首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The utility of stable isotope tracers for investigating the relationship between cadmium (Cd) partitioning in artificial sediment-water systems and Cd accumulation in a benthic detritivore (Asellus racovitzai, Isopoda) was explored. In the laboratory, Cd isotopes were applied to synthetic sediment and isotope concentrations were measured in sediment, overlying water and exposed asellids over a 10-day period. Isotope ratios measured in sediment and water were compared to ratios measured in asellids to determine whether Cd partitioning could predict metal bioaccumulation. Two different parameters which might affect Cd partitioning between the sediment and overlying water compartments were investigated: the chemical form in which Cd was added to systems, and the organic matter content of the sediment. To test the effect of chemical form on Cd partitioning, three isotopes of cadmium were individually applied to formulated sediment in varying combinations of 113Cd(NO3)2, 112Cd-humic acid (HA) 114CdSO4. The results demonstrated that chemical form did not influence partitioning, as the Cd isotope that was applied to sediment in the nitrate form exhibited similar partitioning between sediment and overlying water as the isotope that was applied in the sulfate or HA form. However, Cd isotope concentrations in overlying water were strongly related to the pattern of isotope accumulation in asellids suggesting that overlying water concentrations determined Cd bioaccumulation. In contrast, when the organic matter content of sediment was increased through the addition of Sphagnum peat moss, total Cd concentrations in overlying water and tissue were low, and there was no relationship between Cd-isotope concentrations in tissue and water. These results indicate that Cd accumulation occurred primarily from water, and factors that increase metal partitioning to sediment, such as increased sediment organic matter content, decrease Cd accumulation in asellids. The stable isotope tracer method described herein appears to be a useful technique for investigating the relationship between metal partitioning and bioaccumulation in simple sediment systems, but could also be extended to more complex systems, and used with different metals that have multiple stable isotopes.  相似文献   

2.
Sediments from lakes near Rouyn-Noranda, Quebec, contain elevated concentrations of several metals, including Cd, Cu, Pb and Zn. Amphipods, fingernail clams, mayflies and tanytarsid midges were absent, and sediment toxicity was observed in chronic tests with Hyalella in sediments from Lac Dufault, the lake closest to Rouyn-Noranda. Bioaccumulation by Hyalella demonstrated elevated bioavailability of Cd, Co, Cr, Pb and Tl, but only Cd was accumulated to levels close to the toxic threshold. Copper, which is regulated by Hyalella, was not elevated in these amphipods, but it was elevated in overlying water in the toxicity tests. Toxic effects in Lac Dufault sediments are probably caused primarily by Cd, at least in amphipods, with a possible minor contribution from Cu. An integrated assessment, including sediment chemistry, benthic community composition, sediment toxicity, metal bioaccumulation in benthos, and comparison of bioaccumulation and/or overlying water concentrations with threshold effect concentrations, provides the best indication of effects and their cause.  相似文献   

3.
To determine changes in metal distribution, bioavailability and toxicity with sediment depth, two 20-cm-long replicate cores were collected from a lake historically subjected to the influence of metal mining and smelting activity. The vertical distribution of Pb, Cd and Cu in sediment was similar for all three metals, with the surface layers showing enrichment and the deeper (pre-industrial) layers showing lower concentrations. Toxicity of each sediment core section was determined in laboratory tests with the freshwater amphipod Hyalella azteca. Bioavailable metal in each sediment slice was estimated from metal concentrations in overlying water in these toxicity tests and, for Cd, also from metal bioaccumulation. The profile for Cd in tissue was comparable to Cd in sediment and overlying water, but relative Cd bioavailability from sediment increased with sediment depth. Survival increased with increasing sediment depth, suggesting that surface sediments were probably less or non-toxic before industrialization.  相似文献   

4.
Based on a three compartment microcosm-water column, natural sediment,Hexagenia rigida nymphs-an experimental study was set up to compare cadmium (Cd) and methylmercury (MeHg) bioaccumulation by a burrowing mayfly species, after exposure via the water column or the sediment as initial contamination sources. Results from a wide concentration range for each exposure condition revealed very marked differences between the two metals: MeHg was readily accumulated from the two contamination sources, leading to important metal concentrations in the nymphs after the 2 weeks’ exposure; Cd bioaccumulation, on the other hand, was negligible when the metal was added to the water compartment, even though significant transfers were observed from the sediment source. The average Cd concentrations in the nymphs were proportional to the sediment contamination levels. Turbidity measurements in the water column, reflecting the bioturbation activity of the nymphs, revealed that the effect of Cd was significant, but only when the metal was initially added to the sediment. The results are discussed according to the uptake routes and the structural and functional properties of the biological barriers involved (gills and gut).  相似文献   

5.
The fate and toxicity of a polyethoxylated tallowamine (POEA) surfactant system, MON 0818, was evaluated in water-sediment microcosms during a 4-d laboratory study. A surfactant solution of 8 mg l(-1) nominal concentration was added to each of nine 72-l aquaria with or without a 3-cm layer of one of two natural sediments (total organic carbon (TOC) 1.5% or 3.0%). Control well water was added to each of nine additional 72-l aquaria with or without sediment. Water samples were collected from the microcosms after 2, 6, 24, 48, 72, and 96 h of aging to conduct 48-h toxicity tests with Daphnia magna and to determine surfactant concentrations. Elevated mortality of D. magna (43-83%) was observed in overlying water sampled from water-only microcosms throughout the 96-h aging period, whereas elevated mortality (23-97%) was only observed in overlying water sampled from water-sediment microcosms during the first 24h of aging. Measured concentrations of MON 0818 in water-only microcosms remained relatively constant (4-6 mg l(-1)) during the 96-h period, whereas the concentrations in overlying water from microcosms containing either of the two types of sediment dissipated rapidly, with half-lives of 13 h in the 3.0% TOC sediment and 18 h in the 1.5% TOC sediment. Both toxicity and the concentration of MON 0818 in overlying water decreased more rapidly in microcosms containing sediment with the higher percent TOC and clay and with a higher microbial biomass. Mortality of D. magna was significantly correlated with surfactant concentrations in the overlying water. These results indicate that the toxicity of the POEA surfactant in water rapidly declines in the presence of sediment due to a reduction in the surfactant concentration in the overlying water above the sediment.  相似文献   

6.
In order to study the influence of pH on the mobilisation of metals from lake sediments, intact sediment cores with overlying water were sampled from one lime treated lake and one acidified lake. The overlying water of two cores from each lake was successively acidified to pH 4.2 over a period of 3 months. In the acid treated samples from the limed lake, the initial concentrations of Al, Cd, Mn, Pb and Zn in the overlying water were generally lower and the final concentrations were higher than in the acid treated samples from the acidified lake. The labile inorganic fraction of Al (Al(i)) was increasingly dominating as pH decreased. Redox potential and pH in the sediment indicated that the upper two centimetres were involved in the exchange reactions. The experiment showed that mobilisation of metals from sediments can occur and the results indicated that mobilisation could contribute to increased concentrations of metals in lake water during reacidification of formerly lime treated lakes.  相似文献   

7.
To determine the extent of metal accumulation in some aquatic macrophytes from contaminated urban streams in southeast Queensland, plants were sampled from six sites, along with contiguous sediments. In all, 15 different species were collected, the most common genera being Typha (Cattails or Bulrushes) and Persicaria (Knotweeds). Before heavy metal analysis, plants were further separated into various morphological tissues, and five selected samples were separated into various physiological tissues. The cadmium, copper, lead and zinc content of the plants were analysed using flames AAS. In general, plant roots exhibited higher metal concentrations than the contiguous sediments. Of the metals of interest, only for zinc was there a relatively clear pattern of increasing accumulation in aquatic macrophytes with increasing sediment metal concentrations. Comparison between morphological tissues of the sampled plants found that roots consistently presented higher metal concentrations than either the stems or leaves, however unlike previous studies, this investigation revealed no consistent trend of stems accumulating more metals than the leaves. For Typha spp., metal concentrations followed the order of roots > rhizomes > leaves, while for Persicaria spp. the order was roots > leaves > stems. The submerged species Myriophyllum aquaticum accumulated the highest levels of metals overall (e.g. Zn 4300 micrograms g-1 dry weight and Cd 6.5 micrograms g-1), and the emergent macrophytes also exhibited relatively high metal contents in their roots. The leaves of the submerged and floating-leafed species collected contained relatively high quantities of the four metals of interest, compared with the leaves of emergent aquatic macrophytes. In the Typha rhizome and Persicaria stem samples analysed for internal variation in metal content, there was a pattern of increasing metal concentrations towards the external sections of the stem, both for subterranean stems (rhizomes) and above-substrate stems. For Persicaria stems, no clear pattern was observed for cadmium and lead, the two metals investigated that are not required by plants for survival.  相似文献   

8.
The use of biodynamic models to understand metal uptake directly from sediments by deposit-feeding organisms still represents a special challenge. In this study, accumulated concentrations of Cd, Zn and Ag predicted by biodynamic modelling in the lugworm Arenicola marina have been compared to measured concentrations in field populations in several UK estuaries. The biodynamic model predicted accumulated field Cd concentrations remarkably accurately, and predicted bioaccumulated Ag concentrations were in the range of those measured in lugworms collected from the field. For Zn the model showed less but still good comparability, accurately predicting Zn bioaccumulation in A. marina at high sediment concentrations but underestimating accumulated Zn in the worms from sites with low and intermediate levels of Zn sediment contamination. Therefore, it appears that the physiological parameters experimentally derived for A. marina are applicable to the conditions encountered in these environments and that the assumptions made in the model are plausible.  相似文献   

9.
The speciation of heavy metals was measured over a variety of natural and undisturbed water/sediment interfaces. Simultaneously, two benthic species (oligochaete Limnodrilus spp. and the midge Chironomus riparius) were exposed to these sediments. Under occurring redox conditions, free ion activities of trace metals Cd, Cu, Ni, Pb, and Zn were measured with a chelating exchange technique, while geochemical conditions (i.e., redox) remained in tact. Free ion activities were compared with total dissolved concentrations in pore waters and surface waters in order to relate speciation to bioaccumulation. Limnodrilus spp. and C. riparius have accumulation patterns that could be linked to time-dependent exposure concentrations, expressed as chemical speciation, in the surface water and the sediment's pore water. Concentrations of free metal ions in the overlying surface water, rather than in sediment pore water, proved to be the best predictor for uptake. For the first time, measurements are obtained from sediments without disturbing physical-chemical conditions and thus bioavailability, a major restriction of other studies so far.  相似文献   

10.
Sediment cores from Richard Lake near Sudbury, Ontario, were sectioned and analyzed for total metal content, plus metal bioavailability and toxicity to Hyalella azteca (after equilibration with oxygenated overlying water). Strong and similar sediment profiles were observed for Cd, Co, Cu and Ni in the sediment. However, these differed from metal bioavailability profiles (bioaccumulation by Hyalella and metals in overlying water). Bioavailability profiles for Cu also differed from those for Cd, Co or Ni. The deepest sediment layers, deposited prior to industrial development, were non-toxic. Sediment toxicity was attributed to Ni dissolution into overlying water. Moreover, differential bioavailability of Ni in surface and deeper sediment layers was observed. This can affect the interpretation of toxicity data for sediments collected by different methods (e.g. core vs. grab samples). Based on Pb-210 dating and trends in Ni in the core, chronic toxicity of surface sediments from Richard Lake might approach non-toxic levels in about 15 years.  相似文献   

11.
Experiments were undertaken to examine the key variables affecting metal release and sequestration processes in marine sediments with metal concentrations in sediments reaching up to 86, 240, 700, and 3000 mg kg(-1) (dry weight) for Cd, Cu, Pb and Zn, respectively. The metal release and sequestration rates were affected to a much greater extent by changes in overlying water pH (5.5-8.0) and sediment disturbance (by physical mixing) than by changes in dissolved oxygen concentration (3-8 mg l(-1)) or salinity (15-45 practical salinity units). The physical disturbance of sediments was also found to release metals more rapidly than biological disturbance (bioturbation). The rate of oxidative precipitation of released iron and manganese increased as pH decreased and appeared to greatly influence the sequestration rate of released lead and zinc. Released metals were sequestered less rapidly in waters with lower dissolved oxygen concentrations. Sediments bioturbated by the benthic bivalve Tellina deltoidalis caused metal release from the pore waters and higher concentrations of iron and manganese in overlying waters than non-bioturbated sediments. During 21-day sediment exposures, T. deltoidalis accumulated significantly higher tissue concentrations of cadmium, lead and zinc from the metal contaminated sediments compared to controls. This study suggests that despite the fact that lead and zinc were most likely bound as sulfide phases in deeper sediments, the metals maintain their bioavailability because of the continued cycling between pore waters and surface sediments due to physical mixing and bioturbation.  相似文献   

12.
Duman F  Obali O  Demirezen D 《Chemosphere》2006,65(11):2145-2151
In this study, submerged aquatic plant Potamogeton lucens, corresponding sediment and water samples were seasonally collected from Lake Sapanca (Turkey) and analysed for their heavy metal contents (Pb, Cr, Cu, Mn, Ni, Zn and Cd). While heavy metals concentrations in the water samples were decreased as Zn > Cr > Ni > Pb > Mn > Cu > Cd, in sediment samples were Mn > Zn > Ni > Cu > Cr > Pb > Cd, respectively. Generally, heavy metals concentrations in the plant tissues were decreased in sequence of Mn > Zn > Cu > Ni > Cr > Pb > Cd. It was determined that Cu, Mn and Zn were actively transported to the root, where they were accumulated especially in autumn. Lower accumulation factor ratios were seen in spring than other seasons. Cd exhibited a relatively clear pattern of increasing accumulation in P. lucens with increasing sediment metal concentrations. Significant positive correlations were observed between Cr, Cu, Ni and Cd contents in sediment and Cd contents in root of P. lucens. The investigations suggested that Ni and Mn have a tendency to be accumulated in leaf especially in autumn and Cr and Cd to be accumulated in shoot especially in summer.  相似文献   

13.
A large-scale sampling program was conducted to simultaneously collect surface water, overlying water, pore water, and sediment samples at monthly intervals between March and December 2010 from Baiyangdian Lake, North China to assess the distribution of DDTs and determine the net direction of sediment–water exchange. Total DDT concentrations ranged 2.36–22.4 ng/L, 0.72–21.9 ng/L, 2.25–33.7 ng/L, and 4.42–7.29 ng/g in surface water, overlying water, pore water, and sediments, respectively, which were at the intermediate levels compared to those of other area around the world. Seasonal variations of DDTs were featured by higher concentration in summer. This was likely associated with (a) the increase of land runoff in the summer and (b) application of dicofol and DDT-containing antifouling paints for ships in summer. Sediment–water fugacity ratios of the DDT isomers were used to predict the direction of the sediment–water exchange of these isomers. The sediment–surface water, sediment–overlying water, and sediment–pore water fugacity ratios of DDT isomers averaged 0.34, 0.44, and 0.1, which are significantly lower than the equilibrium status (1.0), suggesting that the net flux direction were from the water to sediment and the sediment acted as a sink for the DDTs. The difference of DDT concentrations between sediment and water samples was found to be an important factor affecting the diffusion of DDT from the water to sediment.  相似文献   

14.
The concentrations of metals in the buried marine sediment and groundwater were differently affected by land reclamation. Nine metals (V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) in sediment and coastal groundwater from reclamation areas in Shenzhen were examined. The gradually decreased concentrations (V, Cr, Mn, Ni, Cu, Zn) in sediment and relatively higher concentrations (V, Cr, Mn, Co, Ni, Cu and Cd) in groundwater within reclamation areas were observed. The increase of V, Cr, Mn, Ni, Cu and Cd concentrations in groundwater within reclamation areas subsequently after land reclamation should be resulted from the mobilization of these metals accumulated in the sediment. These metals appear to be easily mobilized from solid phase to solution phase after reclamation. The physico-chemical changes such as reduction in pH and salinity in water environment induced by land reclamation appear to be responsible for metal mobility in the sediment-groundwater system.  相似文献   

15.
Fritioff A  Greger M 《Chemosphere》2006,63(2):220-227
A better understanding of metal uptake and translocation by aquatic plants can be used to enhance the performance of constructed wetland systems for stormwater treatment. Specifically, this study examines whether the uptake of Zn, Cu, Cd, and Pb by Potamogeton natans is via the leaves, stems, or roots, and whether there is translocation from organs of uptake to other plant parts. Competition between the metals at uptake and at the level of the cell wall-bound part of the metals accumulated in stem and leaf tissue was also examined. The results show that Zn, Cu, Cd, and Pb were taken up by the leaves, stems, and roots, with the highest accumulation found in the roots. At the elevated metal concentrations common in stormwater the uptake of Cu, but not of Zn, Cd, or Pb, by the roots was somewhat limited at uptake due to competition with other metals. Between 24% and 59% of the metal content was bound to the cell walls of the plant. Except in the case of Pb, the cell wall-bound fraction was generally smaller in stems than in leaves. No translocation of the metals to other parts of the plant was found, except for Cd which was translocated from leaf to stem and vice versa. Dispersion of metals from sediment to water through P. natans is therefore unlikely.  相似文献   

16.
土著微生物促生是一项低成本高效率的河湖黑臭底泥原位修复技术,然而向底泥中投加药剂可能会影响上覆水水质。为探讨该技术对水环境的不利影响,实验研究了城市湖泊黑臭底泥修复过程中上覆水中磷浓度和底泥中磷含量及形态的变化。结果表明,在投药深度为泥面以下15 cm,微生物营养剂(BE)和生物解毒剂(MT)的投加量分别低于60mL/m3和70 mL/m3的条件下,上覆水总磷(TP)浓度低于地表水环境质量Ⅲ类(湖库类)标准值。投加微生物促生剂(BE和MT)导致上覆水磷含量升高,并促进了上覆水中藻类的增长。复配投加硝酸钙能减少上覆水中磷含量及藻类生物量,从而抑制微生物促生剂对上覆水磷浓度的影响。另外,投加微生物促生剂及硝酸钙到底泥中后,底泥磷含量以及磷形态组成的变化均不明显。  相似文献   

17.
Larner BL  Seen AJ  Snape I 《Chemosphere》2006,65(5):811-820
This work has been the first application of DGT samplers for measuring metals in water and sediment porewater in the Antarctic environment, and whilst DGT water sampling was restricted to quantification of Cd, Fe and Ni, preconcentration using Empore chelating disks provided results for an additional nine elements (Sn, Pb, Al, Cr, Mn, Co, Cu, Zn, As). Although higher concentrations were measured for some metals (Cd, Ni, Pb) using the Empore technique, most likely due to particulate-bound or colloidal species becoming entrapped in the Empore chelating disks, heavy metal concentrations in the impacted Brown Bay were found to be comparable with the non-impacted O'Brien Bay. Sediment porewater sampling using DGT also indicated little difference between Brown Bay and O'Brien Bay for many metals (Cd, Al, Cr, Co, Ni, Cu), however, greater amounts of Pb, Mn, Fe and As were accumulated in DGT probes deployed in Brown Bay compared with O'Brien Bay, and a higher accumulation of Sn was observed in Brown Bay inner than any of the other three sites sampled. Comparison of DGT derived porewater concentrations with actual porewater concentrations showed limited resupply of Cd, Pb, Al, Cr, Mn, Co, Ni, Cu, Zn and As from the solid phase to porewater, with these metals appearing to be strongly bound to the sediment, however, resupply of Fe and Sn was apparent. Based upon our observations here, we suggest that Sn, and to a lesser extent Pb, are critical contaminants.  相似文献   

18.
Stormwater treatment ponds receive elevated levels of metals from urban runoff, but the effects of these pollutants on organisms residing in the ponds are unknown. We investigated the accumulation of Cu, Zn, and Pb by macroinvertebrates collected from stormwater treatment ponds in Maryland serving commercial, highway, residential and open-space watersheds, and determined whether watershed land-use classification influences metal concentrations in macroinvertebrates, sediments, and water. Three types of invertebrate samples were analyzed--molluscs, odonates, and composite. Zn concentrations in odonates from ponds draining watersheds with commercial development (mean = 113.82 micrograms g-1) were significantly higher than concentrations in the other land-use categories. Similarly, Cu levels in odonates from commercial ponds (mean = 27.12 micrograms g-1) were significantly higher than from highway (mean = 20.23 micrograms g-1) and open space (mean = 17.79 micrograms g-1) ponds. However, metal concentrations in sediments and water did not differ significantly among land-uses. The results suggest that despite the high variation in ambient metal concentrations within each land-use category, macroinvertebrates in ponds serving commercial watersheds accumulate higher levels of Cu and Zn. The levels of Cu, Zn, and Pb in invertebrates from all ponds were less than dietary concentrations considered toxic to fish.  相似文献   

19.
In urban area, the accumulation of polluted stormwater sediments (SWS) in retention ponds may be a source of dissolved pollutants and nutrients for the aquatic ecosystems. Our objective was to quantify the influence of the thickness of SWS layer and the occurrence of tubificid worms on organic matter processing (O(2) uptake and fluxes of NH(4)(+), NO(3)(-), PO(4)(3-), and dissolved organic carbon between sediment and water), releases of 17 PAHs and 4 heavy metals, and microbial characteristics. Results showed that oxidation of SWS organic matter (O(2) and NO(3)(-) uptakes) and releases of nutrients were significantly increased by the quantity of accumulated SWS and the worm bioturbation. Releases of acenaphtene and naphthalene from sediments were significantly increased by the thickness of the SWS layer. In contrast, tubificid worms did not promote the mobilization of pollutants. In conclusion, biological activities and stormwater sediment characteristics need to be assessed to quantify the fate of pollutants and nutrients in stormwater retention ponds.  相似文献   

20.
Cheung KC  Poon BH  Lan CY  Wong MH 《Chemosphere》2003,52(9):1431-1440
The effects of anthropogenic activities, industrialization and urbanization on the accumulation of heavy metals and nutrients in sediments and water of rivers in the Pearl River Delta region were examined. Most sediments were seriously contaminated with Cd, Pb, and Zn in accordance with the classification by Hong Kong Environmental Protection Department. Total phosphorus (P) and nitrogen (N) concentrations in sediments ranged from 0.02% to 0.12% and 0.06% to 0.64%, respectively. High carbon (C), N, P and sulphur (S) levels at Yuen Long Creek were related to the discharge of industrial effluents along the river. The enrichment of P and ammoniacal-nitrogen (NH4+-N) in water were obvious. For most sites, the P concentration exceeded 0.1 mg/l, which is the recommended concentration in flowing water to encourage excessive growth of aquatic plants. Nine out of the 16 sites studied had NH4+-N concentration over 2 mg/l. The rivers in the south of Deep Bay (Hong Kong) had high nutrient exports compared with the rivers in the east region and western oceanic water. The concentrations of nitrate-nitrogen NO3--N in surface water were under the maximum contaminant level in public drinking water supplies (10 mg/l) except for one site. Although the concentrations of heavy metals in overlying water were low, their accumulations were significant. High contents of nickel (Ni) and zinc (Zn) in water were found at certain locations, suggesting the occurrence of some local contamination. These preliminary results indicated that river and sediment transported pollutants is likely one of the factors for the water quality degradation of Deep Bay water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号