首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
States rely upon photochemical models to predict the impacts of air quality attainment strategies, but the performance of those predictions is rarely evaluated retrospectively. State implementation plans (SIPs) developed to attain the 1997 U.S. standard for fine particulate matter (PM2.5; denoting particles smaller than 2.5 microns in diameter) by 2009 provide the first opportunity to assess modeled predictions of PM2.5 reductions at the state level. The SIPs were the first to rely upon a speciated modeled attainment test methodology recommended by the U.S. Environmental Protection Agency to predict PM2.5 concentrations and attainment status. Of the 23 eastern U.S. regions considered here, all but one achieved the 15 μg/m3 standard by 2009, and the other achieved it the following year, with downward trends sustained in subsequent years. The attainment tests predicted 2009 PM2.5 design values at individual monitors with a mean bias of 0.38 μg/m3 and mean error of 0.68 μg/m3, and were 95% accurate in predicting whether a monitor would achieve the standard. All of the errors were false alarms, in which the monitor observed attainment after a modeled prediction of an exceedance; in these cases, the states used weight-of-evidence determinations to argue that attainment was likely. Overall, PM2.5 concentrations at monitors in the SIP regions declined by 2.6 μg/m3 from 2000–2004 to 2007–2009, compared with 1.6 μg/m3 in eastern U.S. regions originally designated as attainment. Air quality improvements tended to be largest at monitors that were initially the most polluted.
ImplicationsAs states prepare to develop plans for attaining a more stringent standard for fine particulate matter, this retrospective analysis documents substantial and sustained air quality improvements achieved under the previous standard. Significantly larger air quality improvements in regions initially designated nonattainment of the 1997 standard indicate that this status prompted heightened control efforts. The speciated modeled attainment test is found to be accurate and slightly conservative in predicting particulate concentrations for the cases considered here, providing confidence for its use in upcoming attainment plans.  相似文献   

2.
The U.S. Environmental Protection Agency in 1997 revised the 1-hr ozone (O3) National Ambient Air Quality Standard (NAAQS) to one based on an 8-hr average, resulting in potential nonattainment status for substantial portions of the eastern United States. The regulatory process provides for the development of a state implementation plan that includes a demonstration that the projected future O3 concentrations will be at or below the NAAQS based on photochemical modeling and analytical techniques. In this study, four photochemical modeling systems, based on two photochemical models, Community Model for Air Quality and the Comprehensive Air Quality Model with extensions, and two emissions processing models, Sparse Matrix Optimization Kernel for Emissions and Emissions Modeling System, were applied to the eastern United States, with emphasis on the northeastern Ozone Transport Region in terms of their response to oxides of nitrogen and volatile organic carbon-focused controls on the estimated design values. With the 8-hr O3 NAAQS set as a bright-line test, it was found that a given area could be termed as being in or out of attainment of the NAAQS depending upon the modeling system. This suggests the need to provide an estimate of model-to-model uncertainty in the relative reduction factor (RRF) for a better understanding of the uncertainty in projecting the status of an area's attainment. Results indicate that the model-to-model differences considered in this study introduce  相似文献   

3.
Abstract

The U.S. Environmental Protection Agency in 1997 revised the 1-hr ozone (O3) National Ambient Air Quality Standard (NAAQS) to one based on an 8-hr average, resulting in potential nonattainment status for substantial portions of the eastern United States. The regulatory process provides for the development of a state implementation plan that includes a demonstration that the projected future O3 concentrations will be at or below the NAAQS based on photochemical modeling and analytical techniques.

In this study, four photochemical modeling systems, based on two photochemical models, Community Model for Air Quality and the Comprehensive Air Quality Model with extensions, and two emissions processing models, Sparse Matrix Optimization Kernel for Emissions and Emissions Modeling System, were applied to the eastern United States, with emphasis on the northeastern Ozone Transport Region in terms of their response to oxides of nitrogen and volatile organic carbon-focused controls on the estimated design values. With the 8-hr O3 NAAQS set as a bright-line test, it was found that a given area could be termed as being in or out of attainment of the NAAQS depending upon the modeling system. This suggests the need to provide an estimate of model-to-model uncertainty in the relative reduction factor (RRF) for a better understanding of the uncertainty in projecting the status of an area's attainment. Results indicate that the model-to-model differences considered in this study introduce an uncertainty of the future estimated design value of ~3–5 ppb.  相似文献   

4.
The updated regulatory framework for demonstrating that future 8-hr ozone (O3) design values will be at or below the National Ambient Air Quality Standards (NAAQS) provides guidelines for the development of a State Implementation Plan (SIP) that includes methods based on photochemical modeling and analytical techniques. One of the suggested approaches is the relative reduction factor (RRF) for estimating the efficacy of emission reductions. In this study, the sensitivity of model-predicted responses towards emission reductions to the choice of meteorology and chemical mechanisms was examined. While the different modeling simulations generally were found to be in agreement on whether predicted future-year design values would be above or below the NAAQS for 8-hr O3 at a majority of the monitoring locations in the eastern United States, differences existed for a small percentage of monitors (approximately 6.4%). Another issue investigated was the ability of the attainment demonstration procedure to predict changes in monitored O3 design values. A retrospective analysis was performed by comparing predicted O3 design values from model simulations using emission estimates for 1996 and 2001 with monitored O3 design values for 2001. Results indicated that an average gross error of approximately 5 ppb was present between modeled and observed design values and that, at approximately 27% of all sites, model-predicted and observed design values disagreed as to whether the design value was above or below the NAAQS. Retrospective analyses such as the one presented in this study can provide valuable insights into the strengths and limitations of modeling and analysis techniques used to predict future design values over time periods of a decade or more for the purpose of developing SIPs. Furthermore, such analyses could provide avenues for improvement and added confidence in the use of the RRF approach for addressing attainment of the NAAQS.  相似文献   

5.
ABSTRACT

This paper introduces an integrated observational-modeling approach to transform the deterministic nature of attainment demonstrations of the National Ambient Air Quality Standard (NAAQS) into the probabilistic framework. While the methods presented here can be used to address any air quality standard that is based on extreme values, this paper focuses on the application to the 1-hr and 8-hr NAAQS for ozone. Extreme value statistics and resampling techniques are applied to estimate the probability of exceeding the NAAQS for both 1-hr and 8-hr ozone concentrations. Within the integrated observation-modeling analysis approach, we show that the model-to-model differences in the predicted responses to emission reductions are smaller than the model-to-model differences in predicted absolute ozone concentrations. We illustrate that the emission reductions stemming from a real-world emission control strategy would substantially reduce the probability of exceeding the NAAQS over a large portion of the eastern United States, especially for the 8-hr average ozone concentrations.  相似文献   

6.
This paper introduces an integrated observational-modeling approach to transform the deterministic nature of attainment demonstrations of the National Ambient Air Quality Standard (NAAQS) into the probabilistic framework. While the methods presented here can be used to address any air quality standard that is based on extreme values, this paper focuses on the application to the 1-hr and 8-hr NAAQS for ozone. Extreme value statistics and resampling techniques are applied to estimate the probability of exceeding the NAAQS for both 1-hr and 8-hr ozone concentrations. Within the integrated observation-modeling analysis approach, we show that the model-to-model differences in the predicted responses to emission reductions are smaller than the model-to-model differences in predicted absolute ozone concentrations. We illustrate that the emission reductions stemming from a real-world emission control strategy would substantially reduce the probability of exceeding the NAAQS over a large portion of the eastern United States, especially for the 8-hr average ozone concentrations.  相似文献   

7.
Ozone is an ubiquitous air pollutant that affects both human health and vegetation. There is concern about the number of hours human populations in nonattainment areas in the United States are exposed to levels of 03 at which effects have been observed. As improvement in air quality is achieved, it is possible that 03 control strategies may produce distributions of 1-h 03 concentrations that result in different diurnal profiles that produce greater potential exposures to 03 at known effects levels for multiple hours of the day. These concerns have prompted new analysis of aerometric data. In this analysis, the change in the seasonally averaged diurnal pattern was investigated as changes in 03 levels occurred. For the data used in this analysis, 25 of the 36 sites that changed compliance status across years showed no statistically significant change in the shape of the average diurnal profile (averaged by 03 season). For 71 percent (10 out of 14) of the sites in southern California and Dallas-Fort Worth, Texas, that showed improvement in O3 levels (i.e., reductions in the number of exceedances over the years), but still remained in nonattainment, a statistically significant change in the shape of the seasonally averaged diurnal profile occurred. Based on the results obtained in this study, the evaluation of diurnal patterns may be useful for identifying the influence of changes in emission levels versus meteorological variation on attainment status. Using data from the southern California and Dallas-Fort Worth sites, which showed improvements in 03 levels, changes were observed in the seasonally averaged diurnal profiles. On the other hand, for the sites moving between attainment and nonattainment status, such a change in shape was generally not observed and it was possible that meteorology played a more important role than changes in emission levels relative to attainment status.  相似文献   

8.
To comply with the federal 8-hr ozone standard, the state of Texas is creating a plan for Houston that strictly follows the U.S. Environmental Protection Agency's (EPA) guidance for demonstrating attainment. EPA's attainment guidance methodology has several key assumptions that are demonstrated to not be completely appropriate for the unique observed ozone conditions found in Houston. Houston's ozone violations at monitoring sites are realized as gradual hour-to-hour increases in ozone concentrations, or by large hourly ozone increases that exceed up to 100 parts per billion/hr. Given the time profiles at the violating monitors and those of nearby monitors, these large increases appear to be associated with small parcels of spatially limited plumes of high ozone in a lower background of urban ozone. Some of these high ozone parcels and plumes have been linked to a combination of unique wind conditions and episodic hydrocarbon emission events from the Houston Ship Channel. However, the regulatory air quality model (AQM) does not predict these sharp ozone gradients. Instead, the AQM predicts gradual hourly increases with broad regions of high ozone covering the entire Houston urban core. The AQM model performance can be partly attributed to EPA attainment guidance that prescribes the removal in the baseline model simulation of any episodic hydrocarbon emissions, thereby potentially removing any nontypical causes of ozone exceedances. This paper shows that attainment of all monitors is achieved when days with observed large hourly variability in ozone concentrations are filtered from attainment metrics. Thus, the modeling and observational data support a second unique cause for how ozone is formed in Houston, and the current EPA methodology addresses only one of these two causes.  相似文献   

9.
Abstract

Understanding ozone response to its precursor emissions is crucial for effective air quality management practices. This nonlinear response is usually simulated using chemical transport models, and the modeling results are affected by uncertainties in emissions inputs. In this study, a high ozone episode in the southeastern United States is simulated using the Community Multiscale Air Quality (CMAQ) model. Uncertainties in ozone formation and response to emissions controls due to uncertainties in emission rates are quantified using the Monte Carlo method. Instead of propagating emissions uncertainties through the original CMAQ, a reduced form of CMAQ is formulated using directly calculated first- and second-order sensitivities that capture the nonlinear ozone concentration-emission responses. This modification greatly reduces the associated computational cost. Quantified uncertainties in modeled ozone concentrations and responses to various emissions controls are much less than the uncertainties in emissions inputs. Average uncertainties in modeled ozone concentrations for the Atlanta area are less than 10% (as measured by the inferred coefficient of variance [ICOV]) even when emissions uncertainties are assumed to vary between a factor of 1.5 and 2. Uncertainties in the ozone responses generally decrease with increased emission controls. Average uncertainties (ICOV) in emission-normalized ozone responses range from 4 to 22%, with the smaller being associated with controlling of the relatively certain point nitrogen oxide (NOx) emissions and the larger resulting from controlling of the less certain mobile NOx emissions. These small uncertainties provide confidence in the model applications, such as in performance evaluation, attainment demonstration, and control strategy development.  相似文献   

10.
ABSTRACT

Because the U. S. Environmental Protection Agency (EPA) has changed the National Ambient Air Quality Standards (NAAQS) for ambient particulate matter (PM), there is a great deal of interest in determining recent PM trends. This paper examines trends in PM10 (i.e., particulate matter less than 10 micrometers in diameter) for areas of the United States based on their attainment status—for PM10 and ozone nonattainment and attainment areas. The analysis also focuses on urban, suburban, and rural areas, and eastern and western areas. The time period of evaluation is from 1988 through 1995. To shed further light on the ambient PM10 trends, trends in ambient SO2, NO2, and volatile organic compounds (VOCs) are also analyzed. Finally, trends in emission inventories of SO2, NOx, VOCs, and PM10 are evaluated. Results of the analysis show that widespread and similar reductions in PM10 levels have occurred over the last seven years. Annual reductions range from 3.0% to 3.8%, with the greatest reductions coming in PM10 nonattainment areas, but with very significant reductions also in PM10 attainment areas, ozone attainment areas, and rural areas. The widespread reductions appear to be due to a set of controls or common factors that are having a fairly uniform effect in all of the areas. The consistency of the reductions in different areas suggests that the reductions may also be primarily in the fine particles (i.e., those less than 2.5 micrometers in diameter, or PM2.5), which are more readily transported than coarse particles.  相似文献   

11.
Two thermodynamic equilibrium models were applied to estimate changes in mean airborne fine particle (PM2.5) mass concentrations that could result from changes in ambient concentrations of sulfate, nitric acid, or ammonia in the southeastern United States, the midwestern United States, and central California. Pronounced regional differences were found. Southeastern sites exhibited the lowest current mean concentrations of nitrate, and the smallest predicted responses of PM2.5 nitrate and mass concentrations to reductions of nitric acid, which is the principal reaction product of the oxidation of nitrogen dioxide (NO2) and the primary gas-phase precursor of fine particulate nitrate. Weak responses of PM2.5 nitrate and mass concentrations to changes in nitric acid levels occurred even if sulfate concentrations were half of current levels. The midwestern sites showed higher levels of fine particulate nitrate, characterized by cold-season maxima, and were projected to show decreases in overall PM levels following decreases of either sulfate or nitric acid. For some midwestern sites, predicted PM2.5 nitrate concentrations increased as modeled sulfate levels declined, but sulfate reductions always reduced the predicted fine PM mass concentrations; PM2.5 nitrate concentrations became more sensitive to reductions of nitric acid as modeled sulfate concentrations were decreased. The California sites currently have the highest mean concentrations of fine PM nitrate and the lowest mean concentrations of fine PM sulfate. Both the estimated PM2.5 nitrate and fine mass concentrations decreased in response to modeled reductions of nitric acid at all California sites. The results indicate important regional differences in expected PM2.5 mass concentration responses to changes in sulfate and nitrate precursors. Analyses of ambient data, such as described here, can be a key part of weight of evidence (WOE) demonstrations for PM2.5 attainment plans. Acquisition of the data may require special sampling efforts, especially for PM2.5 precursor concentration data.  相似文献   

12.
This paper analyzes the benefits and costs of policies to reduce NOx emissions from electricity generation in the United States. Because emissions of NO contribute to the high concentration of atmospheric ozone in the eastern states associated with health hazards, the U.S. Environmental Protection Agency (EPA) has called on eastern states to formulate state implementation plans (SIPs) for reducing NOx emissions. Our analysis considers three NOx reduction scenarios: a summer seasonal cap in the eastern states covered by EPA's NOx SIP Call, an annual cap in the same SIP Call region, and a national annual cap. All scenarios allow for emissions trading. Although EPA's current policy is to implement a seasonal cap in the SIP Call region, this analysis indicates that an annual cap in the SIP Call region would yield about $400 million more in net benefits (benefits less costs) than would a seasonal policy, based on particulate-related health effects only. An annual cap in the SIP Call region is also the policy that is most likely to achieve benefits in excess of costs. Consideration of omissions from this accounting, including the potential benefits from reductions in ozone concentrations, strengthens the finding that an annual program offers greater net benefits than does a seasonal program.  相似文献   

13.
The National Oceanic and Atmospheric Administration recently sponsored the New England Forecasting Pilot Program to serve as a "test bed" for chemical forecasting by providing all of the elements of a National Air Quality Forecasting System, including the development and implementation of an evaluation protocol. This Pilot Program enlisted three regional-scale air quality models, serving as prototypes, to forecast ozone (O3) concentrations across the northeastern United States during the summer of 2002. A suite of statistical metrics was identified as part of the protocol that facilitated evaluation of both discrete forecasts (observed versus modeled concentrations) and categorical forecasts (observed versus modeled exceedances/nonexceedances) for both the maximum 1-hr (125 ppb) and 8-hr (85 ppb) forecasts produced by each of the models. Implementation of the evaluation protocol took place during a 25-day period (August 5-29), utilizing hourly O3 concentration data obtained from over 450 monitors from the U.S. Environment Protection Agency's Air Quality System network.  相似文献   

14.
Air quality models are used to predict changes in pollutant concentrations resulting from envisioned emission control policies. Recognizing the need to assess the credibility of air quality models in a policy-relevant context, we perform a dynamic evaluation of the Community Multiscale Air Quality (CMAQ) modeling system for the “weekend ozone effect” to determine if observed changes in ozone due to weekday-to-weekend (WDWE) reductions in precursor emissions can be accurately simulated. The weekend ozone effect offers a unique opportunity for dynamic evaluation, as it is a widely documented phenomenon that has persisted since the 1970s. In many urban areas of the Unites States, higher ozone has been observed on weekends than weekdays, despite dramatically reduced emissions of ozone precursors (nitrogen oxides [NOx] and volatile organic compounds [VOCs]) on weekends. More recent measurements, however, suggest shifts in the spatial extent or reductions in WDWE ozone differences. Using 18 years (1988–2005) of observed and modeled ozone and temperature data across the northeastern United States, we re-examine the long-term trends in the weekend effect and confounding factors that may be complicating the interpretation of this trend and explore whether CMAQ can replicate the temporal features of the observed weekend effect. The amplitudes of the weekly ozone cycle have decreased during the 18-year period in our study domain, but the year-to-year variability in weekend minus weekday (WEWD) ozone amplitudes is quite large. Inter-annual variability in meteorology appears to influence WEWD differences in ozone, as well as WEWD differences in VOC and NOx emissions. Because of the large inter-annual variability, modeling strategies using a single episode lasting a few days or a few episodes in a given year may not capture the WEWD signal that exists over longer time periods. The CMAQ model showed skill in predicting the absolute values of ozone concentrations during the daytime. However, early morning NOx concentrations were underestimated and ozone levels were overestimated. Also, the modeled response of ozone to WEWD differences in emissions was somewhat less than that observed. This study reveals that model performance may be improved by (1) properly estimating mobile source NOx emissions and their temporal distributions, especially for diesel vehicles; (2) reducing the grid cell size in the lowest layer of CMAQ; and, (3) using time-dependent and more realistic boundary conditions for the CMAQ simulations.  相似文献   

15.
On hot summer days in the eastern United States, electricity demand rises, mainly because of increased use of air conditioning. Power plants must provide this additional energy, emitting additional pollutants when meteorological conditions are primed for poor air quality. To evaluate the impact of summertime NOx emissions from coal-fired electricity generating units (EGUs) on surface ozone formation, we performed a series of sensitivity modeling forecast scenarios utilizing EPA 2018 version 6.0 emissions (2011 base year) and CMAQ v5.0.2. Coal-fired EGU NOx emissions were adjusted to match the lowest NOx rates observed during the ozone seasons (April 1–October 31) of 2005–2012 (Scenario A), where ozone decreased by 3–4 ppb in affected areas. When compared to the highest emissions rates during the same time period (Scenario B), ozone increased ~4–7 ppb. NOx emission rates adjusted to match the observed rates from 2011 (Scenario C) increased ozone by ~4–5 ppb. Finally in Scenario D, the impact of additional NOx reductions was determined by assuming installation of selective catalytic reduction (SCR) controls on all units lacking postcombustion controls; this decreased ozone by an additional 2–4 ppb relative to Scenario A. Following the announcement of a stricter 8-hour ozone standard, this analysis outlines a strategy that would help bring coastal areas in the mid-Atlantic region closer to attainment, and would also provide profound benefits for upwind states where most of the regional EGU NOx originates, even if additional capital investments are not made (Scenario A).

Implications: With the 8-hr maximum ozone National Ambient Air Quality Standard (NAAQS) decreasing from 75 to 70 ppb, modeling results indicate that use of postcombustion controls on coal-fired power plants in 2018 could help keep regions in attainment. By operating already existing nitrogen oxide (NOx) removal devices to their full potential, ozone could be significantly curtailed, achieving ozone reductions by up to 5 ppb in areas around the source of emission and immediately downwind. Ozone improvements are also significant (1–2 ppb) for areas affected by cross-state transport, especially Mid-Atlantic coast regions that had struggled to meet the 75 ppb standard.  相似文献   


16.
Abstract

The National Oceanic and Atmospheric Administration recently sponsored the New England Forecasting Pilot Program to serve as a “test bed” for chemical forecasting by providing all of the elements of a National Air Quality Forecasting System, including the development and implementation of an evaluation protocol. This Pilot Program enlisted three regional-scale air quality models, serving as prototypes, to forecast ozone (O3) concentrations across the northeastern United States during the summer of 2002. A suite of statistical metrics was identified as part of the protocol that facilitated evaluation of both discrete forecasts (observed versus modeled concentrations) and categorical forecasts (observed versus modeled exceedances/nonexceedances) for both the maximum 1-hr (125 ppb) and 8-hr (85 ppb) forecasts produced by each of the models. Implementation of the evaluation protocol took place during a 25-day period (August 5–29), utilizing hourly O3 concentration data obtained from over 450 monitors from the U.S. Environment Protection Agency’s Air Quality System network.  相似文献   

17.
A spatially and temporally resolved biogenic hydrocarbon and nitrogen oxides (NOx) emissions inventory has been developed for a region along the Mexico-U.S. border area. Average daily biogenic non-methane organic gases (NMOG) emissions for the 1700 x 1000 km2 domain were estimated at 23,800 metric tons/day (62% from Mexico and 38% from the United States), and biogenic NOx was estimated at 1230 metric tons/day (54% from Mexico and 46% from the United States) for the July 18-20, 1993, ozone episode. The biogenic NMOG represented 74% of the total NMOG emissions, and biogenic NOx was 14% of the total NOx. The CIT photochemical airshed model was used to assess how biogenic emissions impact air quality. Predicted ground-level ozone increased by 5-10 ppb in most rural areas, 10-20 ppb near urban centers, and 20-30 ppb immediately downwind of the urban centers compared to simulations in which only anthropogenic emissions were used. A sensitivity analysis of predicted ozone concentration to emissions was performed using the decoupled direct method for three dimensional air quality models (DDM-3D). The highest positive sensitivity of ground-level ozone concentration to biogenic volatile organic compound (VOC) emissions (i.e., increasing biogenic VOC emissions results in increasing ozone concentrations) was predicted to be in locations with high NOx levels, (i.e., the urban areas). One urban center--Houston--was predicted to have a slight negative sensitivity to biogenic NO emissions (i.e., increasing biogenic NO emissions results in decreasing local ozone concentrations). The highest sensitivities of ozone concentrations to on-road mobile source VOC emissions, all positive, were mainly in the urban areas. The highest sensitivities of ozone concentrations to on-road mobile source NOx emissions were predicted in both urban (either positive or negative sensitivities) and rural (positive sensitivities) locations.  相似文献   

18.
On December 16, 1993, the U.S. Environmental Protection Agency (EPA) released the final rule on reformulated gasoline (RFG). This rule will affect the composition of as much as 45% of the gasoline used in the United States by the summer of 1995. The acceptance of any gasoline component lies in its ability to contribute to the RFG program's environmental goals. This study was conducted to determine the effect of water and ethanol denaturant on gasoline Reid vapor pressure (RVP) for which little quantitative data are available. This paper addresses two new areas where environmental goals may be achieved while maintaining the use of ethanol-blended gasolines within ozone nonattainment areas.  相似文献   

19.
Ozone prediction has become an important activity in many U.S. ozone nonattainment areas. In this study, we describe the ozone prediction program in the Atlanta metropolitan area and analyze the performance of this program during the 1999 ozone-forecasting season. From May to September, a team of 10 air quality regulators, meteorologists, and atmospheric scientists made a daily prediction of the next-day maximum 8-hr average ozone concentration. The daily forecast was made aided by two linear regression models, a 3-dimensional air quality model, and the no-skill ozone persistence model. The team's performance is compared with the numerical models using several numerical indicators. Our analysis indicated that (1) the team correctly predicted next-day peak ozone concentrations 84% of the time, (2) the two linear regression models had a better performance than a 3-dimensional air quality model, (3) persistence was a strong predictor of ozone concentrations with a performance of 78%, and (4) about half of the team's wrong predictions could be prevented with improved meteorological predictions.  相似文献   

20.
Unless the change in emissions is substantial, the resulting improvement in ozone air quality can be easily masked by the meteorological variability. Therefore, the meteorological and chemical signals must be separated in examining ozone trends. In this paper, we discuss the use of the Kolmogorov-Zurbenko filter in evaluating the temporal and spatial variations in ozone air quality utilizing ozone concentration data from several monitoring locations in the northeastern United States. The results indicate a downward trend in the ozone concentrations during the period 1983-1992 at most locations in the northeastern United States. The results also reveal that ozone is a regional-scale problem in the Northeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号