首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 893 毫秒
1.
Activated carbon adsorption and chemical oxidation followed by activated carbon adsorption of resorcinol in water has been studied. Three chemical oxidants have been used: hypochlorite, permanganate and Fenton's reagent. The influence of concentrations of resorcinol and activated carbon on adsorption removal rates has been investigated. Both isotherm and adsorption kinetics have been studied. Results are fit well by Freundlich isotherms and adsorption rates of resorcinol were found to follow a pseudo-second-order kinetic model. However, pyrogallol, an intermediate of resorcinol oxidation with permanganate and Fenton's reagent, showed an unfavourable isotherm type. At the conditions investigated, chemical oxidation allows slight reductions of TOC and intermediates formed were found to inhibit the adsorption rate of TOC in the case of permanganate and Fenton's reagent oxidation, likely due to formation of some polymer pyrogallol product. The adsorption process was found to be controlled by pore internal diffusion, which justifies the poor affinity of oxidation intermediates toward activated carbon since molecules of larger size should diffuse rapidly for the adsorption to be effective.  相似文献   

2.
Flotron V  Delteil C  Padellec Y  Camel V 《Chemosphere》2005,59(10):1427-1437
The use of the Fenton's reagent process has been investigated for the remediation of environmental matrices contaminated by polycyclic aromatic hydrocarbons (PAHs). Laboratory experiments were first conducted in aqueous solutions, to study the kinetics of oxidation and adsorption of PAHs. Benzo[a]pyrene was more rapidly degraded than adsorbed, while only partial oxidation of fluoranthene occurred. In the case of benzo[b]fluoranthene, its adsorption prevented its oxidation. Besides competition effects between PAHs were found, with slower oxidation of mixtures as compared to single PAH solutions. Apparition of some by-products was observed, and a di-hydroxylated derivative of benzo[a]pyrene could be identified under our conditions. Consequently, application to solid environmental matrices (soil, sludge and sediment samples) was performed using large amounts of reagents. The efficiency of the Fenton treatment was dependent on the matrix characteristics (such as its organic carbon content) and the PAH availability (correlated to the date and level of contamination). However, no pH adjustment was required, as well as no iron addition due to the presence of iron oxides in the solid matrices, suggesting the potential application of Fenton-like treatment for the remediation of PAH-contaminated environmental solids.  相似文献   

3.
根据滑动弧放电等离子体适于降解高浓度有机物废气的特性,结合活性炭吸附法,提出了吸附器的吸附浓缩和热脱附-等离子体氧化净化有机废气的方法。在活性炭吸附过程中,最初2 h内甲苯净化率达到100%,随着时间的增加净化率下降;在热脱附滑动弧放电等离子体净化过程中,甲苯降解效率最高为97.3%。将滑动弧放电等离子体反应器出口气相产物收集进行FT-IR检测,发现放电后有CO2、CO、H2O和NO2产生,并分析了甲苯的降解机理。  相似文献   

4.
The destruction of a carbon tetrachloride DNAPL and a chloroform DNAPL was investigated in reactions containing 0.5 mL of DNAPL and a solution of modified Fenton's reagent (2M H2O2 and 5mM iron(III)-chelate). Carbon tetrachloride and chloroform masses were followed in the DNAPLs, the aqueous phases, and the off gasses. In addition, the rate of DNAPL destruction was compared to the rate of gas-purge dissolution. Carbon tetrachloride DNAPLs were rapidly destroyed by modified Fenton's reagent at 6.5 times the rate of gas purge dissolution, with 74% of the DNAPL destroyed within 24h. Use of reactions in which a single reactive oxygen species (hydroxyl radical, hydroperoxide anion, or superoxide radical anion) was generated showed that superoxide is the reactive species in modified Fenton's reagent responsible for carbon tetrachloride DNAPL destruction. Chloroform DNAPLs were also destroyed by modified Fenton's reagent, but at a rate slower than the rate of gas purge dissolution. Reactions generating a single reactive oxygen species demonstrated that chloroform destruction was the result of both superoxide and hydroxyl radical activity. Such a mechanism of chloroform DNAPL destruction is in agreement with the slow but relatively equal reactivity of chloroform with both superoxide and hydroxyl radical. The results of this research demonstrate that modified Fenton's reagent can rapidly and effectively destroy DNAPLs of contaminants characterized by minimal reactivity with hydroxyl radical, and should receive more consideration as a DNAPL cleanup technology.  相似文献   

5.
研究了 5种国产活性炭吸附水中沙林的性能及影响因素。果壳质活性炭的吸附性能优于煤质活性炭。果壳活性炭WP 2 0 2的吸附等温线方程为 qe=11 45C0 39e ,其粉状炭在 10min时能达到吸附容量的 98%。活性炭颗粒小则吸附速度快 ,温度升高不利于吸附。活性炭与水中的氯反应后 ,吸附性能下降 3 0 % ,在含盐量 2 0 0 0mg/L的苦咸水中吸附量降低 5 %。处理化学战剂 -沙林染毒水宜多种水处理技术相结合 ,并采用活性炭吸附作为最后一级处理单元  相似文献   

6.
改性污泥活性炭对水中镉离子的吸附性能   总被引:3,自引:0,他引:3  
以城市污水处理厂的剩余污泥为原料,氯化锌为活化剂制备污泥活性炭,对一部分污泥活性炭用6.0 mol/L的硝酸进行改性,并研究了未改性和改性的污泥活性炭对Cd2+的吸附行为的影响。结果表明,在pH为5.0、Cd2+初始浓度为100 mg/L、吸附剂投加量为2.0 g/L、反应温度为25℃时,未改性的污泥活性炭吸附容量为8.45 mg/g,硝酸改性的污泥活性炭吸附容量达到了23.35 mg/g。改性和未改性的污泥活性炭对Cd2+都有较好的吸附容量,硝酸改性大幅度提高了污泥活性炭对Cd2+的吸附性能。常温下改性污泥活性炭对Cd2+的吸附符合Langmuir吸附等温式。  相似文献   

7.
以花生壳为原料,氯化锌为活化剂制备花生壳活性炭,采用高分辨电子扫描电镜(SEM)和氮吸脱附曲线对花生壳活性炭进行了表征.从热力学和动力学的角度,研究了花生壳活性炭对亚甲基蓝溶液的吸附行为.热力学研究表明,花生壳活性炭对亚甲基蓝的吸附符合Langmuir等温吸附方程,该吸附是自发吸热过程,吸附自由能为-52.4017~-95.1765 kJ/mol,吸附熵变为214 J/(mol·K),吸附焓变为57.49796 kJ/mol.动力学研究表明,花生壳活性炭对亚甲基蓝的吸附符合二级反应动力学方程反应特征.  相似文献   

8.
Choi KJ  Kim SG  Kim CW  Kim SH 《Chemosphere》2005,58(11):1535-1545
Removal performances of endocrine disrupting chemicals (EDC) such as amitrol, nonylphenol, and bisphenol-A were evaluated in this study using granular activated carbon (GAC) adsorption. This study found that GAC adsorption was effective in removal of EDCs with high Kow value. Nonylphenol and bisphenol-A were effectively adsorbed onto all carbons (including the used carbons) tested in this study. As indicated by Kow value, nonylphenol was more effectively adsorbed than bisphenol-A. The coal-based carbon was found more effective than other carbons in the adsorption of nonylphenol and bisphenol-A due to its larger pore volume. The adsorption capacity reduced with the operation year, and the extent of the reduction was different depending upon the carbon type and the operation year. Amitrol was effectively removed by biological degradation, but was poorly adsorbed. Since the microbes residing at the used carbons already accustomed to amitrol, the used carbons removed amitrol better than the virgin carbons. Although the coal-based carbon showed the best removal performance of amitrol, GAC adsorption could not be recommended for amitrol removal because considerable portion of incoming amitrol (9–87%) passed through GAC adsorption column. According to this study, pore volume mainly influenced the adsorption capacity, but the surface charge was also important due to electrical interaction. The adsorption parameters for nonylphenol and bisphenol-A provided by this study could be valuable when GAC adsorption was considered to handle an accidental spill of nonylphenol and bisphenol-A.  相似文献   

9.
Zhang G  Qu J  Liu H  Cooper AT  Wu R 《Chemosphere》2007,68(6):1058-1066
CuFe2O4/activated carbon magnetic adsorbents, which combined the adsorption features of activated carbon with the magnetic and the excellent catalytic properties of powdered CuFe2O4, were developed using a simple chemical coprecipitation procedure. The prepared magnetic composites can be used to adsorb acid orange II (AO7) in water and subsequently, easily be separated from the medium by a magnetic technique. CuFe2O4/activated carbon magnetic adsorbents with mass ratio of 1:1, 1:1.5 and 1:2 were prepared. Magnetization measurements, BET surface area measurements, powder XRD and SEM were used to characterize the prepared adsorbents. The results indicate that the magnetic phase present is spinel copper ferrite and the presence of CuFe2O4 did not significantly affect the surface area and pore structure of the activated carbon. The adsorption kinetics and adsorption isotherm of acid orange II (AO7) onto the composites at pH 5.2 also showed that the presence of CuFe2O4 did not affect the adsorption capacity of the activated carbon. The thermal decomposition of AO7 adsorbed on the activated carbon and the composite was investigated by in situ FTIR, respectively. The results suggest that the composite has much higher catalytic activity than that of activated carbon, attributed to the presence of CuFe2O4. The variation of the adsorption capacity of the composites after several adsorption-regeneration cycles has also been studied.  相似文献   

10.
A comparative study has been conducted on adsorption/desorption of six hazardous organic vapors on synthetic resin (XAD4) and activated carbon, using a differential reactor involving the expansion of a quartz spring. While both sorbents can effectively remove the organic vapors, it was observed that at low concentrations activated carbon adsorbed more organic vapor than synthetic resin. At higher, industrial concentrations, the resins adsorbed more vapor as demonstrated by the slopes of the equilibrium isotherms. The resin also showed much higher desorptlon.

The effective Intraparticle diffusion coefficients (De) were observed to be strongly dependent on solute concentration. Pore diffusion dominated the adsorption/desorption of the six organic vapors on XAD4 resin. For the carbon system, pore diffusion dominated the adsorption but surface diffusion contributed to the desorptlon process. This is believed to be due to higher Interaction of the adsorbates with activated carbon.  相似文献   

11.
Lu Q  Sorial GA 《Chemosphere》2004,55(5):671-679
The impact of pore size of activated carbon fibers (ACFs) on adsorption capacity and on the potential for oligomerization of phenolic compounds on the surface of ACFs in the presence of molecular oxygen has been investigated in this study. Compared with granular activated carbon (GAC), ACFs have unique pore size distributions, suitable to be used to elucidate the effect of pore structure on adsorption. Adsorption isotherm data were collected for o-cresol and 2-ethylphenol on four ACFs (ACC-10, ACC-15, ACC-20, and ACC-25) with different micropore volumes and BET surface area and on one type of GAC bituminous base. These isotherms were collected under anoxic (absence of molecular oxygen) and oxic (presence of molecular oxygen) conditions. No significant impact of the presence of molecular oxygen on adsorption capacity was noted for ACC-10. ACC-10 has an average pore width of 19.2 A and total pore volume of 0.43 cm3g(-1). On the other hand, for the remaining ACFs, which have larger average pore width and larger pore volume, significant increase in the adsorptive capacity had been observed when molecular oxygen was present. The GAC gave the greatest difference between anoxic and oxic conditions when compared to all the ACFs studied. Binary adsorption of o-cresol and 2-ethylphenol on ACFs with the least pore size (ACC-10) also showed no significant differences between oxic and anoxic environment. The binary system under both anoxic and oxic conditions was well predicted by the ideal adsorbed solution theory (IAST).  相似文献   

12.
Methyl bromide (MeBr) is commonly used for fumigating structures and commodities. Emission of MeBr during such treatments is environmentally detrimental because of the reaction of MeBr with stratospheric ozone. In this study we evaluated adsorption of MeBr and methyl iodide (MeI) – a potential MeBr replacement, on five commercial activated carbons, and studied water-initiated catalytic decomposition of adsorbed fumigants. All carbon samples showed great adsorption affinity to MeBr and MeI, with the adsorption capacity for MeI several times greater than that for MeBr on the same carbon. For the same fumigant, adsorption was affected by the type of carbon and the concentration of fumigant. Water initiated decomposition of both fumigants, liberating Br or I as a transformation product. The rate of decomposition increased with increasing temperature, and was also influenced by the carbon type. The half-life of MeBr or MeI on Centaur, a catalytically modified carbon, was <2 h at 80°C. The rapid decomposition of MeBr and MeI on wet carbons at elevated temperatures may be used to detoxify these fumigants after adsorption on activated carbons.  相似文献   

13.
Cyclic voltammetry and spectral FTIR studies of the influence of activated carbon surface modification on the co-adsorption of metal cation (lead or iron) and phenol from aqueous acidic solution were carried out. The diversity in surface chemical structure was achieved by applying different procedures of inorganic matter removal and by modifying the carbon samples in various ways: heating under vacuum, aminoxidation in an ammonia-oxygen atmosphere, oxidation with concentrated nitric acid. The quantities of adsorbed metal ions (Pb(2+) or Fe(3+)) and phenol from solutions containing cation or phenol separately or in a mixture were determined. The adsorption capacity from acidic aqueous acidic solution depends on the chemical properties of the activated carbon surface (e.g., decrease in phenol adsorption with relative lower basicity of the adsorbent). The electrochemical parameters of electrodes made from the carbon samples were estimated, and some possible electrochemical reactions were determined from voltammograms recorded in acid electrolyte solution containing adsorbed species (separately or as a mixture). Relationships were found between metal ion adsorption and electrochemical behavior of Pb(2+)/Pb(4+) and Fe(3+)/Fe(2+) couples on the one hand, and the presence of phenol in the solutions tested and the influence of surface chemistry of the carbon electrodes on electrochemical processes on the other. The changes in adsorption capacity with respect to the adsorbates used and the changes in FTIR spectra of the carbons as a result of adsorption and/or coupling phenol molecules are discussed.  相似文献   

14.
Adsorption has been used to study the removal of atenolol, caffeine, diclofenac and isoproturon, pharmaceutical compounds as emerging contaminants and an endocrine disruptor from ultrapure water and a municipal wastewater treatment plant effluent with three carbonaceous materials: activated carbon, multiwalled carbon nanotubes and carbon nanofibers. The adsorption capacities were studied in the temperature range of 25-65°C and pH range from 3 to 9. Several model isotherms were used to model the adsorption equilibrium data. Also, the competitive adsorption was evaluated.  相似文献   

15.
R.D. Rhue  K.D. Pennell  P.S.C. Rao  W.H. Reve 《Chemosphere》1989,18(9-10):1971-1986
Competitive adsorption of ethylbenzene (EB) and water on bentonite and of p-xylene (pXYL) and water on kaolin and silica gel was studied using a technique that allowed the amount of adsorbed water and alkylbenzene to be measured independently. EB adsorption on bentonite was not affected by water at relative humidities (RH) near 0.23 but was reduced significantly at RH's near 0.50. pXYL adsorption on kaolin and silica gel decreased with increasing RH, especially above a RH of about 0.2. Increasing RH not only decreased the amount of alkylbenzene adsorption but also resulted in a change from Type-II adsorption isotherms to ones that were essentially linear. Linear isotherms for the adsorption of hydrophobic organic compounds on hydrated soil have generally been attributed to partitioning into organic carbon (OC). However, since the clays and oxide used here had very low to trace amounts of OC, it is suggested that processes involving only mineral surfaces can give rise to linear isotherms. Based on solubility considerations alone, partitioning of EB and pXYL into adsorbed water films was not considered to be an important adsorption mechanism in this study. The effect of cation hydration on the amount of water adsorbed from a mixture of water and pXYL vapors was evaluated by comparing adsorption on Li- and Na-saturated kaolin.  相似文献   

16.
Xu XR  Zhao ZY  Li XY  Gu JD 《Chemosphere》2004,55(1):73-79
Degradation of methyl tert-butyl ether (MTBE) in aqueous solution by Fenton's reagent (Fe2+ and H2O2) was investigated. Effects of reaction conditions on the oxidation efficiency of MTBE by Fenton's reagent were examined in batch experiments. Under optimum conditions, 15 mM H2O2, 2 mM Fe2+, pH 2.8 and room temperature, the initial 1 mM MTBE solution was reduced by 99% within 120 min. Results showed that MTBE was decomposed in a two-stage reaction. MTBE was first decomposed swiftly based on a Fe2+/H2O2 reaction and then decomposed somewhat less rapidly based on a Fe3+/H2O2 reaction. The detection of Fe2+ also supported the theory of the two-stage reaction for the oxidation of MTBE by Fenton's reagent. The dissolved oxygen in the solution decreased rapidly in the first stage reaction, but it showed a slow increase in the second stage with a zero-order kinetics. A reaction mechanism involving two different pathways for the decomposition of MTBE by Fenton's reagent was also proposed. Chemicals including tert-butyl formate, tert-butyl alcohol, methyl acetate and acetone were identified to be the primary intermediates and by-products of the degradation processes.  相似文献   

17.
It has been previously shown that the desorption of either a chemisorbed or a physically adsorbed gas can be enhanced by the subsequent introduction of a foreign gas. Under conditions in which desorption recovery of butane from activated, carbon was 50 to 65%, subsequent adsorption of CCl4 enhanced the recovery of butane to 100%. Recovery of CCl2F2, originally 79%, was enhanced to 99% by the same method. The method of enhanced desorption was applied to the recovery of samples from activated carbons exposed to atmospheres in Chicago, New Orleans, Philadelphia, Washington, D. C, and Cincinnati. Three different types of carbons, characterized by different distributions of pore diameters, were used simultaneously in the Cincinnati sampling. In general, the enhanced desorption technique was advantageous in providing analytical information on adsorbed samples recovered from carbon media. The enhancement effect is especially marked with hydrocarbon material. The effects of these structural attributes of the carbon media are evaluated by detailed consideration of infrared absorptions.  相似文献   

18.
Prediction of the adsorption capacity for volatile organic compounds (VOCs) onto activated carbons is elucidated in this study. The Dubinin-Radushkevich (D-R) equation was first used to predict the adsorption capacity of nine aromatic and chlorinated VOCs onto two different activated carbons. The two key parameters of the D-R equation were estimated simply from the properties of the VOCs using quantitative structure-activity relationship and from the pore size distribution of the adsorbent. The approach based on the D-R equation predicted well the adsorption capacity at high relative pressures. However, at the relative pressures lower than -1.5 x 10(-3), the D-R approach may significantly overestimate adsorption capacity. To extrapolate the approach to lower relative pressures, the integration of the D-R equation and the Langmuir isotherm, called the D-R-L model, was proposed to predict adsorption capacity over a wide range of relative pressures of VOCs. In this model, the Langmuir isotherm parameters were extracted from the predicted D-R isotherm at high relative pressures. Therefore, no experimental effort was needed to obtain the parameters of the D-R-L model. The model successfully predicted the adsorption capacity of aromatic and chlorinated hydrocarbons tested onto BPL and Sorbonorit B carbons over relative pressures ranging from 7.4 x 10(-5) to 0.03, suggesting that the model is applicable at the low relative pressures of VOCs often observed in many environmental systems. In addition, the molecular size of organic compounds may be an important factor affecting the adsorption capacity of activated carbons. For BPL carbon, an ultramicroporous adsorbent, the limiting pore volume Wo of the D-R equation decreased when the kinetic diameter of the adsorbate was larger than 6 angstroms. However, for Sorbonorit B carbon, no reduction of Wo was found, suggesting that the Wo may be related to the pore size distribution of the adsorbents, as well as to their molecular size. This size exclusion effect may play an important role in predicting the adsorption capacity of VOCs onto microporous adsorbents in the D-R-L model and in the corresponding D-R equation.  相似文献   

19.
Chen WS  Juan CN  Wei KM 《Chemosphere》2005,60(8):1072-1079
Fenton's reagent, UV/H2O2 and UV/Fenton's reagent were employed to mineralize dinitrotoluene (DNT) isomers and 2,4,6-trinitrotoluene (TNT) of spent acid in toluene nitration process. The bench-scale experiments were conducted to elucidate the influence of various operating variables on the performance of removal of total organic compounds (TOC) from spent acid, including reaction temperature, concentration of ferrous ion and H2O2 dosage. It is remarkable that organic compounds were completely mineralized by Fenton oxidation, of which removal efficiency is superior to that of UV/H2O2. Nevertheless, it makes slight difference between Fenton oxidation and UV/Fenton oxidation. According to the spectra identified by gas chromatograph/mass spectrometer (GC/MS), it is proposed that oxidative degradation of DNT isomers leads to o-, m-, p-mononitrotoluene (MNT) and 1,3-dinitrobenzene respectively. Besides, the oxidation of 2,4,6-TNT gives the 1,3,5-trinitrobenzene intermediate. Apparently, Fenton oxidation is promising for purification of spent acid industrially.  相似文献   

20.
The removal of pollutants in saline medium by the Fenton's reagent needs a more detailed investigation, since the presence of chloride may inhibit or retard degradation. Phenol was used as a model pollutant and the influence of some important process variables for the removal of total organic carbon and phenol were investigated, such as FeSO4 and H2O2 concentrations, pH and salinity. The reactivity of iron cations and alternative procedures of applying UV radiation (photo-Fenton) were evaluated. Phenol was fast and completely removed by the Fenton's process even in a high saline medium (50,000mg NaCll(-1)). However, TOC was only moderately or poorly removed in saline media, depending on the salt concentration. When the photo-Fenton process was used, mineralization was improved and high TOC removals were observed in moderately saline media (NaCl concentration < or =10,000mgl(-1)). For the highest NaCl concentration tested (50,000mgl(-1)) only a moderate TOC removal was observed (50%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号