首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
微波强化内电解处理活性艳红染料废水   总被引:5,自引:1,他引:4  
提出了一种微波强化内电解处理染料废水的新方法,结果表明:微波不仅可以再生炭铁混合物,而且可以氧化分解活性炭吸附的染料;铁屑不仅与活性炭构成内电解作用,同时还可以促进微波再生活性炭;微波作用多次后炭铁混合物对废水的去除率仍能保持色度去除率99%、COD去除率64%;同时探讨了微波作用时间、微波作用次数、铁屑粒径、炭铁比例和pH值等因素对废水去除率的影响,并初步探讨了其反应机理。  相似文献   

2.
微波强化内电解处理活性艳红染料废水   总被引:2,自引:0,他引:2  
提出了一种微波强化内电解处理染料废水的新方法,结果表明:微波不仅可以再生炭铁混合物,而且可以氧化分解活性炭吸附的染料;铁屑不仅与活性炭构成内电解作用,同时还可以促进微波再生活性炭;微波作用多次后炭铁混合物对废水的去除率仍能保持色度去除率99%、COD去除率64%;同时探讨了微波作用时间、微波作用次数、铁屑粒径、炭铁比例和pH值等因素对废水去除率的影响,并初步探讨了其反应机理。  相似文献   

3.
铁屑吸附-微波辐照-内电解协同处理结晶紫染料废水   总被引:8,自引:0,他引:8  
以结晶紫为模型化合物,提出了一种新的“铁屑吸附—微波辐照—内电解”协同处理染料废水的方法。试验结果表明,吸附在铁屑表面的染料通过微波催化裂解和内电解协同作用迅速降解,染料溶液的脱色率和COD去除率分别达到99%和95%以上。废铁屑经8次使用后仍有良好的处理效果。研究了各种相关因素对染料废水脱色的影响。  相似文献   

4.
微波强化微电解技术处理硝基苯废水   总被引:1,自引:0,他引:1  
研究了微波强化微电解组合工艺处理硝基苯废水。研究结果表明,在Fe/C比为3,进水pH=3,微波功率640W,微波辐射时间4 min和曝气量为2.5 L/min的最佳条件下,废水COD、色度和浊度去除率分别达到94.7%、95.6%和90.3%。同时,与单一微波辐射和单一微电解相比,该方法处理效果明显优于这二种方法。实验还采用GC-MS分析方法研究了单一微电解及微波强化微电解法处理硝基苯废水的中间降解产物和降解机理。  相似文献   

5.
杨波  孙也  付安然  杜丹 《环境工程学报》2014,8(4):1475-1481
采用Ti/SnO2电极间接阳极氧化法处理直接深棕M和活性艳蓝KNR模拟染料废水,研究电解质种类、pH、电压、NaCl投加量及电解时间对其降解效果的影响;在最佳组合条件下,通过分析UV-Vis光谱以及降解过程中氮元素的存在形式,研究上述2种染料的降解规律。结果表明,在pH为3,电压20 V,NaCl投加量为2.5 g/L的条件下,电解30 min后,直接深棕M和活性艳蓝KNR的脱色率分别达到80%和95%,60 min后直接深棕M的COD去除率可达75%,活性艳蓝KNR的COD去除率达到90%;电解60 min后,直接深棕M的偶氮双键完全破坏,萘环和苯环结构被逐步降解,活性艳蓝KNR溶液电解2 min,其分子结构中的蒽醌共轭体系被破坏,随反应的进行,蒽醌结构逐渐被破坏,染料逐步降解。  相似文献   

6.
生物-微电解组合工艺处理染料废水研究   总被引:5,自引:1,他引:5  
采用上流式污泥床过滤器(upflow blanket filter,UBF) 曝气生物滤池(biological aerated filter,BAF) 微电解的组合工艺,对盐度接近2%、色度和COD分别约为8 000倍和600.5 mg/L的染料废水进行处理.经过连续120 d的稳定运行后,组合系统处理效果良好,脱色率和COD去除率分别达到99%和75%以上.UBF和微电解单元均可以大幅度提高废水的可生化性,有利于进一步的生物处理.UV-Vis扫描和GC-MS分析表明,该组合工艺能破坏染料的发色基团和共轭双键,并能高效降解原水中的酚类、氯代有机物和复杂的杂环类化合物.实验结果表明,UBF BAF 微电解的组合工艺是处理染料废水的一种有效方法.  相似文献   

7.
论述了二氧化氯催化氧化处理染料模拟废水的处理效果,研究了影响催化氧化的几个主要因素。试验结果表明,在自制催化剂作用下,ClO2催化氧化处理三种染料模拟废水的CODCr平均去除率达88.6%。通过催化氧化实验确定了ClO2催化氧化处理三种染料模拟废水的最佳工艺条件为:氧化剂用量为0.2mg/mL,pH为3~7,催化剂4.0g,反应时间45min。催化剂可以重复使用5次~6次以上。  相似文献   

8.
采用Ti/SnO2电极间接阳极氧化法处理直接深棕M和活性艳蓝KNR模拟染料废水,研究电解质种类、pH、电压、NaCl投加量及电解时间对其降解效果的影响;在最佳组合条件下,通过分析uV—Vis光谱以及降解过程中氮元素的存在形式,研究上述2种染料的降解规律。结果表明,在pH为3,电压20V,NaCl投加量为2.5g/L的条件下,电解30min后,直接深棕M和活性艳蓝KNR的脱色率分别达到80%和95%,60min后直接深棕M的COD去除率可达75%,活性艳蓝KNR的COD去除率达到90%;电解60min后,直接深棕M的偶氮双键完全破坏,萘环和苯环结构被逐步降解,活性艳蓝KNR溶液电解2min,其分子结构中的蒽醌共轭体系被破坏,随反应的进行,蒽醌结构逐渐被破坏,染料逐步降解。  相似文献   

9.
以焦化废水脱水污泥为载体、ZnCl2为活化剂和催化剂的活性组分,采用一步法制备污泥催化剂。实验结果表明,当ZnCl2浓度为4 mol/L、固液比1∶3、焙烧温度550℃、焙烧时间40 min时,制备的污泥催化剂对亚甲基蓝的脱色性能最佳。利用制备的催化剂对活性红X-3B、弱酸性艳红B、活性蓝X-BR溶液进行脱色处理,研究反应时间、染料浓度、溶液pH、催化剂投加量和H2O2用量对染料脱色性能的影响。最佳条件下,3种废水的脱色率分别达到90.7%、97.5%和94.4%。对脱色数据进行动力学模拟,结果表明,3种染料废水脱色反应分别符合二级动力学模型、一级动力学模型、二级动力学模型。  相似文献   

10.
内电解-混凝-SBR-生物炭组合工艺处理染料废水   总被引:3,自引:0,他引:3  
详述用内电解—混凝—SBR—生物炭组合工艺处理染料废水的过程。通过对各工艺段的调试,确定了各工艺段的最佳控制条件。结果表明:当染料废水COD平均值为5100mg/L,色度为6000倍时,去除率达95%以上,出水水质达到国家污水综合排放二级标准。  相似文献   

11.
铁碳微电解-Fenton法预处理苯胺基乙腈生产废水   总被引:1,自引:0,他引:1  
采用铁碳微电解-Fenton法对苯胺基乙腈生产废水进行预处理实验。通过静态实验确定铁碳微电解最佳条件为铁屑投加量300 g/L,Fe/C质量比为2∶3,反应75 min,不需要调节进水pH;Fenton反应最佳条件为铁碳微电解出水pH=4,30%H2O2投加量15 mL/L,在搅拌条件下反应60 min;然后沉淀反应时调节pH为9,混凝沉淀75 min。在上述条件下通过动态实验得到系统连续反应在48 h内废水的COD和苯胺去除率在50%和70%以上,可生化性BOD5/COD也保持在0.3以上,为后续生物处理创造了良好条件。  相似文献   

12.
铁炭微电解-MAP沉淀法联合预处理垃圾渗滤液   总被引:2,自引:1,他引:1  
采用铁炭微电解-磷酸氨镁(MAP)沉淀法对垃圾渗滤液进行预处理,实验结果表明,铁炭比为5∶1,pH值为3,反应时间为3 h时,铁炭微电解的COD的去除率为47.5%;在投加药剂n(Mg2+)∶n(PO43-)∶n(NH4+)为1.4∶1∶1,pH值为9,反应时间为1 h的条件下,垃圾渗滤液氨氮去除率达到79.7%。  相似文献   

13.
研究了Fe/C微电解和Fenton氧化处理印刷电路板废水的最佳条件和联合工艺的处理效果。结果表明,Fe/C微电解最佳工艺条件为:pH=2,Fe/C质量比为2∶1,投加药剂量为30 g/L,停留时间为30 min;Fenton氧化最佳工艺条件为:pH=3,H2O2投加量为6 mL/L,停留时间为2 h。将2种方法联用并进行中试实验,结果表明,对原水的COD去除率可达80%,而且Fenton反应可利用微电解产生的Fe2+,节约成本,运行稳定,效果良好。  相似文献   

14.
微电解-Fenton联合工艺预处理煤层气井压裂废水   总被引:1,自引:0,他引:1  
利用Fenton强化微电解工艺对煤层气井压裂废水展开预处理研究,以COD去除率和可生化性(B/C)为考察指标,单独工艺正交实验结果表明pH为3、反应时间为90 min、铁碳体积比为1.5∶1和pH为4、反应时间为80 min、H2O2投加量为4 mL/L分别是微电解与Fenton反应的最优条件,各可获得48.1%和44.9%的COD去除率。在最优条件下进行微电解-Fenton联合运行实验,连续61 h内COD去除率均稳定在65%以上,B/C由0.158上升到0.3以上,有利于后续生化处理的运行。  相似文献   

15.
采用高温烧结型微电解填料预处理煤制油废水,通过正交实验研究了初始pH、微电解时间及曝气强度等对废水的预处理影响。结果表明,微电解影响因素从大到小依次为:微电解时间pH曝气强度;微电解预处理煤制油废水的最佳工艺参数为:初始pH 4.0,微电解90 min,气水比3∶1充氧曝气;通过平行实验,COD平均去除率及出水水质分别为54.7%和1 773 mg/L,废水生物毒性指标EC50由原水12.5%的高毒性转化成48.3%的中毒性,为后续生化系统的正常运行提供了有利条件,是预处理煤制油废水的有效方法之一。  相似文献   

16.
采用铁炭微电解-Fenton联合工艺深度处理制药废水生化出水,探讨了初始pH、曝气量、反应时间等因素对微电解出水Fe2+和Fe3+变化规律、COD降解速率以及后续Fenton氧化效果的影响,为优化微电解-Fenton氧化联合工艺提出了微电解间歇加酸的理论。间歇加酸可提高微电解系统中COD降解速率和Fe2+含量,使后续Fenton氧化无需投加FeSO4·7H2O即可达到较好的COD去除效果。结果表明,当初始pH=2.5,曝气量为0.6 m3/h,间歇加酸30 min/次,微电解反应2 h,出水投加1 mL/L的H2O2进行Fenton氧化2 h,COD总去除率可达81.33%;间歇加酸30 min/次可将微电解反应2 h出水Fe2+浓度从50 mg/L提高至151 mg/L,COD降解速率从10.6 mg COD/(L·h)提高至22.2 mg COD/(L·h)。  相似文献   

17.
铁炭微电解深度处理焦化废水的研究   总被引:19,自引:11,他引:19  
采用曝气铁炭微电解工艺对焦化废水进行了深度处理.结果表明,在活性炭、铁屑和NaCl投加量分别为10 g/L、30 g/L和200 mg/L的条件下反应240 min,出水COD去除率在30%~40%;酸性条件可以进一步提高COD去除率;微电解可以去除原生化出水中的难降解有机物,出水物质的分子量主要集中于2000 Da以下,以脂类和烃类化合物为主;出水的可生化性有了大幅度提高,BOD5/COD由0.08增加到0.53.实验结果表明,铁炭微电解是深度处理焦化废水的一种有效工艺.  相似文献   

18.
铁碳微电解预处理汽车电泳涂装废水   总被引:2,自引:0,他引:2  
采用铁碳微电解法对汽车电泳涂装废水进行处理,研究其处理效果及COD降解动力学。结果表明,进水pH≤4时,铁碳微电解的处理效果影响因素依次为铁碳反应次数、反应时间、进水pH。COD降解率随微电解反应时间的增加而升高,随反应次数的增加而降低,之后趋向稳定。当进水pH=3,反应时间90~150 min时,铁碳微电解的处理效果可稳定在40%左右。同时通过模拟分析,汽车电泳涂装废水COD降解动力学符合三级反应动力学模型。  相似文献   

19.
采用微电解-混凝处理抛光液废水,考察了铁水比、进水pH值、铁炭比、振荡时间对微电解处理效果的影响.通过单因素实验与正交实验找出了影响较大的因素,进水pH、铁水比、振荡时间都对去除率影响较大.最佳微电解条件为铁水比为0.375,进水pH为3,铁炭比为1∶1,振荡时间为150 min.同时,当混凝剂硫酸亚铁的投加量为160 mg/L、三氯化铁的投加量为20 mg/L时,COD去除率可达到83.8%,金属铜离子去除率可达到96%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号