首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 896 毫秒
1.

Chemical leak was numerically simulated for four chemical substances: benzene (light non-aqueous phase liquid (NAPL)), tetrachloroethylene (dense NAPL), phenol (soluble in water), and pentachlorophenol (white crystalline solid) in a hypothetical subsurface leak situation using a multiphase compositional transport model. One metric ton of chemical substances was assumed to leak at a point 3.51 m above the water table in a homogeneous unconfined aquifer which had the depth to water table of 7.135 m, the hydraulic gradient of 0.00097, the recharge rate of 0.7 mm/day, and the permeability of 2.92?×?10?10 m2. For comparison, surface spill scenarios, which had a long pathway from source to the water table, were simulated. Using the model results, point-source pollutant loadings to soil and groundwater were calculated by multiplying mass, impact area, and duration above and below the water table respectively. Their sensitivity to subsurface properties (depth to water table, recharge rate, porosity, organic carbon content, decay rate, hydraulic gradient, capillary pressure, relative permeability, permeability) was analyzed, with changing each parameter within acceptable ranges. The study result showed that the pollutant loading to groundwater was more sensitive to the subsurface properties than the pollutant loading to soil. Decay rate, groundwater depth, hydraulic gradient and porosity were influential to pollutant loadings. The impact of influential parameters on pollutant loadings was nonlinear. The dominant subsurface properties of pollution loadings (e.g., decay rate, groundwater depth, hydraulic gradient, and porosity for groundwater) also affect the vulnerability, and the subsurface pollutant loadings defined in this study are dependent on chemical properties as well, which indicates that the influential hydrogeological and physicochemical parameters to pollutant loadings can be used for pollution potential assessment. The contribution of this work is the suggestion that the sensitivity of pollutant loadings can be used for pollution potential assessment. Soil and groundwater pollution potential of chemicals are discussed altogether for leak scenarios. A physics-based model is used to understand the impact of subsurface properties on the fate and transport of chemicals above and below the water table, and consequently their impact on the pollutant loading to soil and groundwater.

  相似文献   

2.
Relating dissolved organic matter fluorescence and functional properties   总被引:4,自引:0,他引:4  
Baker A  Tipping E  Thacker SA  Gondar D 《Chemosphere》2008,73(11):1765-1772
The fluorescence excitation–emission matrix properties of 25 dissolved organic matter samples from three rivers and one lake are analysed. All sites are sampled in duplicate, and the 25 samples include ten taken from the lake site, and nine from one of the rivers, to cover variations in dissolved organic matter composition due to season and river flow. Fluorescence properties are compared to the functional properties of the dissolved organic matter; the functional assays provide quantitative information on photochemical fading, buffering capacity, copper binding, benzo[a]pyrene binding, hydrophilicity and adsorption to alumina. Optical (absorbance and fluorescence) characterization of the dissolved organic matter samples demonstrates that (1) peak C (excitation 300–350 nm; emission 400–460 nm) fluorescence emission wavelength; (2) the ratio of peak T (excitation 220–235 nm; emission 330–370 nm) to peak C fluorescence intensity; and (3) the peak C fluorescence intensity: absorbance at 340 nm ratio have strong correlations with many of the functional assays. Strongest correlations are with benzo[a]pyrene binding, alumina adsorption, hydrophilicity and buffering capacity, and in many cases linear regression equations with a correlation coefficient >0.8 are obtained. These optical properties are independent of freshwater dissolved organic carbon concentration (for concentrations <10 mg L−1) and therefore hold the potential for laboratory, field and on-line monitoring and prediction of organic matter functional properties.  相似文献   

3.
In this work, Basic Yellow 11 (BY 11) was employed as model compound to study catalytic wet air oxidation as a pre-treatment step to the conventional biological oxidation. Ni and Fe catalysts supported over hydrotalcite (HT) were prepared by incipient wetness and excess impregnation to obtain catalysts with different metal loadings (from 1 to 10 wt.%). HTs were synthesized by co-precipitation and characterized with XRD, X-ray fluorescence (XRF), BET, thermogravimetric analysis and SEM. Results showed that dye conversion increased with Ni and Fe content up to 7 wt.% and that the most effective catalyst were prepared by incipient wetness impregnation. The influence of metal loading in the catalyst, and the preparation method as well as the reaction conditions was investigated. A mechanism and reaction pathways for BY 11 during catalytic liquid phase oxidation have also been proposed.  相似文献   

4.
A simple and compact instrument for NO2 measurement by laser-induced fluorescence (LIF) technique with a pulsed solid state laser and a multi-pass excitation system was developed and optimized for several conditions. As a result of laboratory experiment, the limit of detection (LOD) reached 94 pptv for 60 s integration. It was thought that an LIF instrument with this LOD value would be capable of quantifying sub-ppbv NO2 in unpolluted marine atmosphere. As the second step, a field test of the instrument was conducted in the marine atmosphere at Cape Hedo, Okinawa Island, Japan, in summer 1999. Intercomparison between the LIF instrument and a chemiluminescence detector with a photolytic converter (PLC-CL) was also made in this test. Consequently, the LIF instrument was shown to be of practical use for measuring NO2 in clean maritime air.  相似文献   

5.
A laser induced fluorescence (LIF) instrument has been developed to measure tropospheric NO2 with low detection limit. The instrument design, development and first measurements are reported. There are also details of the temporal gate system built for the fluorescence acquisition. The instrument is able to make fast measurements (up to 4 Hz) and shows a limit of detection of 10 pptv/60 s. Continuous observations (2 weeks in summer 2007) in a small town in central Italy were used to test the performance of the instrument and to study the photochemistry of ozone in a background site. LIF and a commercial chemiluminescence (CL) instrument simultaneous observations of NO2 show a good linearity (LIF = 1.02 CL + 0.6 (ppb), R2 = 0.98) but there is a bias of the commercial instrument of about 0.60 ppbv on average. The overestimation of the CL system is probably due to conversion of NOy species into NO by the molybdenum converter used in the CL instrument to detect NO2. Analysis of 1 s data is used to test the instrument response and the coupling between nitrogen oxides and ozone.  相似文献   

6.
Since 1981, the Bavarian State Office for Environmental Protection (LfU) has been operating a bioindication network of epiphytic mosses Hypnum cupressiforme located on a regular grid with distances 16 km, in order to observe immission-derived metal accumulation in plant material. About 300 specimens are collected yearly (since 1991 every second year) at the end of the growth period, and the concentration of trace metals is determined. In order to gain insight into predominant sources of metal pollution in Bavaria, correlation patterns between Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Sb, Hg, and Pb are analyzed by Principal Component Analysis. Detailed results are presented for the 1984 and 1995 data. At least 80% of the variance can be explained by five components. The following factors are extracted from both data sets by varimax rotation: factor 1 with similar loadings of Al, Ti, V, Cr, Fe, and As; factor 2 representing Cd and Zn; factor 3 with loadings of Sb, Pb, and Cu; factor 4 representing Mn; factor 5 being nearly identical with the Hg variable. For comparison, published region-specific correlation matrices from the 1991 moss survey performed by the German Federal Environmental Agency (UBA) – observing epigeic mosses Pleurozium schreberi – were submitted to Principal Component Analysis. With respect to the first factor, our 1991 results from Bavaria are similar to those from the Southern former GDR, but different from those from Western Germany (including Bavaria). Possible common and specific sources are discussed.  相似文献   

7.
The need for highly time-resolved data on atmospheric aerosol composition has prompted the development of several semi-continuous techniques in recent years. It is necessary to evaluate the performance of these new techniques under different meteorological and chemical conditions. We report on the results of intercomparison between a new commercial PM2.5 semi-continuous sulphate and nitrate instrument (AIM, URG9000B) and filter-based technique. The study was carried out in the summer of 2005 in two polluted suburban/rural areas near Shanghai and Beijing, China, yielding unique results on the performance of this instrument in more polluted environments compared to most of the previously reported studies. The two methods had a good (R2>0.67) overall correlation for sulphate and nitrate, but showed discrepancies in absolute concentrations. At low levels of sulphate (<20 μg m−3) and SO2 (<30 ppbv), the AIM data agreed with the filter result in Beijing (AIM=0.97×filter+0.60, R2=0.94). However, the semi-continuous instrument gave much higher sulphate values at high SO2 concentrations (in Shanghai), which was due to a positive interference from SO2 that broke through the denuder. At high sulphate loading, on the other hand, the AIM gave a much smaller sulphate reading, which was apparently due to an insufficient supply of water vapor to dissolve all the soluble ions under high aerosol loadings. For nitrate, while the two methods showed a good agreement in Shanghai (AIM=0.83×filter+0.00, R2=0.96), evaporative loss from the filters at high temperatures and negative bias in the AIM at high particle loading complicated the correlation in Beijing. Our study points out the need for careful evaluation and modification of the AIM for use in highly polluted environments. Under clean to moderately polluted conditions, the AIM can provide useful, highly time-resolved sulphate and nitrate data.  相似文献   

8.
The study of mercury (Hg) cycle in Arctic regions is a major subject of concern due to the dramatic increases of Hg concentrations in ecosystem in the last few decades. The causes of such increases are still in debate, and an important way to improve our knowledge on the subject is to study the exchanges of Hg between atmosphere and snow during springtime. We organized an international study from 10 April to 10 May 2003 in Ny-Ålesund, Svalbard, in order to assess these fluxes through measurements and derived calculations.Snow-to-air emission fluxes of Hg were measured using the flux chamber technique between ∼0 and 50 ng m−2 h−1. A peak in Gaseous Elemental Mercury (GEM) emission flux from the snow to the atmosphere has been measured just few hours after an Atmospheric Mercury Depletion Event (AMDE) recorded on 22 April 2004. Surprisingly, this peak in GEM emitted after this AMDE did not correspond to any increase in Hg concentration in snow surface. A peak in GEM flux after an AMDE was observed only for this single event but not for the four other AMDEs recorded during this spring period.In the snow pack which is seasonal and about 40 cm depth above permafrost, Hg is involved in both production and incorporation processes. The incorporation was evaluated to ∼5–40 pg m2 h. Outside of AMDE periods, Hg flux from the snow surface to the atmosphere was the consequence of GEM production in the air of snow and was about ∼15–50 ng m−2 h−1, with a contribution of deeper snow layers evaluated to ∼0.3–6.5 ng m−2 h−1. The major part of GEM production is then mainly a surface phenomenon. The internal production of GEM was largely increasing when snow temperatures were close to melting, indicating a chemical process occurring in the quasi-liquid layer at the surface of snow grains.  相似文献   

9.
Interest in the role and contribution of fungi to atmospheric aerosols and processes grows in the past decade. Substantial data or information such as fungal mass or carbon loading to ambient aerosols is however still lacking. This study aimed to quantify the specific organic carbon content (OC per spore) of eleven fungal species commonly found airborne in the subtropics, and estimated their contribution to organic carbon in aerosols. The specific OC contents showed a size-dependent relationship (r = 0.64, p < 0.05) and ranged from 3.6 to 201.0 pg carbon per spore or yeast cell, giving an average of 6.0 pg carbon per spore (RSD 51%) for spore or cell size less than 10 μm. In accounting for natural variations in the composition and abundance of fungal population, weighted-average carbon content for field samples was adopted using the laboratory determined specific OC values. An average of 5.97 pg carbon per spore (RSD 3.8%) was enumerated from 28 field samples collected at the university campus. The mean fungal OC concentration was 3.7, 6.0 and 9.7 ng m?3 in PM2.5, PM2.5–10 and PM10, respectively. These corresponded to 0.1%, 1.2% and 0.2% of the total OC in PM2.5, PM2.5–10 and PM10, respectively. In the study period, rain provided periods with low total OC but high fungal prevalence and fungi contributed 7–32% OC in PM2.5–10 or 2.4–7.1% OC in PM10. More extensive studies are deserved to better understand the spatial-, temporal- and episodic dependency on the fungal OC contribution to the atmospheric aerosols.  相似文献   

10.

Hg emission flux from various land covers, such as forests, wetlands, and urban areas, have been investigated. China has the largest area of coalfield in the world, but data of Hg flux of coalfields, especially, those with coal fires, are seriously limited. In this study, Hg fluxes of a coalfield were measured using the dynamic flux chamber (DFC) method, coupled with a Lumex multifunctional Hg analyzer RA-915+ (Lumex Ltd., Russia). The results show that the Hg flux in Wuda coalfield ranged from 4 to 318 ng m?2 h?1, and the average value for different areas varied, e.g., coal-fire area 99 and 177 ng m?2 h?1; no coal-fire area 19 and 32 ng m?2 h?1; and backfilling area 53 ng m?2 h?1. Hg continued to be emitted from an underground coal seam, even if there were no phenomena, such as vents, cracks, and smog, of coal fire on the soil surface. This phenomenon occurred in all area types, i.e., coal-fire area, no coal-fire area, and backfilling area, which is universal in Wuda coalfield. Considering that many coalfields in northern China are similar to Wuda coalfield, they may be large sources of atmospheric Hg. The correlations of Hg emission flux with influence factors, such as sunlight intensity, soil surface temperature, and atmospheric Hg content, were also investigated for Wuda coalfield.

?

  相似文献   

11.
《Chemosphere》2009,74(11):1765-1772
The fluorescence excitation–emission matrix properties of 25 dissolved organic matter samples from three rivers and one lake are analysed. All sites are sampled in duplicate, and the 25 samples include ten taken from the lake site, and nine from one of the rivers, to cover variations in dissolved organic matter composition due to season and river flow. Fluorescence properties are compared to the functional properties of the dissolved organic matter; the functional assays provide quantitative information on photochemical fading, buffering capacity, copper binding, benzo[a]pyrene binding, hydrophilicity and adsorption to alumina. Optical (absorbance and fluorescence) characterization of the dissolved organic matter samples demonstrates that (1) peak C (excitation 300–350 nm; emission 400–460 nm) fluorescence emission wavelength; (2) the ratio of peak T (excitation 220–235 nm; emission 330–370 nm) to peak C fluorescence intensity; and (3) the peak C fluorescence intensity: absorbance at 340 nm ratio have strong correlations with many of the functional assays. Strongest correlations are with benzo[a]pyrene binding, alumina adsorption, hydrophilicity and buffering capacity, and in many cases linear regression equations with a correlation coefficient >0.8 are obtained. These optical properties are independent of freshwater dissolved organic carbon concentration (for concentrations <10 mg L−1) and therefore hold the potential for laboratory, field and on-line monitoring and prediction of organic matter functional properties.  相似文献   

12.

In this study, we investigated the combined effects of temperatures fluencies and mercury (Hg) on glutathione-dependent antioxidant system in fish, by measuring the oxidative stress indicator (LPO, lipid peroxidation) and the parameters involved in the glutathione-related antioxidant defense system (GPx, glutathione peroxidase; GR, glutathione reductase; GST, glutathione S-transferase; GSH, reduced glutathione), as well as the expression of related genes in grass carp, Ctenopharyngodon idella. Fish (45.37?±?3.58 g) were exposed to 10 test groups, e.g., 15 °C with/without Hg, 20 °C with/without Hg, 25 °C with/without Hg, 30 °C with/without Hg, 35 °C with/without Hg for 4 weeks. Three-way ANOVA was used to analyze the correlation between the measured parameters and experimental conditions (water temperature, Hg exposure, exposure time, and their interactions.). Our results show that there is no interaction between mercury and low temperature, but the combined effect at high temperature has been confirmed, which indicated the glutathione-dependent enzyme system in grass carp has a complex regulatory mechanism with temperature fluctuations. In the actual field monitoring, it is necessary to consider the impact of extreme temperature on the toxicity of pollutants in the aquatic ecosystem.

  相似文献   

13.
The present study reports findings on TSP loading in the ambient air of two major cities in Pakistan – Karachi and Islamabad. Data for TSP were collected at one site in Karachi and two in Islamabad between 10 December 1998 and 08 January 1999. This article reports one of the highest TSP loadings recorded so far in any megacity of the world. During the study period, average daily TSP concentrations at the Karachi site ranged from 627 to 938 μg m−3 with a mean of 668 μg m−3. On four occasions TSP concentrations were >1000 μg m−3 (range 1031–1736 μg m−3). At the Islamabad sampling site in close proximity to the city's industrial sector, daily TSP concentrations varied in the range of 428–998 μg m−3 (mean 691 μg m−3). Even at a relatively remote site of the city (Saidpur), TSP loading was high (range 145–448 μg m−3; mean 275 μg m−3). By virtue of the WHO definition, the 24-h average TSP concentrations in a busy commercial site in Karachi and in the vicinity of an industrial sector in Islamabad were in “exceedance” by a factor of 4–8. At Saidpur, the remote site, the 24-h average TSP loading exceeded the WHO guideline of 120 μg m−3 by a factor of 1.2–3.7.  相似文献   

14.
Five mercury (Hg) chemistry models are compared using the same data set for model initialisation. All five models include gas-phase oxidation of Hg(0) to Hg(II) (except for one model), fast reduction–oxidation aqueous reactions between Hg(0) and Hg(II), and adsorption of Hg(II) species to soot particles within droplets. However, the models differ in their detailed treatments of these processes. Consequently, the 48-h simulations reveal similarities but also significant discrepancies among the models. For the simulation that included all Hg species (i.e., Hg(0), Hg(II) and Hg(p)) as well as soot in the initial conditions, the maximum simulated Hg(II) aqueous concentrations ranged from 55 to 148 ng l−1 whereas the minimum concentrations ranged from 20 to 110 ng l−1. These results suggest that further experimental work is critically needed to reduce the current uncertainties in the formulation of Hg chemistry models.  相似文献   

15.
Tang Z  Yu G  Liu D  Xu D  Shen Q 《Chemosphere》2011,82(8):1202-1208
Assessment of compost maturity is essential for achieving high quality compost. In this study, fluorescence excitation-emission matrix spectroscopy combined with different analysis techniques was applied to improve the sensitivity of compost maturity assessment. Results showed that composts in two parallel piles could be believed mature after 37 d when combined with the evolution of temperature, chemical and biological indices in the two piles. Pearson correlation between the common maturity indices and fluorescence analysis parameters demonstrated that fluorescence regional integration (FRI) had a higher correlation coefficient than that of fluorescence intensities and the ratios of peaks, suggesting that FRI technique is more suitable to characterize the maturity of compost than the other two analysis techniques, i.e., peak intensity and peak ratio. Furthermore, the fluorescence spectroscopy combined with FRI analysis could be used as a valuable industrial and research tool for assessing compost maturity.  相似文献   

16.
Proton nuclear magnetic resonance (1H-NMR), UV absorbance and excitation-emission matrix (EEM) fluorescence spectroscopy were used to define the chemical characteristics of chromophoric dissolved organic matter (CDOM) in whole and C18 extracted rainwater. The average total recovery of fluorescence determined from the sum of extract and filtrate fractions relative to the whole was 86% suggesting that 14% of fluorescent CDOM in rainwater is comprised of very hydrophobic material that cannot be eluted from the column. Half the fluorescence of rainwater was recovered in the filtrate fraction which is important because it suggests that 50% of the chromophoric material present in precipitation is relatively hydrophilic. The average spectral slope coefficient was smaller in extracted samples (16.3 ± 9.0 μm?1) relative to whole samples (18.9 ± 2.8 μm?1) suggesting that the extracted material contains larger molecular weight material. Approximately one-third of the total dissolved organic carbon (DOC) in rainwater exists in the extract fraction suggesting that a large percentage of the uncharacterized DOC in rainwater can be accounted for by these hydrophobic macromolecular species. The fluorescence of extracted samples is strongly correlated with total NMR integration and is most sensitive to aromatic protons suggesting that molecules in this region are the most important in controlling the optical properties of rainwater. The lower removal efficiency of CDOM in rainwater relative to surface waters or the water-soluble fraction of aerosols during solid phase extraction (SPE) suggests that rainwater contains significantly more hydrophilic chromophoric compounds which are compositionally different than found in these other aquatic matrices.  相似文献   

17.
The concentrations of total gaseous mercury (Hg) were determined at hourly intervals along with relevant environmental parameters that include both meteorological plus criteria pollutant data during two field campaigns (September 1997 and May/June 1998). The mean concentrations of Hg for the two study periods were computed as 3.94 and 3.43 ng m−3, respectively. By separating the data into daytime and nighttime periods, we further analyzed diurnal variation patterns for both seasons. Using our Hg data sets, we were able to recognize two contrasting diurnal variation patterns of Hg between two different seasons that can be characterized as: (1) the occurrences of peak Hg concentration during daytime (fall) and (2) slight reductions in daytime Hg concentration relative to nighttime (summer). To study the systematic differences in diurnal patterns between two different seasons, we analyzed Hg data in terms of different statistical approaches such as correlation (and linear regression) and factor analysis. Results of these analyses consistently indicated that different mechanisms were responsible for controlling the daytime distribution patterns of Hg. When the relationship between Hg and concurrently determined O3 is considered, its reaction with ozone is unlikely to limit Hg levels as the dominant sink mechanism (within the ranges of ozone concentrations found during this study, regardless of season). It is on the other hand suspected that the variation of boundary layer conditions between day/night periods may have been important in introducing the relative reduction in daytime Hg levels during summer. To further provide a general account of short-term variations in Hg distribution data, it is desirable to describe other unknown sink mechanisms.  相似文献   

18.
The effects of various factors including turbidity, pH, DOC, temperature, and solar radiation on the concentrations of total mercury (TM) and dissolved gaseous mercury (DGM) were investigated in an artificial reservoir in Korea. Episodic total mercury accumulation events occurred during the rainy season as turbidity increased, indicating that the TM concentration was not controlled by direct atmospheric deposition. The DGM concentration in surface water ranged from 3.6 to 160 pg/L, having a maximum in summer and minimum in winter. While in most previous studies DGM was controlled primarily by a photo-reduction process, DGM concentrations tracked the amount of solar radiation only in winter when the water temperature was fairly low in this study. During the other seasons microbial transformation seemed to play an important role in reducing Hg(II) to Hg(0). DGM increased as dissolved organic carbon (DOC) concentration increased (p-value < 0.01) while it increased with a decrease of pH (p-value < 0.01).  相似文献   

19.
A 5.3 m sediment core and soil samples were taken from Diss Mere and its catchment. The sediment core was dated and Hg analysed on the sediment and soil samples. The Hg record of the sediment core shows that Diss Mere has been contaminated for the past thousand years and the historical trends in sediment contamination are in good agreement with the development of the weaving industry in Diss and hemp cultivation in the region. Mercury contamination in Diss Mere has been significant and reached a peak in the mid-19th century with sediment Hg concentrations over 50 μg g−1. Elevated Hg concentrations were also found in contemporary soils in residential areas with former industrial land use. Although local hemp cultivation and the traditional weaving industry were abandoned a hundred years ago, Hg contamination caused by these activities still exists in the catchment, and affects the lake.  相似文献   

20.
Neutral volatile and semi-volatile polyfluorinated organic compounds (PFC) and ionic perfluorinated compounds were determined in air samples collected at two sites in the vicinity of Hamburg, Germany, and onboard the German research vessel Atair during a cruise in the German Bight, North Sea, in early November 2007. PUF/XAD-2/PUF cartridges and glass fiber filters as sampling media were applied to collect several fluorotelomer alcohols (FTOH), fluorotelomer acrylates (FTA), perfluoroalkyl sulfonamides (FASA), and perfluoroalkyl sulfonamido ethanols (FASE) in the gas- and particle-phase as well as a set of perfluorinated carboxylates (PFCA) and sulfonates (PFSA) in the particle-phase. This study presents the distribution of PFC in ambient air of the German North Sea and in the vicinity of Hamburg for the first time. Average total PFC concentrations in and around Hamburg (180 pg m?3) were higher than those observed in the German Bight (80 pg m?3). In the German Bight, minimum–maximum gas-phase concentrations of 17–82 pg m?3 for ΣFTOH, 2.6–10 pg m?3 for ΣFTA, 10–15 pg m?3 for ΣFASA, and 2–4.4 pg m?3 for ΣFASE were determined. In the vicinity of Hamburg, minimum–maximum gas-phase concentrations of 32–204 pg m?3 for ΣFTOH, 3–26 pg m?3 for ΣFTA, 3–18 pg m?3 for ΣFASA, and 2–15 pg m?3 for ΣFASE were detected. Concentrations of perfluorinated acids were in the range of 1–11 pg m?3. FTOH clearly dominated the substance spectrum; 8:2 FTOH occurred in maximum proportions. Air mass back trajectories, cluster, and correlation analyses revealed that the air mass origin and thus medium to long range atmospheric transport was the governing parameter for the amount of PFC in ambient air. Southwesterly located source regions seemed to be responsible for elevated PFC concentrations, local sources appeared to be of minor importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号