首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
生物过滤法净化垃圾填埋场温室气体甲烷的研究进展   总被引:1,自引:0,他引:1  
生物过滤法是一种低费用、无二次污染的减少垃圾填埋场温室气体甲烷排放的方式,是垃圾填埋气净化的一种很好的选择.介绍了净化垃圾填埋场甲烷的生物过滤器类型及甲烷氧化微生物,概述了生物过滤器氧化甲烷的影响因素、操作条件,并分析了其发展趋势.  相似文献   

2.
我国城市中尚有大量非规范生活垃圾填埋场存在,对其进行污染整治消除填埋气导致的环境安全隐患刻不容缓.以重庆某垃圾填埋场为例,研究重庆市主城区的非规范生活垃圾填埋场填埋气的横向迁移问题,在垃圾场周边区域布设36个监测井,对监测井中的填埋气进行分析监测,以填埋气特征组分CH4气体的体积浓度变化研究填埋气的横向迁移规律.结果表明,监测井到填埋场边界的距离为监测井中CH4气体浓度的主要影响因素;垃圾场周边距离填埋场场界50 m以外的区域,填埋气的横向迁移已经相当微弱;但是距离填埋场边界50 m以内区域的填埋气的横向迁移明显,需要在距离填埋场边界50 m范围内采取措施与场内填埋气的导排措施配合,进行填埋气的污染控制.  相似文献   

3.
垃圾降解过程中淀粉酶活性测定条件优化   总被引:1,自引:1,他引:0  
垃圾填埋场中垃圾降解初期,淀粉酶活性对于垃圾填埋场中碳素的转化过程和垃圾填埋场生物学特性的研究有重要意义,而且也可作为垃圾填埋场稳定化机制研究的重要指标之一.以模拟垃圾填埋系统的垃圾为研究对象,通过正交实验(L25(56))对淀粉酶活性的测定条件进行了优化研究.结果表明:(1)正交实验结果表明,对淀粉酶活性测定的影响大...  相似文献   

4.
文章综述了当前国内外城市生活垃圾填埋场产气控制利用技术研究、利用现状,分析了我国适于实施填埋产沼工程的有利条件,得出国内对填埋场气体利用具有广阔的前景.最后提出了在该领域国内今后主要的研究方向.  相似文献   

5.
填埋垃圾腐殖质组成在填埋场稳定度表征中的应用   总被引:3,自引:0,他引:3  
通过对上海老港生活垃圾填埋场1991-2004年封场单元填埋垃圾腐殖质组成的分析,考察了填埋垃圾中腐殖质组成随填埋龄的变化规律.研究结果表明,填埋垃圾腐殖质的总可提取率和胡敏酸(HA)与富里酸(FA)比值(HA/FA)分别随填埋龄呈线性下降和上升趋势.因此,填埋垃圾总可提取率和HA/FA可用来有效表征填埋场和填埋垃圾稳定度.  相似文献   

6.
文章综述了当前国内外城市生活垃圾填埋场产气控制利用技术研究、利用现状,分析了我国适于实施填埋产沼工程的有利条件,得出国内对填埋场气体利用具有广阔的前景.最后提出了在该领域国内今后主要的研究方向.  相似文献   

7.
洪梅  张博  李卉  王冬 《环境污染与防治》2011,33(3):88-91,95
以国外生活垃圾填埋场对地下水污染的风险评价方法为基础,建立了综合考虑含水层脆弱性及生活垃圾填埋场自身性质的地下水污染风险评价方法,并以北京北天堂垃圾填埋场为例.评价了当地4个生活垃圾填埋场对地下水污染的风险级别.结果表明,生活垃圾填埋场对地下水污染的风险取决于场地规模、防护情况等自身相关参数以及场地所处位置的含水层脆弱...  相似文献   

8.
城市生活垃圾以其特有的分散、巨量、恶臭、肮脏等特性,使环境污染问题显得更加突出、复杂,因此建造垃圾填埋场势在必行。本文以城市垃圾卫生填埋场址的环境影响评价为基础,对垃圾填埋场恶臭气体产生量及其影响强度进行科学的分析与探讨,为垃圾场废气的治理及环境管理提供科学依据。1 垃圾卫生填埋废气产生量分析1.1 废气污染物的产生及特征根据有关实验及文献资料〔1,2〕,填埋场中废气大致由50%~60%的CH4,40%~50%的CO2和一定量的NH3、N2、H2S等物质组成。填埋场产生的废气成份应根据生产过程来确定,在填埋初期两周内氮、氧的含量比…  相似文献   

9.
生活垃圾可持续化填埋   总被引:5,自引:0,他引:5  
通过对中国填埋场现状分析,提出了"可持续填理"的概念.认为生活垃圾填埋场将从单纯的最终处置场所演变为填埋与中转相结合的场所.填埋场的可持续发展也将从两方面得到体现:一为垃圾降解过程及其副产品处理中以能量形式得到利用,另一方面为稳定化后的垃圾及填埋场本身空间得到再一次的利用.  相似文献   

10.
软土地基上生活垃圾卫生填埋场的岩土工程问题与对策   总被引:1,自引:0,他引:1  
生活垃圾卫生填埋场是处理固体废弃物的有效方法之一.尽管国内外学者对与垃圾填埋场相关的许多问题已经做了大量的研究工作,但是对软土地基上填埋场可能引起的一些岩土工程问题研究不多.针对软土地基上的填埋场,分析了填埋场在建设与运营过程将会遇到的若干岩土工程问题.针对填埋场的沉降、稳定性等问题,提出了将垃圾荷载看作变量对地基沉降进行计算和设计.考虑垃圾体的稳定性,分析由于地基破坏而引起的整体稳定性问题和变形引起的衬里系统的内部稳定性问题,研究地基处理的可行性和适应性,并加强填埋过程中的岩土工程监测工作.  相似文献   

11.
Well testing procedures, such as the Tier 3 methodology specified in the U.S. Code of Federal Regulations (CFR) Subtitle D, are commonly used for directly estimating landfill gas (LFG) emissions at municipal solid waste (MSW) landfills. Similar procedures are also used to estimate LFG generation rates for the design of LFG-to-energy projects. These methodologies assume that the LFG generation rate equals the extraction rate of a test gas well within its radius of influence (ROI). The ROI is defined as the distance from the extraction well at which the induced pressure drop is immeasurable by some standard of precision. Based on fluid dynamic principles, Tier 3 and similar methodologies are demonstrated to be incapable of providing reliable estimates of the LFG generation rate. These tests may either over- or underestimate the LFG generation rate depending on the precision with which the ROI is determined, but they will only coincidentally produce an estimate that accurately represents the actual LFG generation rate. Fluid dynamic principles dictate that the actual LFG generation rate can only be estimated if the pneumatic properties of the refuse and cover materials as well as the excess pressure in the refuse caused by LFG generation are known or can be estimated.  相似文献   

12.
The purpose of this paper is to develop a methodology to evaluate the feasibility of using landfill gas (LFG) as a liquefied natural gas (LNG) fuel source for heavy-duty refuse trucks operating on landfills. Using LFG as a vehicle fuel can make the landfills more self-sustaining, reduce their dependence on fossil fuels, and reduce emissions and greenhouse gases. Acrion Technologies Inc. in association with Mack Trucks Inc. developed a technology to generate LNG from LFG using the CO2 WASH process. A successful application of this process was performed at the Eco Complex in Burlington County, PA. During this application two LNG refuse trucks were operated for 600 hr each using LNG produced from gases from the landfill. The methodology developed in this paper can evaluate the feasibility of three LFG options: doing nothing, electricity generation, and producing LNG to fuel refuse trucks. The methodology involved the modeling of several components: LFG generation, energy recovery processes, fleet operations, economic feasibility, and decision-making. The economic feasibility considers factors such as capital, maintenance, operational, and fuel costs, emissions and tax benefits, and the sale of products such as surplus LNG and food-grade carbon dioxide (CO2). Texas was used as a case study. The 96 landfills in Texas were prioritized and 17 landfills were identified that showed potential for converting LFG to LNG for use as a refuse truck fuel. The methodology was applied to a pilot landfill in El Paso, TX. The analysis showed that converting LFG to LNG to fuel refuse trucks proved to be the most feasible option and that the methodology can be applied for any landfill that considers this option.  相似文献   

13.
The surface emission of landfill gas (LFG) was studied to estimate the amount of LFG efflux from solid waste landfills using an air flux chamber. LFG efflux increased as atmospheric temperature increased during the day, and the same pattern for the surface emission was observed for the change of seasons. LFG efflux rate decreased from summer through winter. The average LFG efflux rates of winter, spring and summer were 0.1584, 0.3013 and 0.8597 m3 m−2 h−1 respectively. The total amount of surface emission was calculated based on the seasonal LFG efflux rate and the landfill surface area. From the estimates of LFG generation, it is expected that about 30% of the generated LFG may be released through the surface without extraction process. As forced extraction with a blower proceeded, the extraction well pressure decreased from 1100 to –100 mm H2O, and the LFG surface efflux decreased markedly above 80%. Thus, the utilization of LFG by forced extraction would be the good solution for global warming and air pollution by LFG.  相似文献   

14.
Dramatic increases in the development of oil and natural gas from shale formations will result in large quantities of drill cuttings, flowback water, and produced water. These organic-rich shale gas formations often contain elevated concentrations of naturally occurring radioactive materials (NORM), such as uranium, thorium, and radium. Production of oil and gas from these formations will also lead to the development of technologically enhanced NORM (TENORM) in production equipment. Disposal of these potentially radium-bearing materials in municipal solid waste (MSW) landfills could release radon to the atmosphere. Risk analyses of disposal of radium-bearing TENORM in MSW landfills sponsored by the Department of Energy did not consider the effect of landfill gas (LFG) generation or LFG control systems on radon emissions. Simulation of radon emissions from landfills with LFG generation indicates that LFG generation can significantly increase radon emissions relative to emissions without LFG generation, where the radon emissions are largely controlled by vapor-phase diffusion. Although the operation of LFG control systems at landfills with radon source materials can result in point-source atmospheric radon plumes, the LFG control systems tend to reduce overall radon emissions by reducing advective gas flow through the landfill surface, and increasing the radon residence time in the subsurface, thus allowing more time for radon to decay. In some of the disposal scenarios considered, the radon flux from the landfill and off-site atmospheric activities exceed levels that would be allowed for radon emissions from uranium mill tailings.

Implications: Increased development of hydrocarbons from organic-rich shale formations has raised public concern that wastes from these activities containing naturally occurring radioactive materials, particularly radium, may be disposed in municipal solid waste landfills and endanger public health by releasing radon to the atmosphere. This paper analyses the processes by which radon may be emitted from a landfill to the atmosphere. The analyses indicate that landfill gas generation can significantly increase radon emissions, but that the actual level of radon emissions depend on the place of the waste, construction of the landfill cover, and nature of the landfill gas control system.  相似文献   

15.
Landfill gas (LFG)-to-energy plants in Turkey were investigated, and the LFG-to-energy plant of a metropolitan municipal landfill was monitored for 3 years. Installed capacities and actual gas engine working hours were determined. An equation was developed to estimate the power capacity for LFG-to-energy plants for a given amount of landfilled waste. Monitoring the actual gas generation rates enabled determination of LFG generation factors for Turkish municipal waste. A significant relationship (R = 0.524, p < 0.01, two-tailed) was found between the amounts of landfilled waste and the ambient temperature, which can be attributed to food consumption and kitchen waste generation behaviors influenced by the ambient temperature. However, no significant correlation was found between the ambient temperature and the generated LFG. A temperature buffering capacity was inferred to exist within the landfill, which enables the anaerobic reactions to continue functioning even during cold seasons. The average LFG and energy generation rates were 45 m3 LFG/ton waste landfilled and 0.08 MWhr/ton waste landfilled, respectively. The mean specific LFG consumption for electricity generation was 529 ± 28 m3/MWhr.

Implications: The paper will be useful for local authorities who need to manage municipal waste by using landfills. The paper will also be useful for investors who want to evaluate the energy production potential of municipal wastes and the factors affecting the energy generation process mostly for economical purposes. Landfills can be regarded as energy sources and their potentials need to be investigated. The paper will also be useful for policymakers dealing with energy issues. The paper contains information on real practical data such as engine working hours, equation to estimate the necessary power for a given amount of landfilled waste, and son on.  相似文献   


16.
ABSTRACT

The increase in solid waste generation has been a major contributor to the amount of Greenhouse gases (GHGs) present in the atmosphere. To some extent, a great chunk of these GHGs in the atmosphere is from landfill. This study assesses two theoretical models (LandGEM and Afvalzorg models) to estimate the amount of landfill gas (LFG) emitted from Thohoyandou landfill site. Also, the LFGcost Web model was used to estimate the cost and benefits of the implementation of an LFG utilization technology. The Thohoyandou landfill started operations in the year 2005 and it is proposed to reach its peak at approximately in the year 2026. The LandGEM calculates the mass of landfill gas emission using methane generation capacity, mass of deposited waste, methane generation constant and methane generation rate. Meanwhile, the Afvalzorg model determines the LFG emissions using the Methane correction factor, yearly waste mass disposal, waste composition, Degradation Organic Carbon, methane generation rate constant, LFG recovery efficiency. The study findings indicate that the methane (CH4) and carbon dioxide (CO2) emitted from the landfill estimated from LandGEM will peak in the year 2026 with values of 3517 Mg/year and 9649 Mg/year, respectively. Results from the Afvalzorg model show that CH4 emission will peak in the year 2026 (3336 Mg/year). The LandGEM model showed that the total LFG, CH4 and CO2 emitted from the landfill between 2005 and 2040 are 293239.3 Mg/year, 78325.7 Mg/year and 214908.6 Mg/year, respectively. The simulation from the Afvalzorg model found that the CH4 emitted from the years 2005– 2040 is 74302 Mg/year. The implementation of an LFG utilization technology was economically feasible from consideration of the sales of electricity generated and Certified Emission Reductions (CER) (carbon credits).  相似文献   

17.
Mercury-bearing material has been placed in municipal landfills from a wide array of sources including fluorescent lights, batteries, electrical switches, thermometers, and general waste. Despite its known volatility, persistence, and toxicity in the environment, the fate of mercury in landfills has not been widely studied. The nature of landfills designed to reduce waste through generation of methane by anaerobic bacteria suggests the possibility that these systems might also serve as bioreactors for the production of methylated mercury compounds. The toxicity of such species mandates the need to determine if they are emitted in municipal landfill gas (LFG). In a previous study, we had measured levels of total gaseous mercury (TGM) in LFG in the μg/m3 range in two Florida landfills, and elevated levels of monomethyl mercury (MMM) were identified in LFG condensate, suggesting the possible existence of gaseous organic Hg compounds in LFG. In the current study, we measured TGM, Hg0, and methylated mercury compounds directly in LFG from another Florida landfill. Again, TGM was in the μg/m3 range, MMM was found in condensate, and this time we positively identified dimethyl mercury (DMM) in the LGF in the ng/m3 range. These results identify landfills as a possible anthropogenic source of DMM emissions to air, and may help explain the reports of MMM in continental rainfall.  相似文献   

18.
The removal characteristics of trace compounds and moisture in raw landfill gas (LFG) were studied. The LFG from the extraction well was saturated with water and moisture was eliminated by physical methods including cyclone-type dehydrator and compressor. The moisture removal efficiency of dehydrator and compressor was above 80%. As the moisture contents of LFG decreased, the toxic compounds like aromatics and chlorinated compounds were effectively removed by using the granular activated carbon. The breakthrough time and adsorption capacity of benzene, toluene, and ethyl benzene decreased rapidly when the relative humidity is over 60%. The effect of moisture was more pronounced at lower adsorbate concentrations tested than at higher concentrations. The breakthrough curves for multi-component mixtures show displacement effects. In the course of competing adsorption, adsorbates with strong interaction force to displace weakly bounded substances. Adsorption by activated carbon is in descending order of xylene, ethylbenzene, toluene, tri or tetrachloroethylene, benzene, carbon tetrachloride and chloroform in LFG, respectively.  相似文献   

19.
A performance-based method for evaluating methane (CH4) oxidation as the best available control technology (BACT) for passive management of landfill gas (LFG) was applied at a municipal solid waste (MSW) landfill in central Washington, USA, to predict when conditions for functional stability with respect to LFG management would be expected. The permitted final cover design at the subject landfill is an all-soil evapotranspirative (ET) cover system. Using a model, a correlation between CH4 loading flux and oxidation was developed for the specific ET cover design. Under Washington’s regulations, a MSW landfill is functionally stable when it does not present a threat to human health or the environment (HHE) at the relevant point of exposure (POE), which was conservatively established as the cover surface. Approaches for modeling LFG migration and CH4 oxidation are discussed, along with comparisons between CH4 oxidation and biodegradation of non-CH4 organic compounds (NMOCs). The modeled oxidation capacity of the ET cover design is 15 g/m2/day under average climatic conditions at the site, with 100% oxidation expected on an annual average basis for fluxes up to 8 g/m2/day. This translates to a sitewide CH4 generation rate of about 260 m3/hr, which represents the functional stability target for allowing transition to cover oxidation as the BACT (subject to completion of a confirmation monitoring program). It is recognized that less than 100% oxidation might occur periodically if climate and/or cover conditions do not precisely match the model, but that residual emissions during such events would be de minimis in comparison with published limit values. Accordingly, it is also noted that nonzero net emissions may not represent a threat to HHE at a POE (i.e., a target flux between 8 and 15 g/m2/day might be appropriate for functional stability) depending on the site reuse plan and distance to potential receptors.

Implications: This study provides a scientifically defensible method for estimating when methane oxidation in landfill cover soils may represent the best available control technology for residual landfill gas (LFG) emissions. This should help operators and regulators agree on the process of safely eliminating active LFG controls in favor of passive control measures once LFG generation exhibits asymptotic trend behavior below the oxidation capacity of the soil. It also helps illustrate the potential benefits of evolving landfill designs to include all-soil vegetated evapotranspirative (ET) covers that meet sustainability objectives as well as regulatory performance objectives for infiltration control.  相似文献   


20.
Abstract

The purpose of this paper is to develop a methodology to evaluate the feasibility of using landfill gas (LFG) as a liquefied natural gas (LNG) fuel source for heavy-duty refuse trucks operating on landfills. Using LFG as a vehicle fuel can make the landfills more self-sustaining, reduce their dependence on fossil fuels, and reduce emissions and greenhouse gases. Acrion Technologies Inc. in association with Mack Trucks Inc. developed a technology to generate LNG from LFG using the CO2 WASH process. A successful application of this process was performed at the Eco Complex in Burlington County, PA. During this application two LNG refuse trucks were operated for 600 hr each using LNG produced from gases from the landfill. The methodology developed in this paper can evaluate the feasibility of three LFG options: doing nothing, electricity generation, and producing LNG to fuel refuse trucks. The methodology involved the modeling of several components: LFG generation, energy recovery processes, fleet operations, economic feasibility, and decision-making. The economic feasibility considers factors such as capital, maintenance, operational, and fuel costs, emissions and tax benefits, and the sale of products such as surplus LNG and food-grade carbon dioxide (CO2).

Texas was used as a case study. The 96 landfills in Texas were prioritized and 17 landfills were identified that showed potential for converting LFG to LNG for use as a refuse truck fuel. The methodology was applied to a pilot landfill in El Paso, TX. The analysis showed that converting LFG to LNG to fuel refuse trucks proved to be the most feasible option and that the methodology can be applied for any landfill that considers this option.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号