首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.

The Wells-Riley model invokes human physiological and engineering parameters to successfully treat airborne transmission of infectious diseases. Applications of this model would have high potentiality on evaluating policy actions and interventions intended to improve public safety efforts on preventing the spread of COVID-19 in an enclosed space. Here, we constructed the interaction relationships among basic reproduction number (R0) − exposure time − indoor population number by using the Wells-Riley model to provide a robust means to assist in planning containment efforts. We quantified SARS-CoV-2 changes in a case study of two Wuhan (Fangcang and Renmin) hospitals. We conducted similar approach to develop control measures in various hospital functional units by taking all accountable factors. We showed that inhalation rates of individuals proved crucial for influencing the transmissibility of SARS-CoV-2, followed by air supply rate and exposure time. We suggest a minimum air change per hour (ACH) of 7 h−1 would be at least appropriate with current room volume requirements in healthcare buildings when indoor population number is < 10 and exposure time is < 1 h with one infector and low activity levels being considered. However, higher ACH (> 16 h−1) with optimal arranged-exposure time/people and high-efficiency air filters would be suggested if more infectors or higher activity levels are presented. Our models lay out a practical metric for evaluating the efficacy of control measures on COVID-19 infection in built environments. Our case studies further indicate that the Wells-Riley model provides a predictive and mechanistic basis for empirical COVID-19 impact reduction planning and gives a framework to treat highly transmissible but mechanically heterogeneous airborne SARS-CoV-2.

  相似文献   

2.
The fungi and bacterial levels of the indoor air environments of 77 office buildings were measured in winter and a comparison was made between the buildings with microbe sources in their structures and those without such sources. Penicillium, yeasts, Cladosporium and non-sporing isolates were the commonest fungi detected in the indoor air and in settled dust, in both the mould-damaged and control buildings. Aspergillus ochraceus, Aspergillus glaucus and Stachybotrys chartarium were found only in environmental samples from the mould-damaged buildings. Some other fungi, with growth requiring of water activity, aw, above 0.85, occurred in both the reference and mould-damaged buildings, but such fungi were commoner in the latter type of buildings. The airborne concentrations of Penicillium, Aspergillus versicolor and yeasts were the best indicators of mould damage in the buildings studied. Penicillium species and A. versicolor were also the most abundant fungi in the material samples. This study showed that the fungi concentrations were very low (2–45 cfu m−3 90% of the concentrations being <15 cfu m−3) in the indoor air of the normal office buildings. Although the concentration range of airborne fungi was wider for the mould-damaged buildings (2–2470 cfu m−3), only about 20% of the samples exceeded 100 cfu m−3. The concentrations of airborne bacteria ranged from 12 to 540 cfu m−3 in the control buildings and from 14 to 1550 cfu m−3 in the mould-damaged buildings. A statistical analysis of the results indicated that bacteria levels are generally <600 cfu m−3 in office buildings in winter and fungi levels are <50 cfu m−3. These normal levels are applicable to subarctic climates for urban, modern office buildings when measurements are made using a six-stage impactor. These levels should not be used in evaluations of health risks, but elevated levels may indicate the presence of abnormal microbe sources in indoor air and a need for additional environmental investigations.  相似文献   

3.
Jo WK  Kang JH 《Chemosphere》2006,65(10):1755-1761
The present study evaluated exposure to bioaerosols at three different types of facilities (pet shops, pet clinics, and flower gardens) by measuring the bacterial, fungal and/or PM(10) concentrations in indoor and outdoor air. Regardless of the season, the total bacteria and total fungi were detected for all samples, whereas the fungal genera were not. The bioaerosol concentrations measured in the flower gardens were significantly higher than those of the pet shops and pet clinics. The mean microbial concentrations at the three types of facilities were close to or exceeded the Korean indoor bioaerosol guidelines (800 CFU m(-3)), thus suggesting the need for remedial action regarding indoor microorganisms, in order to reduce the exposure at the surveyed facilities. Another suggestion was that contrary to the airborne microbes, flower gardens are not an important microenvironment for PM(10) (particulate matter 10 microm in aerodynamic diameter) exposure. Two temporal characteristics (seasonal variation and the summer survey period) were important regarding exposure to airborne microbes, depending upon the type of facility surveyed, microbial or sample types, whereas the sampling time of the day was not. The microbial concentration ratio of indoor air to outdoor air depended upon the facility and season.  相似文献   

4.
This study investigated the indoor air quality (IAQ) conditions of carbon dioxide (CO2), carbon monoxide (CO), ozone (O3), formaldehyde (HCHO), total volatile organic compounds (TVOCs), and bio-aerosols (bacteria and fungi) in a respiratory type of medical facility in Chia-Yi County in southern Taiwan. Among those IAQ conditions, the concentrations of CO, O3, and HCHO exceeded the regulation values of the Taiwan Environmental Protection Administration (EPA) mostly in the morning. The concentrations of bacteria and fungi did not exceed the regulation values but still posed potential health and environment problems for workers, patients, and visitors. Therefore, self-made silver-coated zeolite (AgZ) was used as a filter material in air cleaners to remove bio-aerosols in the respiratory care ward (RCW), and the removals were still effective after 120 hr. The cumulative bio-aerosol removals for bacteria and fungi were 900 and 1,088 colony-forming units (CFU) g?1 after 24 hr and were above 3,100 and 2,700 CFU g?1 after 120 hr. From the research results, it is suggested that AgZ filtering could be used as a feasible engineering measure for hospitals to control their bacteria and fungi parameters in IAQ management. Hospitals should maintain their environmental management and monitoring programs and use different engineering measures to improve different IAQ parameters.

Implications: This study investigated the IAQ conditions in the field at a hospital in Chia-Yi County in southern Taiwan. Although concentrations of most parameters were still within the regulation values, the concentrations of CO, O3, and HCHO were partially exceeded. We propose a method using an air cleaner with silver-coated zeolite (AgZ) as a possible engineering measure, and there were effective reductions of bacteria and fungi to lower levels with antibacterial effects after 120 hr. Furthermore, this study implies that hospitals should continuously maintain environmental monitoring programs and adopt optimal engineering measures for different needs.  相似文献   

5.
This study assessed bacterial concentrations in indoor air at 25 underground railway stations in Seoul, Korea, and investigated various related factors including the presence of platform screen doors (PSD), depth of the station, year of construction, temperature, relative humidity, and number of passengers. A total of 72 aerosol samples were collected from all the stations. Concentrations of total airborne bacteria (TAB) ranged from not detected (ND) to 4997 CFU m?3, with an overall geometric mean (GM) of 191 CFU m?3. Airborne bacteria were detected at 23 stations (92%) and Gram-negative bacteria (GNB) were detected at two stations (8%). TAB concentrations of four stations (16%) exceeded 800 CFU m?3, the Korea indoor bio-aerosol guideline. The results of the study showed that TAB concentrations at the stations without PSD showed higher TAB concentrations than those with PSD, though not at statistically significant levels. TAB concentrations of deeper stations revealed significantly higher levels than those of shallower stations. Based on this study, it is recommended that mitigation measures be applied to improve the indoor air quality (IAQ) of underground railway stations in Seoul, with focused attention on deeper stations.  相似文献   

6.
Reducing airborne microorganisms may potentially improve the environment in layer breeding houses. The effectiveness of slightly acidic electrolyzed water (SAEW; pH 5.29–6.30) in reducing airborne microorganisms was investigated in a commercial layer house in northern China. The building had a tunnel-ventilation system, with an evaporative cooling. The experimental area was divided into five zones along the length of the house, with zone 1 nearest to an evaporative cooling pad and zone 5 nearest to the fans. The air temperature, relative humidity, dust concentration, and microbial population were measured at the sampling points in the five zones during the study period. The SAEW was sprayed by workers in the whole house. A six-stage air microbial sampler was used to measure airborne microbial population. Results showed that the population of airborne bacteria and fungi were sharply reduced by 0.71 × 105 and 2.82 × 103 colony-forming units (CFU) m?3 after 30 min exposure to SAEW, respectively. Compared with the benzalkonium chloride (BC) solution and povidone-iodine (PVP-I) solution treatments, the population reductions of airborne fungi treated by SAEW were significantly (P < 0.05) more, even though the three disinfectants can decrease both the airborne bacteria and fungi significantly (P < 0.05) 30 min after spraying.
Implications: There are no effective methods for reducing airborne microbial levels in tunnel-ventilated layer breeding houses; additionally, there is limited information available on airborne microorganism distribution. This research investigated the spatial distribution of microbial population, and the effectiveness of spraying slightly acidic electrolyzed water in reducing microbial levels. The research revealed that slightly acidic electrolyzed water spray was a potential method for reducing microbial presence in layer houses. The knowledge gained in this research about the microbial population variations in the building may assist producers in managing the bird housing environment and engineers in designing poultry houses.  相似文献   

7.

A wide variety of methods have been applied in indoor air to reduce the microbial load and reduce the transmission rate of acute respiratory diseases to personnel in healthcare sittings. In recent months, with the occurrence of COVID-19 pandemic, the role of portable ventilation systems in reducing the load of virus in indoor air has received much attention. The present study delineates a comprehensive up-to-date overview of the available photocatalysis technologies that have been applied for inactivating and removing airborne viruses. The detection methods for identifying viral particles in air and the main mechanisms involving in virus inactivation during photocatalysis are described and discussed. The photocatalytic processes could effectively decrease the load of viruses in indoor air. However, a constant viral model may not be generalizable to other airborne viruses. In photocatalytic processes, temperature and humidity play a distinct role in the inactivation of viruses through changing photocatalytic rate. The main mechanisms for inactivation of airborne viruses in the photocatalytic processes included chemical oxidation by the reactive oxygen species (ROS), the toxicity of metal ions released from metal-containing photocatalysts, and morphological damage of viruses.

  相似文献   

8.
Hwang SH  Park DU  Joo SI  Park HH  Yoon CS 《Chemosphere》2011,85(1):135-139
In this study, we assessed airborne endotoxin levels in university laboratories, hospital diagnostic laboratories, and a biowaste site. We also investigated indoor and outdoor sampling, sampling site, type of ventilation system, presence of open biowaste boxes, weather, and detection of Gram-negative bacteria (GNB). A total of 69 air samples were collected from 11 facilities in three institutions. Average total airborne endotoxin levels ranged from <0.01 to 10.02 EU m−3, with an overall mean of 1.03 EU m−3. Endotoxin levels were high in window-ventilated facilities, in facilities in which GNB were detected; levels were also high when it was rainy (all ps < 0.05). Endotoxin levels were significantly correlated with humidity (r = 0.70, p < 0.01). The presence of HVAC; humidity; and the presence of open biowaste boxes affect endotoxin levels in laboratories.  相似文献   

9.
ABSTRACT

Exposures from indoor environments are a major issue for evaluating total long-term personal exposures to the fine fraction (<2.5μm in aerodynamic diameter) of particulate matter (PM). It is widely accepted in the indoor air quality (IAQ) research community that biocontamination is one of the important indoor air pollutants. Major indoor air biocontaminants include mold, bacteria, dust mites, and other antigens. Once the biocontaminants or their metabolites become airborne, IAQ could be significantly deteriorated. The airborne biocontaminants or their metabolites can induce irritational, allergic, infectious, and chemical responses in exposed individuals.

Biocontaminants, such as some mold spores or pollen grains, because of their size and mass, settle rapidly within the indoor environment. Over time they may become nonviable and fragmented by the process of desiccation. Desiccated nonviable fragments of organisms are common and can be toxic or allergenic, depending upon the specific organism or organism component. Once these smaller and lighter fragments of biological PM become suspended in air, they have a greater tendency to stay suspended. Although some bioaerosols have been identified, few have been quantitatively studied for their prevalence within the total indoor PM with time, or for their affinity to penetrate indoors.

This paper describes a preliminary research effort to develop a methodology for the measurement of nonvi-able biologically based PM, analyzing for mold and ragweed antigens and endotoxins. The research objectives include the development of a set of analytical methods and the comparison of impactor media and sample size, and the quantification of the relationship between outdoor and indoor levels of bioaerosols. Indoor and outdoor air samples were passed through an Andersen nonviable cascade impactor in which particles from 0.2 to 9.0 um were collected and analyzed. The presence of mold, ragweed, and endotoxin was found in all eight size ranges. The presence of respirable particles of mold and pollen found in the fine particle size range from 0.2 to 5.25 um is evidence of fragmentation of larger source particles that are known allergens.  相似文献   

10.
ABSTRACT

Indoor air quality has become a critical issue because people spend most of their time in the indoor environment. The factors that influence indoor air quality are very important to environmental sanitation and air quality improvement. This study focuses on monitoring air quality, colony counts, and bacteria species of the indoor air of a nursing care institution. The regular colony counts in two different wards range from 55 to 600 cfu m?3. Regression analysis results indicate that the bacterial colony counts have close correlation with relative humidity or carbon dioxide (CO2) but not with carbon monoxide (CO) or ozone (O3). Real-time PCR was used to quantify the bacterial pathogens of nosocomial infection, including Acinetobacter baumannii, Citrobacter freundii, Escherichia coli, Klebsiella pneumoniae, and methicillin-sensitive Staphylococcus aureus. The most abundant bacteria species in the air of the nursing care institution is E. coli.
IMPLICATIONS Indoor temperature, humidity, ventilation, accumulation of biological pollutants, and potential infection problems will seriously affect the indoor environments. Studying these factors is important to indoor environmental sanitation and air quality improvements. Results of using real-time PCR to evaluate the bacterial pathogens of nosocomial infection for a nursing care institution in Taiwan reveal that the main bacteria species existing in the indoor air is E. coli.  相似文献   

11.
Exposures from indoor environments are a major issue for evaluating total long-term personal exposures to the fine fraction (<2.5 microm in aerodynamic diameter) of particulate matter (PM). It is widely accepted in the indoor air quality (IAQ) research community that biocontamination is one of the important indoor air pollutants. Major indoor air biocontaminants include mold, bacteria, dust mites, and other antigens. Once the biocontaminants or their metabolites become airborne, IAQ could be significantly deteriorated. The airborne biocontaminants or their metabolites can induce irritational, allergic, infectious, and chemical responses in exposed individuals. Biocontaminants, such as some mold spores or pollen grains, because of their size and mass, settle rapidly within the indoor environment. Over time they may become nonviable and fragmented by the process of desiccation. Desiccated nonviable fragments of organisms are common and can be toxic or allergenic, depending upon the specific organism or organism component. Once these smaller and lighter fragments of biological PM become suspended in air, they have a greater tendency to stay suspended. Although some bioaerosols have been identified, few have been quantitatively studied for their prevalence within the total indoor PM with time, or for their affinity to penetrate indoors. This paper describes a preliminary research effort to develop a methodology for the measurement of nonviable biologically based PM, analyzing for mold and ragweed antigens and endotoxins. The research objectives include the development of a set of analytical methods and the comparison of impactor media and sample size, and the quantification of the relationship between outdoor and indoor levels of bioaerosols. Indoor and outdoor air samples were passed through an Andersen nonviable cascade impactor in which particles from 0.2 to 9.0 microm were collected and analyzed. The presence of mold, ragweed, and endotoxin was found in all eight size ranges. The presence of respirable particles of mold and pollen found in the fine particle size range from 0.2 to 5.25 microm is evidence of fragmentation of larger source particles that are known allergens.  相似文献   

12.
Bacterial cell envelope components are widely distributed in airborne dust, where they act as inflammatory agents causing respiratory symptoms. Measurements of these agents and other environmental factors are assessed in two elementary schools in a southeastern city in the United States. Muramic acid (MA) was used as a marker for bacterial peptidoglycan (PG), and 3-hydroxy fatty acids (3-OH FAs) were used as markers for Gram-negative bacterial lipopolysaccharide (LPS). Culturable bacteria were collected using an Andersen sampler with three different culture media. In addition, temperature (T), relative humidity (RH), and CO2 were continuously monitored. Concentrations of airborne MA and 3-OH FAs were correlated with total suspended particulate (TSP) levels. Outdoor MA (mean = 0.78-1.15 ng/m3) and 3-OH FA levels (mean = 2.19-2.18 ng/m3) were similar at the two schools. Indoor concentrations of airborne MA and 3-OH FAs differed significantly between schools (MA: 1.44 vs. 2.84 ng/m3; 3-OH FAs: 2.96 vs. 4.57 ng/m3). Although indoor MA levels were low, they were significantly related to teachers' perception of the severity of indoor air quality (IAQ) problems in their classrooms. Concentrations of CO2 correlated significantly with all bacteria measurements. Because CO2 levels were related to the number of occupants and the ventilation rates, these findings are consistent with the hypothesis that the children and teachers are sources of bacterial contamination. Many culturable bacteria present in indoor air are opportunistic organisms that can be infectious for compromised individuals, while both culturable and nonculturable bacterial remnants act as environmental toxins for both healthy and compromised individuals. Measuring the "total bacteria load" would be most accurate in assessing the biotoxicity of indoor air. Chemical analysis of MA and 3-OH FAs, when coupled with the conventional culture method, provides complementary information for assessing biocontamination of indoor air.  相似文献   

13.
14.
Abstract

The purpose of this study was to assess the effectiveness of a new generation of high-volume, ceiling-mounted high-efficiency particulate air (HEPA)-ultraviolet (UV) air filters (HUVAFs) for their ability to remove or inactivate bacterial aerosol. In an environmentally controlled full-scale laboratory chamber (87 m3), and an indoor therapy pool building, the mitigation ability of air filters was assessed by comparing concentrations of total bacteria, culturable bacteria, and airborne endotoxin with and without the air filters operating under otherwise similar conditions. Controlled chamber tests with pure cultures of aerosolized Mycobacterium parafortuitum cells showed that the HUVAF unit tested provided an equivalent air-exchange rate of 11 hr?1. Using this equivalent air-exchange rate as a design basis, three HUVAFs were installed in an indoor therapy pool building for bioaerosol mitigation, and their effectiveness was studied over a 2-year period. The HUVAFs reduced concentrations of culturable bacteria by 69 and 80% during monitoring periods executed in respective years. The HUVAFs reduced concentrations of total bacteria by 12 and 76% during the same monitoring period, respectively. Airborne endotoxin concentrations were not affected by the HUVAF operation.  相似文献   

15.
Aerobiological studies in commuting trains in northern Taiwan were carried out from August, 2007 until July, 2008. Two six-stage (>7 μm, 4.7~7 μm, 3.3~4.7 μm, 2.1~3.3 μm, 1.1~2.1 μm, 0.65~1.1 μm) cascade impactors of 400 orifices were used to collect viable bacteria and fungi, respectively. The levels of carbon monoxide (CO), carbon dioxide (CO2), formaldehyde (HCHO), temperature, and relative humidity in the commuting trains were also recorded during the sampling period. Results show that bacterial concentrations ranged from 25 to 1530 CFU m?3, and averaged 417 CFU m?3. The fungal concentrations ranged from 45 to 1906 CFU m?3, and averaged 413 CFU m?3. Additionally, the highest fractions occurred in the fifth stage (1.1~2.1 μm) for both bacteria and fungi. The respirable fractions, Rb and Rf, for bacteria and fungi were 62.8% and 81.4%, respectively, which are higher than those in other studies. Furthermore, the bacterial concentration reached its highest level in autumn, and its lowest level in winter. However, the fungal concentration was highest in spring and lowest in winter. Though the total bacterial or fungal concentration did not exceed the recommendation standard in Taiwan, the relatively high respirable fraction in commuting trains probably implies a higher adverse health risk for sensitive commuters. This study further conducted multiple regression analysis to determine the relationship of various stage fractions of airborne bacteria and fungi with indoor air pollutants (CO and HCHO) and environmental parameters (CO2, temperature, and relative humidity). The correlation coefficients of multiple regression analysis for total bacteria and fungi concentrations with indoor air pollutants and environmental parameters were 0.707 (p < 0.00376) and 0.612 (p < 0.00471), respectively. There are currently no formally regulated laws for indoor air quality (IAQ) in Taiwan, and this preliminary study can provide references to the Taiwan government on IAQ management.  相似文献   

16.

Recently, an outbreak of a novel human coronavirus which is referred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (COVID-19) by the World Health Organization (WHO) was identified in Wuhan, China. To help combat the pandemic, a systematic review (SR) was performed to collect all available studies concerning inactivation methods, environmental survival, and control and prevention strategies. A comprehensive literature survey yielded 42 eligible studies which included in the SR. The results confirmed that the WHO recommended two alcohol-based hand rub formulations (ethanol 70–95% and 2-propanol 70–100%) had an efficient virucidal activity in less than 60 s by more and equal 4 log10 (≥ 99.99) approximately and could be used for disinfection in public health and health-care facilities. The findings indicated that SARS-CoV-1 and SARS-CoV-2 can survive under different environmental conditions between 4 and 72 h approximately. The results also demonstrate that temperature and relative humidity are important factors in the survival of SARS-CoV-2. The main strategies recommended by the WHO to avoid contracting SARS-CoV-2 are hand washing several times in the day and maintaining social distancing with others. It is important to note that the more studies require addressing, the more possible airborne transmission due to the survival of SARS-CoV-2 in aerosols for 3 h approximately. We hope that the results of the present SR can help researchers, health decision-makers, policy-makers, and people for understanding and taking the proper behavior to control and prevent further spread of SARS-CoV-2.

  相似文献   

17.
Jo WK  Seo YJ 《Chemosphere》2005,61(11):1570-1579
One major deficiency in linking environmental exposure to health effects is the current lack of data on environmental exposure. Therefore, to address this issue, the present study measured the bacterial and fungal concentrations in the indoor and outdoor air from two types of recreation facility (42 bars and 41 Internet cafes), 44 classrooms at 11 elementary schools, and 20 homes under uncontrolled environmental conditions during both summer and winter. No major environmental problems were reported at the four microenvironments being investigated during the entire study period. Bacteria and fungi were found in all the air samples, and the environmental occurrence of individual fungi was in the order of Cladosprium, Penicillium, Aspergillus, and Alternaria. The six parameters surveyed in the present study were all found to influence the indoor and outdoor bioaerosol levels: microenvironment type, sampling time in elementary school classrooms, agar type for measuring the fungal species, seasonal variation, facility location, and summer survey periods. The indoor and outdoor air concentrations of bacteria and fungi found in this study were comparable to those in other reports, with GM values for the total bacteria and total fungi between 10 and 103 colony-forming units per cubic meter of air (CFU m−3). The fungal concentrations found at most of the indoor environments fell within the specified guidelines of the American Conference of Government Industrial Hygienists (ACGIH), between 100 and 1000 CFU m−3 for the total fungi. However, the indoor bioaerosol concentrations at most of the surveyed environments exceeded the Korean indoor bioaerosol guideline (800 CFU m−3). Consequently, the current findings suggest the need for reducing strategy for indoor microorganisms at the surveyed microenvironments.  相似文献   

18.
Any risk assessment of moisture-damaged buildings requires an accurate characterization of the factors contributing to the human exposure. In this study, the size distributions of indoor air viable fungi and bacteria and average mean diameters of the most common fungi in school buildings were determined. One special focus was to analyze how the microbial size distributions are affected by the building frame (either wooden or concrete) and moisture damage in the building. The study was performed in 32 school buildings classified as moisture-damaged (index) and non-damaged (reference) schools according to technical building investigations. Sampling for indoor air microbes was carried out using a cascade impactor that collects particles on six stages (range from 0.65 to >7 μm) according to their aerodynamic diameters. Both wooden and concrete schools had their highest fungal levels in the size range of 1.1–4.7 μm. However, the concentrations of fungi in all size classes were higher in wooden schools than in concrete schools. Moisture damage-associated differences in size distribution, in the particle size range of 1.1–2.1 μm, were seen in concrete schools but not in wooden schools. In general, the average geometric mean diameter (dg,ave) of total viable fungi was smaller in wooden schools than in concrete schools, and smaller in index schools of both construction types than in their reference schools. Variation in particle size, however, by genus was observed. No differences in particle size distributions of viable airborne bacteria were found. Our results on the dependency of the particle size on the building type and presence of moisture damage provide an interesting point to be considered in assessing the complex issue of indoor-related bioaerosol exposures.  相似文献   

19.
Spraying slightly acidic electrolyzed water (SAEW) has been considered as a potential approach to reduce airborne bacteria in laying-hen houses. In this study, the effects of spraying SAEW on airborne bacterial reduction were investigated in a laying-hen house as compared with using diluted didecyl dimethyl ammonium bromide (DDAB). Averaged air temperature reduced by approximate 1 °C and average relative humidity increased by 3% at a stable ventilation rate (about 2.5 m3 hr?1 per bird) in the laying-hen house 30 min after spraying (120 mL m?2). Compared with the control without spraying, the airborne bacterial concentration was reduced by about 0.70 and 0.37 log10 colony-forming units (CFU) m?3 in the 4 hr after spraying 120 mL m?2 SAEW (available chlorine concentration [ACC] of 156 mg L?1) and diluted DDAB (active compound concentration of 167 mg L?1), respectively. Compared with spraying diluted DDAB, spraying SAEW was determined to be more effective for reducing airborne bacterial in laying-hen houses. The effects of spraying SAEW and diluted DDAB on airborne bacterial reduction in the laying-hen house increased with the increasing available chlorine concentrations for SAEW (156, 206, 262 mg L?1) and increasing active compound concentrations for diluted DDAB (167, 333, 500 mg L?1), respectively. Spraying SAEW and diluted DDAB with two levels of spraying volumes (120 and 90 mL m?2) both showed significant differences on airborne bacterial reduction in the laying-hen house (P < 0.05).

Implications: It is difficult to effectively reduce airborne bacteria in laying-hen houses. This work describes the application of spraying slightly acidic electrolyzed water as a new approach for reducing airborne bacteria in a laying-hen house. The effects of active compound concentrations and spray volumes on the airborne bacterial reductions by spraying SAEW were also investigated. This study provided a new effective and environmentally friendly approach to reduce the airborne bacteria in poultry houses, contributing to bird housing environment management and improving bird health.  相似文献   

20.
In this study, the culturability of indoor and outdoor airborne fungi was determined through long-term sampling (24-h) using a Button Personal Inhalable Aerosol Sampler. The air samples were collected during three seasons in six Cincinnati area homes that were free from moisture damage or visible mold. Cultivation and total microscopic enumeration methods were employed for the sample analysis. The geometric means of indoor and outdoor culturable fungal concentrations were 88 and 102 colony-forming units (CFU) m(-3), respectively, with a geometric mean of the I/O ratio equal to 0.66. Overall, 26 genera of culturable fungi were recovered from the indoor and outdoor samples. For total fungal spores, the indoor and outdoor geometric means were 211 and 605 spores m(-3), respectively, with a geometric mean of I/O ratio equal to 0.32. The identification revealed 37 fungal genera from indoor and outdoor samples based on the total spore analysis. Indoor and outdoor concentrations of culturable and total fungal spores showed significant correlations (r = 0.655, p<0.0001 and r = 0.633, p<0.0001, respectively). The indoor and outdoor median viabilities of fungi were 55% and 25%, respectively, which indicates that indoor environment provides more favorable survival conditions for the aerosolized fungi. Among the seasons, the highest indoor and outdoor culturability of fungi was observed in the fall. Cladosporium had a highest median value of culturability (38% and 33% for indoor and outdoor, respectively) followed by Aspergillus/Penicillium (9% and 2%) among predominant genera of fungi. Increased culturability of fungi inside the homes may have important implications because of the potential increase in the release of allergens from viable spores and pathogenicity of viable fungi on immunocompromised individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号