chronic low level exposure is emphasized.  相似文献   

20.
Daniel Barug 《Chemosphere》1981,10(10):1145-1154
The degradation of the biocide bis (tributyltin) oxide by pur cultures of microorganisms has been studied. Attempts to isolate microorganisms able to utilize bis (tributyltin) oxide as sole carbon source, were unsuccessful. Of many bacterial species investigated Pseudomonas aeruginosa and Alcaligenes faecalis degraded sublethal amounts of bis (tributyltin) oxide during aerobic growth in the presence of suitable carbon sources. P. aeruginosa converted bis (tributyltin) oxide into monobutyltin and small amounts of dibutyltin derivatives. Similar results were obtained with growing mycelium of Coniophora puteana, Trametes versicolor and Chaetomium globosum. Microbial conversion of monobutyltin trichloride was not observed. Dibutyltin dichloride was converted into monobutyltin derivatives under certain sterile conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号