首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 250 毫秒
1.
为考察生物炭对餐厨垃圾厌氧消化的影响并探究其影响机理,采用批次实验,以餐厨垃圾为基质,设置污泥空白组、餐厨垃圾对照组和生物炭实验组。检测系统的甲烷日产量、甲烷浓度、渗滤液pH、电导率、挥发性脂肪酸(乙酸、丙酸和丁酸)和氨氮浓度,并对生物炭进行了表征(pH、表面元素、表面形态和官能团)。结果表明,生物炭的添加使体系的最大日甲烷产量提高24.09%,并保持较高的pH,乙酸、丙酸、丁酸峰值分别降低了10.46%、9.96%和13.79%。生物炭丰富的孔结构为微生物提供了生长位点;生物炭的表面金属元素(K、Ca、Mg)和官能团(-OH、C≡C、-NH、C=O(C-O)、CO_3~(2-))使其具有较高的碱度,从而提高厌氧消化系统的缓冲能力和产甲烷菌活性,进而提高产甲烷速率。  相似文献   

2.
厌氧消化是剩余污泥处理的重要方法,消化过程中会产生大量的挥发性脂肪酸(VFA)。讨论了气相色谱在恒温条件下对剩余污泥厌氧消化过程中产生乙酸、丙酸、异丁酸、正丁酸、异戊酸、正戊酸测定的可行性。结果表明:各种酸出峰时间间隔清晰,易于识别;从数据平行测试的变异系数看,异戊酸的变异系数最大,也仅为3.23%,表明测试方法具有良好的可重复性;回收率实验表明,剩余污泥消化液中各种VFA组分的回收率在96%~105%之间,符合文献规定的测试要求。  相似文献   

3.
以聚乙烯醇(PVA)退浆废水为研究对象,构建了铁炭微电解强化厌氧生物处理的废水处理系统,对比研究了不同负荷条件下常规水解酸化反应器(R1,无铁炭材料)和铁炭耦合厌氧水解酸化反应器(R2,有铁炭材料)对PVA退浆废水的去除效果、颗粒污泥特性(胞外聚合物(EPS))、挥发性脂肪酸(VFAs)组成及微生物群落结构的差异。结果表明:R2出水平均COD去除率和平均PVA去除率分别稳定在86.8%和75.8%,均优于R1;添加铁炭材料可促进丙酸、丁酸转化成乙酸,提高了乙酸产量;R2颗粒污泥紧密黏附EPS(TB-EPS)、松散附着EPS(LB-EPS)含量较R1有所增加,颗粒污泥结构得到优化。高通量测序结果表明,添加铁炭对水解酸化菌群有显著影响,Propionibacteriaceae、Clostridium sensu stricto 12在PVA的降解中起重要作用。综合上述结果,铁炭微电解可有效强化水解酸化反应器对PVA退浆废水的处理效果,研究结果可为厌氧生物法处理PVA退浆废水提供参考。  相似文献   

4.
挥发性脂肪酸对厌氧干式发酵产甲烷的影响   总被引:4,自引:0,他引:4  
为了提高中温干式厌氧间歇发酵效率,研究了发酵过程中间产物———挥发性脂肪酸对产甲烷的影响。实验分2批进行,第1批在牛粪发酵过程中分别添加乙酸、丙酸和丁酸,第2批发酵添加易产生挥发酸的厨余垃圾混合发酵。结果显示,添加单一挥发酸的发酵过程中,添加丙酸的产甲烷速度较慢,因为丙酸降解生成乙酸的速度较慢,减慢了甲烷的形成;混合发酵过程厨余垃圾产甲烷速度比牛粪快,发酵过程产生2个产气高峰;牛粪和厨余垃圾固体物质含量比在11∶1到5∶1范围内较好,比牛粪单独发酵产气多,产酸高但不酸败,产生的挥发酸主要是乙酸和丙酸,其中比例为7∶1混合发酵的产甲烷速率最大,为4.89 mL/(g VS·d)。实验表明,牛粪厌氧干式发酵过程添加一定量的厨余垃圾可加快挥发酸的产生并提高挥发酸产量,从而提高甲烷的产量,但是总挥发酸长时间超过10 000 mg/L,pH降到不适于产甲烷菌生长的范围时,将抑制甲烷的生成,挥发酸积累导致厌氧发酵酸败。  相似文献   

5.
为研究中温条件下长链脂肪酸(LCFA)的含量及代谢对餐厨垃圾厌氧消化过程的影响,考察了LCFA添加量分别为0、0.6、1.2、1.8、2.4、3和3.6 g·L~(-1)条件下产沼气量、累积甲烷产量以及代谢中间产物挥发性脂肪酸/乙醇的浓度和组成。结果表明:在中温餐厨垃圾厌氧产甲烷的过程中,虽然LCFA也能够被微生物代谢转化生成甲烷,但LCFA的存在会对产甲烷过程造成一定程度的抑制作用;当其含量较低时抑制作用较为微弱,当其含量较高(2.4 g·L~(-1))时,甲烷产量及产甲烷速率都会受到较大影响;特别是当LCFA含量高于3.6 g·L~(-1)时,体系出现较强的抑制现象。通过实验累积值与理论甲烷产率的对比可以发现,LCFA含量越高的反应器中实验累积值/理论值的比值越低,表明有机物的转化效率越低。通过对厌氧过程中间产物的检测可知,LCFA含量越多的反应器中初期累积的挥发性脂肪酸浓度越高,当反应体系的LCFA浓度超过2.4 g·L~(-1)时,累积的乙酸和丙酸浓度较高,丙酸降解过程和乙酸代谢产甲烷的过程受到一定程度的延滞和抑制作用,降解速率低于正常水平,厌氧发酵的能力和效率受到影响。  相似文献   

6.
采用升流式厌氧污泥床(UASB)反应器,对增大进水浓度和增大进水流量过程中,颗粒污泥对丙酸和丁酸冲击负荷变化响应进行了研究。实验表明,进水浓度从2 000 mg COD/L提高到5 000 mg COD/L,丙酸去除率骤降,而丁酸降解相对稳定;在保持进水浓度为3 000 mg COD/L的条件下,增大进水流量,负荷从7.5 kg COD/(m3.d)升高到15 kg COD/(m3.d)时,丙酸降解率骤降,丁酸降解率仍然相对稳定。实验结果符合降解热力学理论和传统抑制动力学的未解离挥发性脂肪酸理论,并发现改变反应器运行条件能够加剧未解离酸的抑制作用。同时提出了探讨厌氧过程中丙酸积累导致厌氧反应器运行失败的基础理论原因。  相似文献   

7.
秦清  张艳萍 《环境工程学报》2014,8(7):2859-2864
采用经乙酸钠驯化培养具有一定聚羟基烷酸酯(PHA)储存能力的活性污泥,考察乙酸、丙酸和丁酸3种短链脂肪酸,以及乙酸、丁酸分别与丙酸按1∶1、1∶2、2∶1比例组合成的6种混合酸作为碳源时对活性污泥中PHA的储存和转化的影响。实验结果表明,在3种短链脂肪酸中,以丁酸为碳源得到活性污泥PHA储存量最高,为40.53 mg/g;在混合酸中,乙酸与丙酸按1∶2组合时,系统PHA储存量最高,为773.4 mg/g。混合酸相对于单一的脂肪酸碳源更有利于活性污泥储存PHA。在混合酸总量一定的条件下,随着丙酸比例的增加,乙酸与丙酸混合比丁酸与丙酸混合更有利于微生物的PHA储存。  相似文献   

8.
食品废弃物厌氧消化产乙酸的研究   总被引:10,自引:0,他引:10  
通过实验,研究了pH、总固体浓度(TS)、碳氮比(C/N)对食品废弃物厌氧消化产乙酸的影响,详细考察了挥发性脂肪酸(VFA)的组成和浓度及乙酸浓度随时间的变化规律.结果表明,pH为6.5、TS为7%(质量分数)、C/N为16:1时,总VFA的最大质量浓度为31.56 g/L,乙酸的最大质量浓度为19.46 g/L.  相似文献   

9.
针对现今餐厨垃圾单相厌氧酸化系统缺乏有效的恢复性监控指标,提出可有效表征酸化系统恢复的监控指标。在中温条件下,连续对餐厨垃圾单相厌氧消化系统进行负荷冲击及恢复,分别对p H、沼气产率及成分、挥发性脂肪酸组成成分、总碱度(TA)和碳酸氢盐碱度(BA)及其组合指标进行监测分析。结果表明,传统单因子参数不能有效地指示系统恢复,选取VFA/BA和丙酸/乙酸的比值作为餐厨垃圾单相厌氧酸化系统恢复指示性参数。在酸化系统恢复过程中,当丙酸/乙酸≤1.4、VFA/BA≤0.4时,表明系统中各种挥发酸浓度值已恢复正常,且具有足够的缓冲能力,可提高反应器负荷,保证反应器恢复启动运行。  相似文献   

10.
蓝藻定向发酵产丁酸的条件研究   总被引:2,自引:1,他引:1  
吕娴  严群  阮文权 《环境工程学报》2011,5(6):1358-1362
以4种有机酸(乳酸、乙酸、丙酸、丁酸)对厌氧颗粒污泥进行胁迫处理,将胁迫后的污泥接种太湖蓝藻进行发酵产丁酸的实验,考察单一有机酸及混合有机酸胁迫对提高蓝藻厌氧发酵产丁酸的影响.结果表明,采用乳酸浓度2 g/L、乙酸浓度6 g/L、丙酸浓度5 g/L和丁酸浓度12 g/L的混合有机酸胁迫污泥后产丁酸效果最佳,获得的最大丁...  相似文献   

11.
Volatile fatty acids (VFAs) are key intermediates in anaerobic digestion. Enriched acetogenic and methanogenic cultures were used for the syntrophic anaerobic digestion of VFAs in a continuous fixed-bed reactor at mesophilic conditions. The interactive effects of propionic (HPr), butyric (HBu), and acetic (HAc) acids were analyzed. Furthermore, hydraulic retention time (HRT) and methanogen-to-acetogen ratios (M/As) were investigated as the key microbiological and operating variables of VFA anaerobic degradations. Experiments were carried out based on central composite design (CCD) and results were analyzed using response surface methodology (RSM). Effluent concentrations of HPr, HBu, HAc, and biogas production rate (BPR) were directly measured as responses. The optimum conditions were found to be HPr = 1122.9 mg/L, HBu = 1792.4 mg/L, HAc = 1735.4 mg/L, HRT = 21 hours, and M/A = 2.4 (corresponding to the maximum VFA removal and BPR). The results of verification experiments and predicted values from fitted correlations were in close agreement at a 95% confidence interval.  相似文献   

12.
Biodegradation of organic micropollutants is likely to occur due to cometabolism by particular microbial groups. In an effort to identify the stages of anaerobic digestion potentially involved in the biodegradation of the veterinary antimicrobial sulfamethazine (SMZ), the influence of selected carbon sources (sucrose, glucose, fructose, ethanol, meat extract, cellulose, soluble starch, soy oil, acetic acid, propionic acid and butyric acid) on SMZ removal by anaerobic sludge was evaluated in short-term batch experiments. Adsorption to the granular sludge constituted a significant removal mechanism, accounting for 39% of SMZ removal in control experiments. The presence of glucose, fructose, sucrose and meat extract exerted an inducing effect on SMZ degradation, resulting in removal efficiencies of 54, 53, 58 and 61%, respectively, indicating the occurrence of cometabolism. Time courses of sucrose and meat extract degradation revealed markedly distinct organic acid profiles but resulted in similar SMZ removals. Temporal profiles of acetic and propionic acid degradation were not associated with SMZ removal, as changes in SMZ concentration were observed even after the organic acids had been completely removed. The experimental results suggest that SMZ cometabolism is not associated to sucrose hydrolysis, acetoclastic methanogenesis and acetogenesis from propionic acid.  相似文献   

13.
Zhang C  Chen Y  Liu Y 《Chemosphere》2007,69(11):1713-1721
In most studies on phosphorus- and glycogen-accumulating organisms (PAO and GAO), pH was controlled constantly throughout the entire anaerobic and aerobic periods, and acetic acid was used as the carbon source. In this paper, the effect of long-term initial pH values on PAO and GAO was investigated with mixed propionic and acetic acids as carbon sources. It was observed that with pH increasing from 6.4 to 8.0, the anaerobic propionic acid uptake rate by PAO linearly increased but that by GAO proportionally decreased. At pH 6.70 and pH 7.51, PAO and GAO exhibited the same acetic and propionic acid uptake rates, respectively. The acetic acid uptake rate by PAO was greater than that by GAO at pH > 6.70, and the propionic acid uptake rate by PAO was higher than that by GAO at pH > 7.51, which indicated that PAO would take predominance over GAO at pH > 7.51. Poly-3-hydroxybutyrate, poly-3-hydroxyvalerate and poly-3-hydroxy-2-methylvalerate shared 7%, 62% and 31%, respectively in the PAO system, and 11%, 44% and 45% respectively in the GAO system, and these fractions were observed independent of pH either in the PAO or in the GAO system. In the PAO system, with the increase of pH, the phosphorus removal efficiency was improved greatly, and a phosphorus removal efficiency of 100% was achieved at 8.0. Further investigation showed that the higher phosphorus removal efficiency at higher pH was mainly caused by a biological effect instead of chemical one.  相似文献   

14.
Compost leachates were collected to investigate the influence of the composition and removal of volatile fatty acids (VFAs), humic-like substances (HSs), and dissolved organic nitrogen (DON) on heavy metal distribution during the leachate treatment process. The results showed that acetic and propionic acids accounted for 81.3 to 93.84 % of VFAs, and that these acids were removed by the anaerobic-aerobic process. Humic- and fulvic-like substances were detected by excitation–emission matrix spectroscopy coupled with parallel factor analysis, and their content significantly decreased after the anaerobic and membrane treatments. DON in compost leachates ranged from 26.53 mg L-1 to 919.46 mg L-1, comprised of dissolved free amino acids and the protein-like matter bound to humic- and fulvic-like substances, and was removed by the aerobic process. Correlation analysis showed that Mn, Ni, and Pb were bound to VFAs and protein-, fulvic-, and humic-like substances in the leachates. Co was primarily bound to fulvic- and humic-like matter and inorganic sulfurs, whereas Cu, Zn, and Cd interacted with inorganic sulfur.  相似文献   

15.
This research focuses on the removal of 2, 4-D via denitrification, with a particular emphasis on the effect of adding naturally generated volatile fatty acids (VFAs) as a carbon source. These VFAs had been produced from an acid-phase anaerobic digester (mean VFA concentration of 3153 ± 801 mg/L [as acetic acid]). The first step involved developing 2, 4-D degrading bacteria in a sequencing batch reactor (SBR) fed with both sewage and 2, 4-D (30–100 mg/L). Subsequent denitrification batch tests demonstrated that the specific denitrification rate increased from 0.0119 ± 0.0039 to 0.0192 ± 0.0079 g NO3-N/g volatile suspended solids (VSS) per day, when using 2, 4-D alone versus 2, 4-D plus natural VFAs from the digester as a carbon source. Similarly, the specific 2, 4-D consumption rate increased from 0.0016 ± 0.0009 to 0.0055 ± 0.0021 g 2,4-D/g VSS per day, when using 2, 4-D alone as compared to using 2, 4-D plus natural VFAs. Finally, a parallel increase in the percent 2, 4-D removal was observed, rising from 28.33 ± 11.88 using 2, 4-D alone to 54.17 ± 21.89 using 2, 4-D plus natural VFAs.  相似文献   

16.
Volatile fatty acids (VFAs) represent the major organic constituent of landfill leachate and provide the greatest potential for leachate induced organic contamination of groundwater (e.g. as represented by an increase in the concentration of dissolved organic carbon and chemical oxygen demand). Long-term diffusion tests were performed for laboratory-compacted clayey soil plugs exposed to continuous supply of synthetic leachate containing VFAs. Significant microbial activity developed upon exposure of the soil's indigenous microorganisms to these degradable contaminants. The growth of heterotrophic aerobic bacteria (HAB, which include facultative anaerobes), sulfate reducing bacteria (SRB) and methanogenic bacteria carrying out fermentation and mineralization of the VFAs became evident after 30-50 days of testing. The maximum microbial counts of (2-8) x 10(8) and (0.1-1) x 10(8) cfu/g for HAB and SRB were localized in the soil layer at the interface with the source of organic and inorganic nutrients. Regardless of this rapid growth in microbial population, the VFA consumption was small and measurable only after a lag of 140-180 days. It is considered that this lag of otherwise readily degradable organic compounds (such as VFAs) persisted due to a combination of the effects of a high initial concentration of these acids (2.4 g/l as dissolved organic carbon, DOC) applied to carbon starved soil microorganisms and the small pore size of the compacted clay. Once the significant amounts of gas were generated from fermentation, conditions developed for improved mass transport and exchange of the nutrients and bacteria and the outcome of the intrinsic degradation was more apparent. The breakdown of VFAs that followed after the lag was localized near the top of the soil and was characterized by a short half-life of 0.75-5 days for DOC (total VFAs as dissolved organic carbon).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号