首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
为考察浮选药剂苯胺黑药的生物降解性能,采用序批式生物膜反应器(SBBR)研究其降解苯胺黑药废水的能力,探讨曝气量、pH和填料填充率对苯胺黑药去除效果的影响。结果表明:经过70 d的培养驯化,反应器成功启动;SBBR在曝气量9 L·min~(-1),pH在7,填料填充率30%时,降解效果达到93.09%;除此以外,葡萄糖和乙酸钠作为外加碳源且投加比例不同,对降解效果产生了显著的促进或抑制作用。  相似文献   

2.
利用驯化污泥研究了邻氟苯胺、对氟苯胺、2,4-二氟苯胺的好氧生物降解性能.结果表明,3种氟苯胺的好氧生物降解性能从高到低依次为对氟苯胺、邻氟苯胺和2,4-二氟苯胺.降解动力学分析表明,除2,4-二氟苯胺在实验质量浓度8.56 mg/L时为一级反应,其他为零级反应;且它们的降解规律都符合Monod方程;30 ℃、振荡速率140 r/min为氟苯胺的最佳降解条件.同时研究了共基质条件下葡萄糖和苯胺对2,4-二氟苯胺的好氧降解的影响,葡萄糖的引入有促进作用,而苯胺只在一定浓度范围内有促进作用.氟苯胺的生产废水与生活污水合并处理以及多种组分混合废水处理是可行的.  相似文献   

3.
采用自制厌氧反应器进行不同基质与苯胺黑药的共代谢特性研究。结果表明,经过72 d的驯化,反应器启动完成。在不同基质种类和比例条件下,蔗糖、乙酸钠、葡萄糖、淀粉和维生素C对苯胺黑药的厌氧降解有促进作用。当乙酸钠与苯胺黑药的质量比为2∶1时降解效率最高,出水苯胺黑药浓度23.21 mg·L~(-1),降解率82.00%,出水COD为35.6 mg·L~(-1),去除率92.90%。对外加基质与苯胺黑药质量比为2∶1时的实验数据进行动力学分析,发现无外加基质组和共代谢基质为葡萄糖、蔗糖、淀粉和乙酸钠时,苯胺黑药的降解过程均符合一级动力学规律,而维生素C并不符合。反应速率常数的顺序为乙酸钠淀粉葡萄糖蔗糖空白。  相似文献   

4.
以乙酸钠作为碳源,给阴阳极外加2V的直流电压,考察了不同低C/N对连续运行的生物膜-电极反应器反硝化的影响。结果表明,当C/N从1.5∶1减少到0.8∶1时,生物膜-电极反应器NO-3-N去除率从99.5%下降至64.1%,出水NO-3-N的浓度从0.27mg/L增加到17.96mg/L,出水NO-2-N的浓度从0.24mg/L增加到2.6mg/L,出水NH+4-N浓度从4.93mg/L下降至3.35mg/L。当C/N为1.5∶1时,生物膜-电极反应器的自养反硝化率仅为8.0%,当C/N降至1∶1时,自养反硝化率增加至30.4%,然而,当C/N从1∶1进一步降低至0.8∶1时,自养反硝化率却从30.4%下降至21.8%。各C/N条件下,生物膜-电极反应器出水的SCOD浓度均高于对照生物膜反应器。生物膜-电极反应器的自养反硝化率与其出水pH呈正相关。  相似文献   

5.
采用序批式气升环流反应器(SAR)处理硝基苯废水,研究了硝基苯浓度和COD/N对处理过程的影响,分析了缺氧段COD和硝基苯降解动力学。结果表明,硝基苯在缺氧段被还原为苯胺,而苯胺在好氧段得到快速降解。硝基苯与基质(葡萄糖-COD)最佳质量比为1∶35~1∶25,该条件下反应器对硝基苯和COD去除率分别可达99%~100%和92%~94%。由于受传质限制,进水需要维持106 mg/L的氨氮(葡萄糖-COD/N比值为100∶10)以满足缺氧段微生物对氨氮的营养需要。缺氧段COD的降解符合二级动力学,反应速率常数k2为2.7×10-4L·mg/h;硝基苯的降解符合一级动力学,反应速率常数k1为0.14 h-1。研究表明,序批式气升环流反应器可作为一种简单而有效的反应器用于处理硝基苯废水。  相似文献   

6.
一株苯胺降解菌的分离鉴定及其降解特性   总被引:1,自引:0,他引:1  
为研究苯胺污染的生物控制,通过驯化培养,从南京化工厂污水处理厂的活性污泥中分离出一株高效苯胺降解菌——菌株AN4.生理生化试验鉴定菌株AN4为金黄杆菌属(Chryseobacterium sp.).菌株AN4利用苯胺生长和降解苯胺的最适温度为30 ℃、pH为7.0,它可在苯胺质量浓度低于3 000 mg/L的无机盐固体培养基上生长.菌株AN4除可降解苯胺外,还可以苯酚、苯甲酸、硝基苯、甲苯、萘、氯苯、二甲苯作为唯一碳源生长,蛋白胨可加速其对苯胺的代谢.代谢机制研究证实,菌株AN4在邻苯二酚1,2-双加氧酶作用下经邻位裂解途径降解苯胺.  相似文献   

7.
超声波/零价铁降解对硝基苯胺的试验研究   总被引:6,自引:0,他引:6  
对在超声波、零价铁和超声波/零价铁(U/Fe0)等体系中对硝基苯胺的降解规律进行了研究。研究结果表明,对硝基苯胺在超声波作用下,降解规律符合一级反应动力学模型,但超声波对高浓度的对硝基苯胺降解效果较差。在U/Fe0体系中,超声波和零价铁对降解对硝基苯胺具有协同作用,对硝基苯胺降解速率显著提高。降解机理显示,对硝基苯胺在零价铁表面上发生原电池反应,被还原为对苯二胺,在超声波作用下进一步降解。在U/Fe0体系中添加Cu2+,形成Fe/Cu原电池,可进一步促进对硝基苯胺的降解速率,降解效率优于铸铁屑形成的Fe/C原电池。  相似文献   

8.
探究在碳纤维毡电极上利用恒电压电化学聚合聚吡咯(PPy)的聚合效果,并利用傅里叶变换红外线(FTIR)及扫描电镜(SEM)对其进行表征;将聚吡咯覆膜改性后的碳纤维毡电极应用到自养反硝化的电极生物膜反应器(BER)中,考察电极改性对自养反硝化电极生物膜反应器的硝酸盐氮去除性能影响,并研究电极改性对生物膜附着量及生物膜微生物群落的影响。结果表明,恒电压电化学聚合能够在碳纤维电极表面形成均匀稳定的聚吡咯膜,从而实现聚吡咯在炭纤维毡电极上的覆膜改性。改性后的电极应用到自养反硝化电极生物膜反应器中,可使反应器对NO_3~--N的去除效率由对照反应器的67.3%增加到83.9%,处理效果提高了24.7%。对反应器内电极生物膜进行生物量测定和扫描电镜分析,可以看到R2反应器中改性电极生物膜附着量明显多于R1反应器中未改性电极生物膜的附着量,说明电极改性有利于生物膜的附着。电极生物膜微生物16S rDNA分析中R1反应器电极生物膜菌落组成中优势菌属为Dechloromonas sp.,而R2反应器电极生物膜的优势菌为Hydrogenophaga sp.(噬氢菌属)和Thauera sp.(陶厄氏菌属),两者有明显差别,并且R2反应器比R1反应器生物膜的菌落组成更多样化,这说明电极材料的改性对电极生物膜微生物群落的组成产生了影响。  相似文献   

9.
采用改进的好氧-厌氧方法处理苯胺废水,研究了各个操作变量梯度包括苯胺浓度、硝基苯浓度等对苯胺废水处理的影响,并加入硝基苯作为影响参数。实验结果表明,各个变量均在不同程度上影响苯胺废水的处理。经过厌氧-好氧处理后,COD降到200 mg/L以下;提高苯胺浓度时,COD值增大;进水TOC浓度为167.80 mg/L,去除率为79.6%;加入硝基苯与苯胺的降解具有协同作用。在厌氧温度35~40℃,好氧温度28~32℃条件下,进水COD在4 000~6 000 mg/L,苯胺浓度180~250 mg/L左右,处理后出水COD值达到200~500 mg/L,苯胺4.5~6.5 mg/L左右,去除率约85%以上。出水水质可达到《污水综合排放标准(》GB 8978-1996)的排放标准。  相似文献   

10.
生物膜电极法降解氯苯、二氯苯的研究   总被引:2,自引:0,他引:2  
研究证实,氯苯和二氯苯在生物膜电极下降解速率显著快于常规方法.质谱分析可知,氯苯的中间产物存在苯酚、乙酸,二氯苯的3种同分异构体中间产物均存在氯酚、苯酚和乙酸.中间产物表明,氯苯、二氯苯的生物膜电极降解途径完全不同于常规生物降解途径,而阴极的还原气氛对脱氯起到关键性影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号