首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据昆明市第一污水处理厂深度处理微絮凝-D型滤池工艺的运行数据,评价了工艺出水水质及总磷(TP)去除效果,同时分析了混凝剂投加量及药剂费用。结果表明,微絮凝-D型滤池工艺出水TP平均浓度为0.15 mg/L,最优水平值为0.05 mg/L,95%保证值为0.37 mg/L,TP平均去除率为63.6%。出水悬浮固体(SS)浓度95%保证值为10 mg/L。混凝剂聚合氯化铝(PAC)的投加量在1.5~4 mg Al2O3/L范围波动,去除单位TP的PAC投加量平均值为16.7 mg Al2O3/mg-P,投加比为2~8 mol-Al/mol-P。当投加比超过5时,出水TP浓度可达到0.3 mg/L以下。吨水PAC成本平均值为0.017元/t。  相似文献   

2.
用混凝沉淀-Fenton-NaClO氧化联合深度处理垃圾渗滤液,利用单因素变量法得出:混凝实验在PFS投加量为1.2g/L、pH=6、搅拌时间为30min的条件下进行,COD、氨氮和色度的去除率分别达到56.60%、15.62%和56.52%;混凝出水在初始pH为4、H2O2投加量为80mmol/L、n(H2O2)∶n(F2+)比为1∶1、反应时间为60min的条件下进行Fenton氧化,COD、氨氮和色度的去除率分别达到71.38%、21.43%和95.24%;Fenton氧化出水在pH为6、NaClO投加量为60mmol/L、反应时间为60min的条件下进行NaClO氧化,COD和氨氮去除率分别为83.42%和99.57%;联合工艺COD、氨氮和色度去除率分别为96.68%、99.69%和98.04%,出水浓度分别为63mg/L、0.47mg/L和18倍,均可满足《生活垃圾填埋污染控制标准(GB16889-2008)》中规定的排放标准。  相似文献   

3.
生活污水二级生物处理后的铁盐混凝除磷试验研究   总被引:24,自引:0,他引:24  
以生活污水二级生物处理后的出水为研究对象,考察了铁盐对浓度在2-4mg/L范围内的总磷的混凝去除效果及影响因素。结果表明,铁盐除磷的最佳pH为7.5-8;铁盐投加量较低时,适当提高GT值可使总磷去除率增加15%-20%;在适当的混凝搅拌条件下,三阶铁盐和聚合硫酸铁对总磷的去除率均在70%以上,混凝后过滤可使出水中总磷降至0.5mg/L以下。  相似文献   

4.
水厂废水的综合处理与回用是我国供水行业的新趋势和节水目标所在,采用强化混凝技术进行水厂排泥废水的深度处理。通过混凝剂筛选实验和有机物表征确定最佳混凝剂为高效聚合铝(HPAC),适宜投加量为650 mg/L。当混凝剂HPAC投加量为650 mg/L时,对COD、TOC、浊度和色度的去除率分别为82.5%、89.8%、95%和92.5%,相应的出水值分别为58 mg/L、8.46 mg/L、2.35 NTU、13度,COD满足《污水综合排放标准》(GB 8978-1996)的要求(COD≤100 mg/L),同时实验结果显示聚合氯化铝(PAC)、HPAC、三氯化铁(FeCl3)主要去除分子量处于>1 300 Da范围的有机物,对分子量处于744~1 300 Da之间的有机物去除有限。  相似文献   

5.
强化混凝-吸附预处理生活污水   总被引:1,自引:0,他引:1  
采用混凝/吸附复配的方式对生活污水进行了浓缩预处理。通过对有机物去除率和混合絮体沉降性能的考察,优选出最佳混凝剂聚合氯化铝和最佳吸附剂粉末活性炭,其最优投加量分别为60 mg/L和40 mg/L。在此复配条件下,COD去除率由单独投加混凝剂时的62%提高到73%,浊度去除率由88%提高到93%。同时利用分子量分级实验进一步阐述了混凝/吸附复配过程提升污水浓缩效果的机制。在机械加速澄清池连续实验中,在原水COD 300~500 mg/L、浊度130~360 NTU的水质条件下,出水COD稳定在70~86 mg/L之间,去除率达80%以上,出水浊度稳定在10 NTU以下。  相似文献   

6.
在室温条件下,分别选用聚合氯化铝(PAC)、聚合氯化铝铁(PAFC)及三氯化铁(FeCl3)对玉米深加工废水进行混凝实验。综合考虑各种混凝剂对磷、COD以及SS的去除效果,最终选取PAC作为混凝剂。采用PAC和聚丙烯酰胺(PAM)作为复合混凝剂,对其去除效果做进一步研究,并确定了最佳投加量及pH值。实验结果表明,在PAC投加量25mg/L,PAM投加量0.5 mg/L,pH为8条件下,混凝效果最佳。磷、COD、SS去除率可分别达到90.1%、53.3%和88.2%,对应的出水质量浓度分别为0.41、26.8和2 mg/L。  相似文献   

7.
采用O3/H2O2高级氧化工艺深度处理印染废水二级出水,考察了不同反应条件对O3/H2O2工艺的影响,并且对污水二级出水有机物(Ef OM)的性质和去除行为进行了表征分析。结果表明,在p H=9,臭氧进气流量0.2 L/min,臭氧浓度116 mg/L,反应时间100 min,H2O2投加量9.79 mmol/L时,COD和色度去除率分别为82.2%、96.9%,B/C(BOD5/COD)由初始的0.10提升到0.32。此外,三维荧光光谱(3DEEM)、相对分子质量分布(MWD)以及亲疏水性分布分析表明,处理后Ef OM的荧光特性发生变化,低分子量物质大量增加,亲疏水性分布也有所改变。  相似文献   

8.
针对焦化废水二级生化处理出水COD、色度和浊度无法达标的问题,实验研究了异相Fenton试剂催化氧化法和混凝沉淀法以及二者联合深度处理焦化废水的效果,分别探讨了H2O2、FeOOH投加量、初始pH,混凝剂投加量及种类对COD去除的影响,确定了最佳运行条件,采用GC-MS分析了联合工艺对废水中有机物的去除规律。异相Fenton试剂催化氧化静态实验研究表明,当H2O2(10%)投加量为2 mL/300 mL,FeOOH投加量为3 g/L,初始pH为4~6之间,处理效果最佳;混凝沉淀实验中最佳的混凝剂为聚丙烯酰胺阳离子,最佳投加量为8 mg/L。异相Fenton试剂催化氧化-混凝沉淀联合工艺深度处理焦化废水,出水COD基本在90 mg/L左右,浊度为0.8NTU左右,色度为40度以下,满足国家污水综合排放二级标准(GB8978-1996)。GC-MS分析显示,联合工艺能有效减少废水中有机物的种类和浓度,并将废水中长链大分子化合物和杂环化合物分解为短链的小分子化合物,构成联合工艺出水COD的主要是小分子有机物,尤其是卤代烷烃含量较高。  相似文献   

9.
印染废水具有色度大、有机物含量高、水质变化大等特点,处理难度较大。对比了不同种类的混凝剂对印染废水的处理效果,结果表明,随着混凝剂投加量的增加,SS,色度和COD的去除率逐渐增大,当混凝剂的投加量达到80 mg/L时,4种混凝剂的混凝效果达到最优。Al_(13)在最优投加量下SS的去除率达到92.47%,色度去除率达到88.49%,COD的去除率达到80.47%。不同p H值条件下的混凝实验结果表明,随着p H值的升高,混凝效果逐渐提高,在p H值处于6.0~9.0的范围内均具有良好的混凝效果。在沉降的初始阶段,随着沉降时间的延长,4种混凝剂的混凝效果逐渐提高;当沉降时间超过10 min后,混凝效果没有明显的提高。Al_(13)形成絮体的沉降速度最快,11 min左右可以完成沉降,其他3种混凝剂需要在14 min左右完成沉降。  相似文献   

10.
针对北方严寒地区低温时生物单元处理效能低下,污水处理厂二级出水TP浓度较高且不稳定的问题,将钢渣微粉与混凝剂复合处理城市污水处理厂尾水,以提高TP的处理效能。研究结果表明,钢渣微粉投加量为4g/L时,其对50mg/L含磷溶液处理效果最佳,处理2h后TP去除率可达75.16%;溶液初始pH对除磷效果有一定影响,最佳初始pH为7~8;小试试验表明,与单独聚合硫酸铁(PFS)混凝沉淀除磷相比,投加4g/L钢渣微粉使PFS最佳投加量由10mg/L降至6mg/L,且TP去除率显著提高,絮体沉降时间缩短,钢渣微粉-PFS絮体沉降2min时絮体体积分数降至10%,远低于PFS絮体。在连续30d的中试运行中,进水TP为1.40~1.98mg/L时,出水TP质量浓度可稳定维持在0.35~0.46mg/L,运行后期pH可降至9以下,满足《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级A排放标准,运行期间药剂成本仅为0.06元/m3,具有一定经济性。  相似文献   

11.
印染RO浓水深度处理及回用   总被引:2,自引:0,他引:2  
采用Fenton-石灰苏打法耦合工艺对某印染厂印染反渗透(RO)浓水进行深度处理。通过实验研究了不同H2O2和Fe2+投加量、p H和反应时间对废水COD去除率的影响,以及不同石灰和碳酸钠投加量对废水硬度的脱除效果,出水回用于染色工段进行染色实验。结果表明,在p H=3.0,Fe2+投加量为1.5 mmol/L,H2O2投加量为3.75 mmol/L,反应时间为45 min,石灰和碳酸钠投加量分别为450 mg/L和1 000 mg/L的条件下,出水COD和硬度的去除率可分别达到73.9%和85.0%,耦合工艺出水水质符合该厂回用染色水标准,且减少了盐的使用,可实现印染RO浓水回用。  相似文献   

12.
采用Fenton法处理湿法腈纶聚合废水,考察了H2O2投加量、Fe2+投加量、p H和反应时间等因素对氧化和混凝作用去除废水污染物的影响,并分析了废水可生化性和特征污染物的变化。结果表明,Fenton法可以有效去除废水中有机污染物,在初始p H为3.0,Fe2+投加量为15.0 mmol/L,H2O2投加量为90.0 mmol/L的条件下,反应120 min后废水COD去除率可以达到56.8%,其中氧化和混凝作用对应的去除率分别为43.3%和13.5%;处理后废水的BOD5/COD由0.24升高至0.43;处理后废水中丙烯腈以及其他多数有机污染物能被有效去除。  相似文献   

13.
考察了4种混凝剂,高效聚合氯化铝(HPAC),聚合氯化铝(PACl),硫酸铝(Al2(SO4)3),混合PACl和氯化铁(FeCl3),对低温低浊黄河原水的混凝效果与沉后水残留铝含量的关系。结果表明,当采用Al2(SO4)3或PACl做混凝剂时,在取得较好浊度去除的投药量下,水中余铝浓度会超过国家标准(0.2131g/L)。而采用HPAC或FeCl3和PACl复配药剂,在取得与Al2(SO4)3或PACl类似的浊度去除效果的同时,也能较好地控制水中的余铝含量。当HPAC投加量为21mg/L时,沉后水浊度降至1.3NTU,残留铝含量为0.147mg/L。复配投加PACl 15mg/L和FeCl3 12mg/L后,沉后水浊度为1.18NTU,残留铝含量为0.074mg/L。PACl和氯化铁的复配比例需要精确的调控,否则容易导致出水余铁余铝含量增加。而HPAC投加量小于21mtg/L时出水余铝浓度均低于国家标准。因此,在这4种混凝剂中,就混凝效果及余铝控制而言,HPAC更适合充当低温低浊水源水的混凝处理药剂。  相似文献   

14.
为解决厌氧-接触氧化工艺处理生活污水除磷效果欠佳的问题,采用聚磷硫酸铁(PPFS)对该工艺二级出水进行混凝除磷实验研究。考察了PPFS投加量、初始p H值、温度、浊度以及与助凝剂(聚丙烯酰胺)复配对除磷效果的影响。研究表明,PPFS可有效降低出水TP浓度,当投加量为40 mg·L~(-1)时,TP浓度能从3.71 mg·L~(-1)降至0.34 mg·L~(-1)左右,满足《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A排放标准限值(TP≤0.5 mg·L~(-1))。利用PPFS对生物除磷工艺二级出水进行化学除磷是一种有效、可行的选择。  相似文献   

15.
对某焦化厂生化出水进行了除氰研究。对硫酸亚铁混凝除氰法进行了优化,采用沉淀净化法对其出水进行深度处理,考察了工艺中不同影响因素对总氰化物(TCN)去除效果的影响。结果表明,硫酸亚铁混凝除氰法的最佳反应条件为pH 5.00、FeSO4·7H2O投加量500mg/L、反应时间15min、沉淀时间30min;在此条件下,当原水TCN质量浓度为3.1~4.1mg/L时,出水TCN质量浓度达到0.60~0.70mg/L,需作进一步的深度处理。采用沉淀净化法处理硫酸亚铁混凝除氰法出水的最佳反应条件为先同时投加药剂A和药剂B,投加量分别为150、0.75mg/L,反应15min后,再按2mg/L投加药剂C,继续反应3min,最终出水TCN质量浓度低于0.1mg/L,达到《炼焦化学工业污染物排放标准》(GB 16171—2012)要求(氰化物排放限值为0.2mg/L);在此条件下,单位废水处理的药剂成本合计约为0.25元/t。  相似文献   

16.
不同形态铁盐的除磷效果   总被引:2,自引:2,他引:0  
研究不同铁盐存在形态的铁盐类混凝剂,即三氯化铁(离子态铁)、聚合氯化铁(聚合态铁)和氢氧化铁(凝胶态铁),在混凝除磷性能方面的差异。以城市污水厂的二级出水为实验水样,进行混凝除磷性能研究。结果表明,二级出水总磷为1.74 mg/L,离子态铁投加量为40 mg/L时,对总磷的去除率为90%,混凝处理后上清液总磷可达《城镇污水处理厂污染物排放标准》(GB18918-2002)中的一级A标准,聚合态铁对总磷的去除率为62%,凝胶态氢氧化铁的总磷去除率为59%,混凝处理后上清液总磷均不能满足GB18918-2002中的一级A标准。离子态氯化铁对污水厂二级出水的除磷效果优于聚合态,即铁离子的聚合形态会影响其除磷效果。  相似文献   

17.
混凝沉淀法处理含砷选矿废水   总被引:1,自引:0,他引:1  
某钨矿含砷选矿废水砷含量高且砷以As(V)为主要存在形态,采用混凝沉淀法处理,详细考察了生石灰、硫酸亚铁和六水三氯化铁3种混凝剂对废水中砷的去除效果。实验结果表明,在PAM投加量40 mg/L,静沉时间60 min条件下,比较分析3种混凝剂对砷的去除效果,三氯化铁为最佳除砷混凝剂。三氯化铁最佳除砷工艺条件为:pH 7.5,三氯化铁投加量986.67 mg/L,混凝反应时间25 min,PAM投加量为40 mg/L,静沉60 min,含砷选矿废水经该工艺处理后,砷去除率可达99.14%,出水砷浓度降至0.361 mg/L,达到国家污水综合排放标准(GB8978-1996)。  相似文献   

18.
针对腈纶废水生化单元出水,对比研究了Al2(SO4)3和Fe2(SO4)3在不同絮凝剂投量和p H时的混凝处理效果,并利用紫外-可见分光光度法(UV-Vis)、三维荧光光谱(EEM)、凝胶渗透色谱(HPSEC)等对混凝特性进行了初步探讨。研究显示,2种混凝剂在投量为63.5 mg/L时可获得30%以上的COD去除率,且最佳p H为中性附近。当投量小于32 mg/L时,Al2(SO4)3较Fe2(SO4)3具有更高的COD去除率,进一步增大混凝剂的投量很难提高Al2(SO4)3对COD的去除率,而Fe2(SO4)3则在有限范围内能持续提高COD去除率。EEM光谱分析显示,与Al2(SO4)3相比,Fe2(SO4)3对有机物具有更广的处理范围和更好的去除效果。HPSEC分析表明,Fe2(SO4)3相对于Al2(SO4)3在去除重均分子量为2 776、1 856和1 325 Da的有机物组分方面具有优势。铁盐或铝盐混凝是深度净化腈纶废水生化单元出水的可行方案之一。  相似文献   

19.
硫酸钛混凝去除无机砷(Ⅲ)的效能   总被引:1,自引:0,他引:1  
使用硫酸钛作为混凝剂,研究了混凝去除As(Ⅲ)过程中溶液pH值、混凝剂投加量、砷的初始浓度以及阴离子对除砷效果的影响.硫酸钛的水解沉淀物颗粒等电点为pH =5;当pH =6时,水解沉淀物的粒径最大.在pH =5 ~8范围内,As(Ⅲ)的去除率高且基本稳定;而沉淀物颗粒Zeta电位降低较大.说明水解沉淀物Zeta电位对As(Ⅲ)的去除影响不大.混凝剂投加量为2.5 ~10 mg/L时,As (Ⅲ)的去除率随投加量的增加而显著增加;混凝剂投加量大于15 mg/L时,As(Ⅲ)去除率随混凝剂投加量的增加变化趋于平缓.水中阴离子(硅酸根和磷酸根离子)的存在会降低混凝对As (Ⅲ)的去除效率.  相似文献   

20.
利用混凝烧杯试验法,考察聚硫酸铁(PFS)强化混凝去除五价锑(Sb(V))过程中不同混凝条件对絮体形态(包括粒度和结构)以及出水水质的影响。结果表明,絮体平均粒径和分形维数的变化主要取决于主导混凝机理,且能通过作用于混凝效果而影响沉后水中悬浮态Sb(V)含量,但对最终除Sb(V)效果(主要为溶解态)的影响极为有限;原水p H和PFS投量对Sb(V)的去除有重要影响,而温度和混凝搅拌强度的作用却较小,并且助凝剂PAM的投加会在一定程度上削弱去除效果。在实际运行中,还需尽量避免沉后水因微小絮体过多影响后续工艺的运行工况及出水水质等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号