首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水   总被引:1,自引:0,他引:1  
针对抗生素制药废水组分复杂、毒性强、难生物降解的特点,以Ce负载天然沸石作为催化剂(Ce/NZ),采用臭氧催化氧化-曝气生物滤池(BAF)组合工艺对抗生素制药废水二级生化处理出水进行深度处理。结果表明,Ce/NZ催化剂可显著改善臭氧预处理单元的处理效率,在臭氧进气浓度为50 mg·L~(-1)、臭氧进气量为600 mL·min~(-1)、催化剂用量为1 g·L~(-1)、臭氧反应时间为120 min的条件下,臭氧催化氧化预处理对抗生素制药废水的COD去除率达到43%,平均COD由220 mg·L~(-1)降至125 mg·L~(-1),BOD_5/COD由0.12升至0.28,废水的可生化性得到显著提高。臭氧预处理单元出水采用BAF进行生化处理,在进水平均COD为125 mg·L~(-1)、平均NH_4~+-N为12 mg·L~(-1)、水力停留时间为4 h、气水比为4∶1的条件下,COD和NH_4~+-N的平均去除率分别为62%和64%。组合工艺处理后出水平均COD和NH_4~+-N分别为46 mg·L~(-1)和4.1 mg·L~(-1),出水水质可以稳定达到《发酵类制药工业水污染物排放标准》(GB 21903-2008)。相较于单独BAF工艺,组合工艺出水COD和NH_4~+-N平均去除率分别提高了66%和15%,出水水质明显优于单独BAF工艺出水。  相似文献   

2.
臭氧-曝气生物滤池深度处理印染制革园区废水   总被引:3,自引:0,他引:3  
针对浙江省某印染制革园区污水处理厂二级生化出水,开展了处理规模36~120 t/d的臭氧-曝气生物滤池中试研究,对臭氧预处理进行优化,考察了臭氧预处理优化后与不同填料BAF组合对污染物的去除情况。结果表明,当臭氧预处理条件为投加量25 mg/L,三点投加且投加比为6:3:1,臭氧接触时间为42 min时,处理效果较好且最经济;在此臭氧预处理条件下,臭氧-活性炭BAF的出水COD能稳定在50 mg/L,色度稳定在5度,满足《城镇污水厂污染物排放标准》(GB 18918-2002)中的一级B排放要求;臭氧-混合填料BAF的出水COD和色度也能基本达到一级B排放要求;而臭氧-陶粒BAF出水COD和色度都未能达到一级B排放要求。  相似文献   

3.
为了开发高效快速的污水深度处理工艺及设备,本研究对单一O3,O3/UV,O3/H_2O23种高级氧化工艺进行筛选和参数优化,从经济效益及反应效率的角度,O3/UV工艺较佳。选取O3/UV与曝气生物滤池(BAF)组合工艺对工业园区污水厂生化尾水进行处理,考察了臭氧投加量、臭氧接触时间、紫外灯功率等影响因素。结果表明,在臭氧投加量为15mg·L~(-1),臭氧接触时间4 min,紫外灯功率960 W,BAF水力负荷0.51 m·s-1,气水比3∶1的条件下,出水达到城镇污水厂一级A排放标准。  相似文献   

4.
臭氧强化光催化对垃圾渗滤液的深度处理   总被引:2,自引:0,他引:2  
用臭氧强化光催化工艺对垃圾渗滤液进行了深度处理,优化了工艺参数,对比了最佳工艺条件下各时间段的出水指标.该工艺在催化剂投加量0.5 g/L,pH值8.45左右,O3流量0.4 L/min,O3浓度16.8 mg/L,初始COD浓度430 mg/L时最佳,COD和UV254的去除率均在60%以上;最佳工艺条件下1.0 h出水的BOD5提高了75.42%,2.0 h出水BOD5/COD从初始的0.05升高至0.23.结果表明,臭氧强化光催化工艺不仅可以提高处理能力,还有效地改善了出水的可生化性.  相似文献   

5.
曝气生物滤池处理印染废水二级出水试验研究   总被引:3,自引:0,他引:3  
考察了曝气生物滤池(BAF)对经水解、接触氧化二级处理的印染废水进行深度处理的效果,结果表明,针对达到二级标准的生化处理出水,BAF水力负荷为0.9—1.6m/h,气水比(2~3):1时,COD去除率稳定在50%左右,出水可达到一级排放标准(COD≤100mg/L)。  相似文献   

6.
采用臭氧微气泡曝气生物膜反应器(MOABR)对实际校园污水二级生化处理出水进行深度处理,考察了臭氧投加量对MOABR运行性能和生物膜活性的影响,并与传统曝气生物滤池(BAF)深度处理工艺进行比较。结果表明,MOABR工艺中,臭氧微气泡曝气处理效果优于空气微气泡曝气,臭氧投加量对MOABR运行性能有明显影响。在臭氧投加量与进水COD比值(O/C)为0.007 1时,MOABR运行性能最优,COD去除率及去除负荷分别为61.7%、2.25kg/(m~3·d),氨氮去除率及去除负荷分别为17.4%、0.32kg/(m~3·d),臭氧投加量过高对生物膜活性有抑制作用。MOABR处理能力显著高于BAF,在最优臭氧投加量条件下(O/C为0.007 1),MOABR平均COD去除负荷为BAF的2.5倍,平均氨氮去除负荷为BAF的1.7倍。MOABR中微气泡臭氧氧化的作用为改善废水可生化性,COD的去除仍主要依靠生物降解实现。  相似文献   

7.
臭氧预氧化处理葡萄酒废水   总被引:1,自引:0,他引:1  
葡萄酒废水的季节性波动常造成生化处理系统不稳定,使传统的生化处理工艺难以满足新的污水排放标准的要求。研究了臭氧预处理工艺对葡萄酒废水的处理效果及主要控制参数,结果表明,单独的臭氧预氧化对COD几乎无去除效果,但对色度的去除可达到90%;采用O3/H2O2组合工艺可使COD的去除率提高4倍。经臭氧预处理的出水再采用SBR进行好氧处理时,出水COD能降至80 mg/L以下,COD的降解速度及程度都高于未经臭氧处理的稀释原水。高效液相色谱(HPLC)分析显示,经臭氧处理后,除麦芽糖成分被完全去除外,其他各种成分的数量变化不大;GC/MS对废水中多酚类有机物的分析显示,臭氧预处理可将大量难降解的多酚类有机物分解,从而有助于后续生化处理的出水达到更高的污水排放标准。  相似文献   

8.
臭氧作为强氧化剂对有机物的氧化反应有选择性,能很快氧化分解木质素等发色有机物,中试研究了臭氧投加量、接触时间等对造纸废水生化处理出水深度处理的影响。结果表明:臭氧投加量为63.47~243.49mg/L时,COD、254nm紫外光下的吸光度(UV254)和色度去除率分别为22.61%~46.67%、22.35%~69.09%及55%~93%,其中色度有较高的去除率,即使在臭氧投加量仅为63.47mg/L时色度去除率也达到约55%;在接触时间为0.62~2.53h时,随着接触时间的延长,COD、UV254及色度去除率随之增加,而1.10h后色度去除率增加不多。以深度脱色为目标,完成了5 000m3/d的工程应用,臭氧相对投加率为0.20~0.50mg(以每毫克COD计)时,色度去除率为55.0%~84.0%。  相似文献   

9.
Fenton氧化-生化组合工艺处理染料中间体废水   总被引:9,自引:4,他引:9  
针对染料中间体废水具有COD高、BOD5/COD低和具有生物毒性的特性,采用Fenton氧化-水解酸化-好氧组合工艺进行染料中间体生产废水的处理试验,试验结果表明:废水经Fenton氧化及水解酸化工序后,废水的BOD5/COD值由0.03升高至0.48,经好氧生化工序处理后的出水COD和BOD5浓度分别达122.6 mg/L和54.6 mg/L,符合《污水综合排放标准》(GB8978-1996)二级标准,该组合工艺COD总去除率达94%.  相似文献   

10.
臭氧高级氧化法降解生化尾水中喹啉   总被引:1,自引:0,他引:1  
采用O_3、O_3/UV、O_3/H_2O_23种工艺对喹啉的去除、矿化效果,生化性提高及降解规律等方面进行了对比分析,结果表明,单独H_2O_2、单独UV不能有效地降解喹啉;单独O_3、O_3/H_2O_2对喹啉有一定的去除效果,但两者差别不大;反应时间为6 min时,喹啉去除率分别为78.7%和79%,反应30 min时,喹啉的矿化率为33.4%和38.2%;O_3/UV工艺明显优于前2种,在6 min内,喹啉基本降解完全,30 min矿化率超过90%;3种工艺的降解过程都很好地满足伪一级动力学规律,O_3/UV的表观反应速率常数(0.7204 min~(-1))大于单独O_3(0.2832 min~(-1))和O_3/H_2O_2(0.29 min~(-1))工艺的表观反应速率常数;采用O_3/UV工艺处理实际工业园区生化尾水,6 min内喹啉降解完全,30 min时,COD去除率为88%,TOC的去除率达到89%,UV254的去除率为96%,出水指标达到《城镇污水处理厂污染物综合排放标准》一级A标准。  相似文献   

11.
电镀废水反渗透(RO)浓水具有盐度高、难降解有机物浓度高、含重金属等特点,是电镀废水处理工艺提标改造的难点。采用臭氧-曝气生物滤池(BAF)组合工艺,对电镀废水反渗透(RO)浓水中有机物进行处理,使出水COD浓度达到《电镀污染物排放标准》中标准。考察了废水初始p H、臭氧浓度和反应时间等因素对臭氧氧化效果的影响,以及水力停留时间(HRT)和气水比对BAF单元COD去除效果的影响。经优化后的系统运行工况为:臭氧氧化单元中废水初始p H值为10.0,臭氧浓度为31.96 mg·L~(-1),反应时间为40 min;BAF的HRT为3 h,气水比为5∶1。在最佳工况下,当进水COD为180~240 mg·L~(-1)时,经组合工艺处理后COD去除率达78.6%,平均出水COD浓度为47 mg·L~(-1),达到了标准的要求。  相似文献   

12.
采用臭氧-BAF组合工艺处理西北地区微污染窖水,使用比紫外吸收值(SUVA)、有机物分子量分布和三维荧光光谱等指标分析了臭氧预氧化对微污染窖水有机物特性的影响,研究了组合工艺对不同污染物的去除效果。结果表明:原水经臭氧预氧化后类腐殖质、类色氨酸物质含量分别下降65%、18%;水中小分子有机物含量增加,进水可生化性提高;经臭氧预氧化后BAF反应器出水类色氨酸物质含量低于未经臭氧预氧化的BAF反应器出水,臭氧预氧化起到了强化后续生物处理的作用。反应器出水CODMn、NH_3-N浓度分别为2.97 mg·L~(-1)、0.12 mg·L~(-1),满足生活饮用水卫生标准的要求;TOC、UV254和TN去除率分别为55%、53%和45%,水中污染物质得到有效去除。  相似文献   

13.
常规组合工艺-稳定塘-湿地系统处理印染废水   总被引:1,自引:1,他引:0  
针对工业园区印染企业产生的印染废水和生活污水,采用独特的"常规组合工艺与‘植物稳定塘-人工湿地系统’联合工艺"对其进行集中统一处理,并考察了运行效果。数据结果表明,系统出水COD、BOD5、SS、色度、NH3-N和TP平均分别为63.2 mg/L、13.8 mg/L、5.0 mg/L、49倍、0.2 mg/L和0.4 mg/L,出水水质达到国家污水综合排放一级标准(GB8978-1996)。该工艺运行稳定,可有效去除废水中的COD、SS和色度,去除率均在90%以上。按日均处理量4×104m3计算,此工艺每年将削减COD排放近30万t。  相似文献   

14.
针对颜料废水有机物浓度含量高、水质波动大、可生化性差等特点,实验采用了UASB-PACT(powdered activated carbon treatment)组合工艺在常温下对颜料废水进行中试研究。实验共进行了119 d,分2个阶段进行,第1阶段为低浓度运行阶段,进水COD逐步提升至3 000 mg·L~(-1)左右,经过36 d的运行,系统出水COD可稳定保持在500 mg·L~(-1)以下,UASB、PACT反应器对COD的平均去除率分别为37.0%和80.5%;第2阶段为负荷提高阶段,共运行了83 d,UASB、PACT反应器对COD的平均去除率分别为53.9%和81.7%。76 d后在平均进水浓度为6 207.75 mg·L~(-1)的条件下,出水COD500 mg·L~(-1)。在工程应用阶段,经过6个月的调试,在进水量1 920 m3·d-1、COD为5 000 mg·L~(-1)的条件下,UASB反应器的出水COD1 500 mg·L~(-1),PACT出水COD在300~500 mg·L~(-1)之间波动,去除率分别为50.9%和75.3%。实验结果表明,针对有机颜料废水,采用UASB-PACT组合工艺能够达到很好的处理效果,出水满足《污水排入城镇下水道水质标准》(CJ 343-2010)中A级排放要求。  相似文献   

15.
分别采用水解酸化/好氧MBBR/BAF和水解酸化/好氧MBBR/臭氧氧化/BAF 2种组合工艺对实际靛蓝废水进行处理规模为24 m3/d的中试研究。实验结果表明,当进水COD平均初始浓度为2 100 mg/L、平均色度为90倍、系统总水力停留时间为40 h时,前一种组合工艺对COD和色度的去除率分别达93.27%和89.87%;而后一种组合工艺对COD和色度的去除率分别达97.96%和100%,工艺中臭氧氧化单元可使处理后出水中有机物的数量大大降低。表明水解酸化/好氧MBBR/臭氧氧化/BAF组合工艺处理靛蓝废水更为有效,但增加臭氧氧化单元会使每吨废水处理成本增加0.55元。  相似文献   

16.
采用两级厌氧好氧活性污泥法(A/O)与活性污泥浸没式膜生物反应器(AS-SMBR)结合的生化处理系统和纳滤(NF)深度处理系统,处理BOD5/NH3-N比为0.13~0.22,BOD5/COD比仅0.11左右的老龄化垃圾渗滤液。在水力停留时间不变的条件下,采用同步培养驯化法,控制生化系统DO值在3~4 mg/L,回流比为400%~500%,pH≥7.2,考察了处理系统对垃圾渗滤液中主要污染物的去除情况和MLSS、pH和SV30等运行指标的变化情况,结果表明,生化系统出水的NH3-N去除率>99%,COD平均去除率>50%;NF系统出水的COD去除率≥91%,NH3-N浓度<8 mg/L,且回收率≥75%,出水完全达到GB16889-2008标准中表2的污染物浓度限值和提标改造的要求。  相似文献   

17.
曝气生物滤池深度处理混合印染废水   总被引:5,自引:0,他引:5  
采用曝气生物滤池(BAF)反应器作为混合印染废水的深度处理工艺,对BAF的启动情况和不同气水比条件下BAF的深度处理效能进行探讨。结果表明,采用同步连续法可实现BAF在15 d内快速启动;当气水比为3∶1时,二级处理出水的处理效果最好,氨氮、COD和色度去除率分别达到77.8%、61.5%和90%。比较BAF中生物膜和活性污泥对二级处理出水的深度处理效能性能时发现,在相同生物量和环境条件下生物膜表现了出更强深度处理能力。  相似文献   

18.
联合运用聚铁混凝-臭氧-曝气生物滤池(BAF)对晚期垃圾场的渗滤液进行深度处理。在废水进水COD=601mg/L,色度=400倍时,提出最佳工艺条件:聚铁0.6 mL/L,臭氧用量144 mg/L,BAF停留时间7 h。研究表明,聚铁去除大部分悬浮性有机物,臭氧降解难生物降解有机物并提高废水的可生化性,BAF进一步降解有机物,最终出水COD为75 mg/L,深度处理成本仅为5.5元/t。  相似文献   

19.
以模拟城市污水为处理对象,采用循环式活性污泥法(CAST)反应器,对交替缺氧/好氧模式下系统去除污染物的性能进行了研究。结果表明,运行期间系统内有机物的去除率稳定,出水COD小于40 mg/L,COD平均去除率为91.7%;NH4+-N、TN的平均去除率分别为83.9%、72.4%,出水TN以NO3--N为主;系统的除磷性能良好,磷酸盐的平均去除率为90.6%。此外,出水COD、TN和TP均达到《城镇污水处理厂污染物排放标准》(GB-18918-2002)的一级A要求。  相似文献   

20.
采用Nano-TiO_2/O_3和Nano-TiO_2/UV/O_3进行小试实验。通过对DOC、UV254、BrO_3~-和甲醛进行检测分析,研究了不同体系去除腐殖酸(HA)并控制臭氧副产物生成的效果。结果表明,当HA浓度为10 mg·L~(-1)时,Nano-TiO_2/O_3体系对DOC的去除主要在反应进行20 min内完成,去除率仅达12.0%左右,对UV254的去除主要发生在2 min内,去除率仅达14.5%左右;而Nano-TiO_2/UV/O_3体系DOC和UV254的去除率分别达32.8%和53.3%。HA的存在显著减少了NanoTiO_2/O_3体系BrO_3~-的生成量,出水BrO_3~-浓度为29.00μg·L-1,而Nano-TiO_2/UV/O_3体系出水BrO_3~-浓度为5.00μg·L-1。研究表明,相比Nano-TiO_2/O_3体系,Nano-TiO_2/UV/O_3体系能更好地控制BrO_3~-生成,同时能提高对HA的去除效果,且无甲醛生成的风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号