首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以实际印染厂二级生化出水为处理对象,以COD、色度、UV254为评价指标,采用先絮凝沉淀后臭氧氧化及先臭氧氧化后絮凝沉淀2种工艺分别进行印染废水深度处理实验。结果表明,当进水水质为:COD 80~120 mg/L、UV2540.30~0.70、色度72~84倍,在絮凝剂投加量为13.5 mg/L、臭氧投加量为16 mg/L、氧化反应30 min时,先絮凝沉淀后臭氧氧化工艺出水的COD、UV254、色度平均值分别为45.1 mg/L和0.11、4倍;在臭氧投加量为16 mg/L、氧化反应30 min、絮凝剂投加量为10.1 mg/L时,先臭氧氧化后絮凝沉淀工艺出水的COD、UV254、色度分别为45 mg/L和0.10、4倍,说明2种工艺均是可行的,且先臭氧氧化后絮凝沉淀为较优工艺。  相似文献   

2.
臭氧作为强氧化剂对有机物的氧化反应有选择性,能很快氧化分解木质素等发色有机物,中试研究了臭氧投加量、接触时间等对造纸废水生化处理出水深度处理的影响。结果表明:臭氧投加量为63.47~243.49mg/L时,COD、254nm紫外光下的吸光度(UV254)和色度去除率分别为22.61%~46.67%、22.35%~69.09%及55%~93%,其中色度有较高的去除率,即使在臭氧投加量仅为63.47mg/L时色度去除率也达到约55%;在接触时间为0.62~2.53h时,随着接触时间的延长,COD、UV254及色度去除率随之增加,而1.10h后色度去除率增加不多。以深度脱色为目标,完成了5 000m3/d的工程应用,臭氧相对投加率为0.20~0.50mg(以每毫克COD计)时,色度去除率为55.0%~84.0%。  相似文献   

3.
采用臭氧/过氧化氢氧化技术对活性红X-3B模拟染料废水进行处理。考察和优化了连续曝气实验条件下臭氧投加流量、反应时间、初始pH、过氧化氢投加量等因素对活性染料废水处理效果的影响。结果表明,最佳操作参数为反应时间60min、pH 10.25、臭氧投加量250mg/(L·h)、过氧化氢投加量36mg/L。在此条件下,COD去除率达到70.09%,色度去除率达到99.95%,BOD5/COD由初始的0.04提高到0.32,废水可生化性得到较好改善。  相似文献   

4.
引黄水臭氧预氧化强化混凝处理及安全性研究   总被引:1,自引:0,他引:1  
分析了山西省太原段的引黄水水质,探讨了臭氧预氧化强化混凝处理引黄水的适用性、处理效果及安全性。结果表明,引黄水原水中的COD含量较高,而Br-未检出,提示可以采用臭氧预氧化强化混凝处理;总体来说,臭氧低投加量(0.52~0.98mg/L)时的助凝效果更为显著,在不同的聚合氯化铝(PAC)投加量下的除浊效果都优于常规混凝处理;单独投加臭氧时,随着臭氧投加量的增加,水体紫外吸光度(UV254)逐渐降低,当臭氧投加量为2.52mg/L时,UV254去除率为44%;虽然常规混凝处理即可控制出水的浊度和UV254,但由于混凝剂投加量大,综合效益较低,而臭氧预氧化在一定程度上能起到助凝作用,也能对水体UV254起到良好的控制作用;从甲醛、BrO3-产生量控制的角度来看,太原段引黄水水质适用臭氧预氧化强化混凝处理,安全性较好。  相似文献   

5.
用臭氧氧化处理镀镍漂洗废水中的有机物,主要考察pH、臭氧投加量、废水初始COD浓度、温度等因素对处理效果的影响,并对反应机理进行初步的探讨.实验结果表明,废水的COD去除率随pH的增大而升高,比较适宜的pH为6~7;适当地增加臭氧投加量有利于提高COD去除率;在一定温度范围(15~35℃)内,提高反应温度有利于废水中有机物的降解;当臭氧投加量为20 mg/(min·L),对于初始COD为56 mg/L、pH 6.5的实际镀镍漂洗废水,在25 ℃的条件下氧化100min,出水COD降至10mg/L,COD去除率达到82%;在臭氧氧化镀镍漂洗废水的反应中,部分有机物的降解是在Ni2 的催化下由臭氧分解生成氧化能力更强的自由基来完成.臭氧氧化可作为镀镍漂洗废水处理回用的预处理工艺.  相似文献   

6.
采用臭氧氧化法对生活垃圾焚烧厂沥滤液经生化处理后的废水(称沥滤液生化处理水)进行深度处理。实验结果表明,COD降解速率随废水pH的提高明显增加,其中pH=10.5时的COD降解速率常数约为pH=4时的5.8倍。在臭氧投量为52.92 mg/min、pH=10.5的条件下反应70 min后,UV254和COD去除率分别达到84.7%和59.3%。向反应体系投加叔丁醇后COD去除率下降了约15%,由羟自由基氧化去除的COD占总COD去除量的26.7%。毒性实验结果表明,沥滤液生化处理水的96 h-EC50为38%,经臭氧氧化进一步处理后出水的96 h-EC50为77%,表明经臭氧深度处理后沥滤液生化处理水的毒性明显降低。  相似文献   

7.
臭氧强化光催化对垃圾渗滤液的深度处理   总被引:2,自引:0,他引:2  
用臭氧强化光催化工艺对垃圾渗滤液进行了深度处理,优化了工艺参数,对比了最佳工艺条件下各时间段的出水指标.该工艺在催化剂投加量0.5 g/L,pH值8.45左右,O3流量0.4 L/min,O3浓度16.8 mg/L,初始COD浓度430 mg/L时最佳,COD和UV254的去除率均在60%以上;最佳工艺条件下1.0 h出水的BOD5提高了75.42%,2.0 h出水BOD5/COD从初始的0.05升高至0.23.结果表明,臭氧强化光催化工艺不仅可以提高处理能力,还有效地改善了出水的可生化性.  相似文献   

8.
采用O_3/H_2O_2协同氧化处理石油化工行业反渗透浓水,考察了反应时间、初始pH、H_2O_2投加量和H_2O_2投加方式对O_3/H_2O_2协同氧化反渗透浓水的影响。结果表明,在初始pH为6.49、H_2O_2投加量为80mg/L、分4次平均投加(开始时投加1次,之后每隔10min投加1次)、反应时间为35min的最优化条件下,处理后的反渗透浓水COD、BOD5、总有机碳(TOC)质量浓度分别降低至48.9、10.2、25.70mg/L,均达到《石油化学工业污染物排放标准》(GB 31571—2015)的直接排放标准。COD、UV254、TOC的去除率分别达到83.4%、68.0%、88.3%。  相似文献   

9.
臭氧降解选矿药剂丁基黄药的实验研究   总被引:3,自引:2,他引:1  
张萌  柳建设 《环境工程学报》2011,5(12):2712-2716
采用臭氧氧化去除水中的丁基黄药,研究了臭氧氧化丁基黄药的影响因素,考察了反应溶液的初始pH值、臭氧投加量、反应物初始浓度、自由基抑制剂对丁基黄药降解率的影响。结果表明,pH值、臭氧投加量越高,丁基黄药降解率越高,随着丁基黄药初始浓度的升高,丁基黄药的去除效率会下降,但绝对去除量会升高。碳酸氢根和叔丁醇能在一定程度上降低丁基黄药的降解效率。同时讨论了体系中COD、TOC、UV254、pH和电导率的变化情况,结果表明臭氧氧化很难将体系中的COD和TOC大幅度降低,反应体系pH随氧化时间的增加而降低的,GC—MS分析表明,丁基黄药氧化的臭氧化产物为醇类和羧酸类物质。  相似文献   

10.
采用UV/Fenton法对橡胶促进剂废水进行预处理.当原水COD约为3000 mg/L时,COD去除率可达65%以上,并得到最佳操作条件为:H2O2投加量为8 mL/L,Fe2 投加量为0.8 g/L,反应时间为30 min,pH=5;同时得到Fenton试剂处理该废水的最佳条件为:H2O2投加量为10 mL/L,Fe2 投加量为0.966 g/L,反应时间为30 min,pH=5;单独UV作用的最佳工艺条件为:反应时间为20 min,pH=5;并就3种处理方法进行了比较,发现UV对Fenton试剂处理橡胶促进剂废水具有一定促进作用.反应前后的紫外光谱说明,经UV/Fenton或Fenton反应后原水中的苯胺、硝基苯等物质已得到了彻底的氧化分解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号