首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The heavy intensification of agriculture in East China since the 1980s caused the decrease of lake area and water storage capacity with impediment of regulation, lake eutrophication and frequent floods. Many restoration projects have been conducted. However, the knowledge of biogeochemical factors that drive nutrient cycles during the early stage of restoration is still limited. We studied the effect of the remediation of a patch of near-shore shallow wetland on the northern bank of Chaohu Lake in the Yangtze-Huaihe region, China, which was used as rice paddy for many years, on the behavior of phosphorus. Redox potential (ORP), temperature and dissolved oxygen were monitored in situ from May 2006 to November 2007. Samples of soil pore water were collected during this time for the determination of different forms of iron and phosphorus. ORP showed a clear transition of the wetland soil from an oxidized state in winter to a reduced state in summer. The decrease of ORP correlated with the release of large amounts of Fe and P. The maxima of total dissolved Fe and total dissolved P in the summer of the second year were (13.8 ± 6.8) mg/L and (0.88 ± 0.27) mg/L, respectively. It is worth noticing that P concentration far exceeded the critical value of lake eutrophication (0.02 mg/L). The pressure of P release to the adjacent lake during the first two years of wetland restoration from rice fields should be taken into account by environmental policy makers.  相似文献   

2.
Shallow lake eutrophication is a global environmental issue. This study investigated the effects of water level variation and nutrient loadings on the growth and nutrient accumulation of Phragmites australis (reed) by field samplings in Baiyangdian Lake, the largest shallow lake of northern China. The field samplings were conducted in two sites of different nutrient loadings during the whole growth period of reeds, and three types of zones with different water depths were chosen for each site, including the terrestrial zone with water level below the ground, the ecotone zone with the water level varying from belowground to aboveground, and the submerged zone with water level above the ground. The result showed that reed growth was more limited by water level variation than nutrient loadings. The average stem lengths and diameters in terrestrial zones were about 26.3%-27.5% and 7.2%-12.0% higher than those in submerged zones, respectively. Similarly, the terrestrial status increased the aboveground biomass of reeds by 36.6%-51.8% compared with the submerged status. Both the nutrient concentrations and storages in the aboveground reeds were mainly influenced by the nutrient loadings in surface water and sediment rather than the water level variation of the reed growth environment, and the nutrient storages reached their maxima in late August or early September. It was observed that the maximum nitrogen storage occurred in the terrestrial zone with higher nutrient loadings, with the value of 74.5 g/m 2 . This study suggested that water level variation and nutrient loadings should be considered when using reeds to control and remediate eutrophication of shallow lakes.  相似文献   

3.
Wastewater stabilization ponds generate low cost by-products that are useful for agriculture. The utilization of these by-products for soil amendment and as a source of nutrients for plants requires a high level of sanitation and stabilization of the organic matter, to maintain acceptable levels of soil, water and air quality. In this study, two aquaculture wastewater treatment systems; recirculating system and a floating plant bed system were designed to improve the quality of irrigation water in local communities with low income. In both systems the grass species Lolium perenne Lam was used as a plant biofilter while vegetable specie Amaranthus viridis was used to evaluate the performance of the system and the suitability of the phyto-treated water for irrigation. It was found that the harmful material removal rate for recirculating system was 88.9% for TAN (total ammonia nitrogen), 90% for NO2--N, 64.8% for NO3--N while for floating plant bed system 82.7% for TAN, 82% for NO2--N and 60.5% for NO3--N. Comparative analysis of the efficiency of waste element removal between the two systems revealed that both systems performed well, however, plant growth was not robust for floating plant bed system while recirculating system is energy consuming. Although both systems did not attain sufficient levels of TN (total nitrogen) and TP (total phosphorus) load reduction, the treatment with L. perenne remarkably improved the irrigation water quality. A. viridis plants irrigated with the phyto-treated discharge water had lesser concentrations of heavy metals in their tissues compared to those irrigated with untreated discharge. The control plants irrigated with untreated discharge were also found to be highly lignified with few stems and small leaves.  相似文献   

4.
Effects of bacteria on nitrogen and phosphorus release from river sediment   总被引:2,自引:0,他引:2  
To better understand the mechanisms of eutrophication,we addressed the microbial processes that influence many key aspects of water-sediment systems.In this study,a large column experiment was conducted for 30 d.Along the column,solution samples were collected at different locations at different time.The samples were analyzed for physical,chemical,and biological properties of the sediment and oveflying water.The results showed that the amount of nitrogen transforming bacteria was higher than than that of phosphorous bacteria.The amount of nitrogen transforming bacteria was in the orderammonitier>denitrifying bacteria>nitrobacteria and nitrosomonas.Principal component analysis indicared that the three main factors accounted for more than 90%overall contributions for bacterium growth,which represented nutrition,organics and oxygen,and pH and redox potential(Eh)of the environment.Corresponding to the bacteria,the concentrations of nitrogen in the system was in the orderammonia(NH4 -N)>nitrate(NO3--N)>nitrite(NO2--N),The fluxes of N and P clearly showed a temporal release and adsorption processes in the water-sediment system.The large magnitude of N fluxes suggested that N might act as an important contamination source for the water quality.However,P exchange between the sediment and overlying water was less intensive during the experiment.  相似文献   

5.
Based on water quality surveys over 2 years(July to December,in 2014 and 2015) in a typical arid river in northern China the Xingtai segment of the Fuyang River basin — the variation of nitrogen(N) and phosphorus(P) was analyzed.The extent of water eutrophication of this segment was also assessed using a universal index formula for eutrophic evaluation and a logarithmic power function.The results showed that the average concentration of total N(TN) was 27.2 mg/L(NH_3-N,63.5%),total P(TP) was 2.0 mg/L(solution reactive phosphorus,68.8%).Temporal and spatial variations of N and P in this segment were observed.Concentrations of N and P in the arid season were higher than those in the rainy season.Spatially,the N and P concentrations followed the same trend;i.e.,higher in the city segment than in the suburbs,and decreasing along the river.The water eutrophication in the studied segment reached extremely high levels at all times(eutrophication index ≥76.3).Spatially,its trend was clearly linked with N and P.Water shortage,pollution accumulation and a weak self-purification function are the main reasons for the prominent eutrophication in this segment.  相似文献   

6.
The sediment distributed and insolated under lake was collected for experiments. The nutrient layer distribution conditions of sampled sediment and its physical and chemical characteristics were analyzed to simulate and assess the influence degree to lake water quality. Based on the dynamic water exchanging experiments the nutrient release process in sediment and influence mechanism to substance exchanging on water-sediment interface was studied, and the correlation between the changing content of total phosphors and total nitrogen in sediment and covered water were analyzed for setting up a simulation model. At the same time the influence degree is explained in detail. The experimental results indicated that even if clean water without nutrient contents was used for water exchangement so as to decrease pollution or prevent eutrophication, however owing to the vertical nutrient distribution in lake sediment, it will lead to the increasing release amount greatly especially when the organic nutrient contained in sediment turns into inorganic status because of isolation. Besides the release process of total phosphate (TP) and total nitrogen (TN) were modeled and each nutrient's exchanging equation at interface caused by covered water nutrient concentration changing was set up. According to the simulating prediction, TP and TN content of cover water will also sustain a steady higher level in a long period. The nutrient release amount of sediment is not only affected by the covered water concentration but also connects with accumulative time. The experiments provide the fundamental theoretical and practical basis for taking ecological restoration project. And research is helpful to prevent or restore lake eutrophication.  相似文献   

7.
High nitrate(NO_3~-)loading in water bodies is a crucial factor inducing the eutrophication of lakes.We tried to enhance NO_3~-reduction in overlying water by coupling sediment microbial fuel cells(SMFCs)with submerged aquatic plant Ceratophyllum demersum.A comparative study was conducted by setting four treatments:open-circuit SMFC(Control),closed-circuit SMFC(SMFC-c),open-circuit SMFC with C.demersum(Plant),and closed-circuit SMFC with C.demersum(P-SMFC-c).The electrochemical parameters were documented to illustrate the bio-electrochemical characteristics of SMFC-c and P-SMFC-c.Removal pathways of NO_3~- in different treatments were studied by adding quantitative~(15)NO_3~- to water column.The results showed that the cathodic reaction in SMFC-c was mainly catalyzed by aerobic organisms attached on the cathode,including algae,Pseudomonas,Bacillus,and Albidiferax.The oxygen secreted by plants significantly improved the power generation of SMFC-c.Both electrogenesis and plants enhanced the complete removal of NO_3~- from the sediment–water system.The complete removal rates of added~(15)N increased by 17.6% and 10.2% for SMFC-c and plant,respectively,when compared with control at the end of experiment.The electrochemical/heterotrophic and aerobic denitrification on cathodes mainly drove the higher reduction of NO_3~- in SMFC-c and plant,respectively.The coexistence of electrogenesis and plants further increased the complete removal of NO_3~- with a rate of 23.1%.The heterotrophic and aerobic denitrifications were simultaneously promoted with a highest abundance of Flavobacterium,Bacillus,Geobacter,Pseudomonas,Rhodobacter,and Arenimonas on the cathode.  相似文献   

8.
Fluidized bed and induced crystallization technology were combined to design a new type of induced crystallization fluidized bed reactor. The added particulate matter served as crystal nucleus to induce crystallization so that the insoluble material, which was in a saturated state, could precipitate on its surface. In this study, by filling the fluidized bed with quartz sand and by adjusting water p H, precipitation of calcium carbonate was induced on the surface of quartz sand, and the removal of water hardness was achieved.With a reactor influent flow of 60 L/hr, a fixed-bed height of 0.5 m, pH value of 9.5, quartz sand nuclear diameter of 0.2–0.4 mm, and a reflux ratio of 60%, the effluent concentration of calcium hardness was reduced to 60 mg/L and 86.6% removal efficiency was achieved. The resulting effluent reached the quality standard set for circulating cooling water. Majority of the material on the surface of quartz sand was calculated to be calcium carbonate based on energy spectrum analysis and moisture content was around 15.994%. With the low moisture content, dewatering treatment is no longer required and this results to cost savings on total water treatment process.  相似文献   

9.
To explore eutrophication and algal bloom mechanisms in channel type reservoirs, a novel enclosure experiment was conducted by changing light intensity (LI) in the Daning River of the Three Gorges Reservoir (TGR). Square enclosures (side 5.0 m) were covered on the surface with shading materials of different thickness, and with their bases open to the river. Changes and characteristics of the main eutrophication factors under the same water quality and hydrodynamic conditions but different LI were evaluated. All experimental water samples were neutral and alkalescent, with high nitrogen and phosphate concentrations, low potassium permanganate index, stable water quality, and different LI. At the same water depth, LI decreased with increasing shade material, while dissolved oxygen and water temperature were both stable. The growth peak of phytoplankton was with light of 345-4390 lux underwater or 558-7450 lux above the water surface, and water temperature of 25.6-26.5℃. Algae were observed in all water samples, accounting for 6 phylum and 57 species, with algal density changing frequently. The results showed that significantly strong or weak light was unfavorable for phytoplankton growth and the function together with suitable temperature and LI and ample sunshine encouraged algal blooms under the same water quality and hydrodynamic conditions. Correlation analysis indicated that algae reduced gradually lengthwise along water depth in the same enclosure while pH became high. The power exponent relationship between chlorophyll a (Chl-a) and LI was found by curve fitting, that is Chl-a = K(LI)n.  相似文献   

10.
There were six high diesel oil degrading bacteria strains isolated from the oil contaminated soil that collected from Linzi City. The strain YI was able to produce biosurfactant rhanmolipid when cultivated on diesel oil as carbon source. The critical micelle concentrations (CMC) of rhanmolipid in water and in the soil were measured respectively according to the correlation between the surface tension of the medium and the added rhamnolipid concentration. The results showed that the CMC of rhanmolipid in water was 65 mg/L, and was 185 mg/L in soil. The tests on diesel oil biodegradation were conducted with the addition of different concentrations of rhamnolipid in water and in soil respectively. When 0.01% rhanmolipid was added to water, the diesel oil degradation was enhanced. On the contrary, when the same concentration of rhanmolipid was added to the soil, the degradation of diesel oil was inhibited. The results suggested that the rhamnolipid could enhance the diesel oil biodegradation, indicating that the concentration of rhamnolipid was higher than the corresponding CMC in the medium. Kinetics parameters for the diesel oil biodegradation parameters such as biodegradation constant (λ), coefficient of correlation (r) and half life (t1/2) in both tests were numerically analyzed in this paper, indicating that the moderate concentration of rhamnolipid in the medium could not only enhance the extent of diesel oil biodegradation but also shorten the time for oil remediation.  相似文献   

11.
组合型生态浮床的动态水质净化特性   总被引:15,自引:1,他引:14  
研究开发了一种由水生植物、水生动物及微生物膜构建的组合型浮床生态系统.通过中试研究,考察了该浮床对富营养化湖泊水体在动态条件下的净化效果.结果表明,水体交换时间为7d时TN、TP、高锰酸盐指数的去除率分别为53 .8%、86 .0%和35 .4%.污染物的直接净化主体为人工介质和水生植物单元,但在生态浮床中引入河蚬增加水生动物单元,通过食物链的“加环"作用,提高了颗粒性有机物的可溶化和无机化(氨化)以及可生化性,改善了植物吸收以及人工介质单元生物膜中微生物的基质条件,促进微生物的生长和活性,提高了浮床的净化效果.  相似文献   

12.
陈进军  郑翀  郑少奎 《环境科学学报》2008,28(10):2029-2035
以无植物空白系统为对照,通过批量盆栽试验探讨了表面流人工湿地中不同类型水生植被(苦草(沉水植物)、水葫芦(浮水植物)、芦苇(挺水植物))的引人对富营养化水体不同污染物净化效果的影响;根据不同污染物去除的阶段性特征设计了分段式表面流人工湿地(好氧塘-水葫芦湿地一苦草湿地),并通过示范工程探讨了富营养河流的原位净化效果.研究表明,批量盆栽试验中,与无植物空白系统相比,芦苇的引入显著增加了表面流人工湿地的蒸发蒸腾量(为无植物空白系统的1.5倍),而水葫芦和苦草的引入则显著降低了表面流人工湿地的蒸发蒸腾量(分别为无植物空白系统的80%和30%);3种水生植物的引入均显著促进了CODcr、TN、NH 4-N的去除(与无植物空白系统相比),其中水葫芦系统具有最好的CODcr和TN去除效果(起始CODcr和TN水平分别为35.8 mg·L-1和6.86 mg˙L-1时,去除率分别为58.91%、76.67%),而苦草的引入则显著地促进了水体中氧化态氮的形成与积累.分段式表面流人工湿地的原位净化研究表明,水力负荷为6.2cm.d-1时,分段式表面流人工湿地对CODcr的净化效果较好,水力负荷过高会影响分段式表面流人工湿地的净化效果.  相似文献   

13.
曝气-电解生态浮床的净化效果与机理分析   总被引:1,自引:0,他引:1  
为强化生态浮床对重污染河道水体的净化能力,采用曝气-电解生态浮床联合技术增强生态浮床的净化功能.试验考察了电流密度、曝气量和处理时间对模拟的高氮磷重污染水体的净化潜力,分析了电解反应对填料细菌群落结构组成和浮床水生植物黄菖蒲(Iris pseudacorus)生长的影响.结果表明:在进水NH3-N浓度为10 mg·L-1,PO43--P浓度为0.8 mg·L-1,电流密度为0.74 mA·cm-2,水力停留时间为3 d的条件下,相比于电解生态浮床和传统的生态浮床,曝气-电解生态浮床有利于水体中NH3-N的去除(p<0.001),其NH3-N浓度下降至(0.92±0.24)mg·L-1,而电解生态浮床处理的水体NH3-N浓度为(6.85±0.17)mg·L-1,传统生态浮床处理水体中NH3-N浓度高达(8.09±0.40)mg·L-1,曝气促进了水体中NH3-N向NO2--N和NO3--N的转化.电解有利于水体中PO43--P的去除,电解生态浮床处理水体中的PO43--P浓度下降至(0.43±0.02)mg·L-1,曝气-电解生态浮床处理的水体中PO43--P下降至(0.46±0.02)mg·L-1,可见,电解促进了PO43--P的去除.从对I.pseudacorus生理生化指标变化分析可知,曝气有利于减弱电解反应对I.pseudacorus的损伤;对基质生物膜的16S rDNA分析可知,电解反应增加了浮床基质中自养反硝化微生物数量.因此,曝气-电解生态浮床是一种有效的净化重污染水体的方法.  相似文献   

14.
为了研究植物生态浮床在喀斯特水体环境中富营养物质的去除效果及生态浮床中植物的选取组合,将富贵竹和鸢尾通过单一、组合形式构建生态浮床,模拟喀斯特环境水体进行生态修复实验。结果表明,富贵竹、鸢尾、富贵竹+鸢尾不同的植物组合生态浮床对COD、TN、NH~+_4-N、NO~-_3-N、TP都有较好的去除效果,去除率依次为61.63%、44.38%、94.01%、13.35%、76.48%;28.33%、51.18%、88.11%、26.29%、55.25%;33.97%、49.56%、89.73%、22.25%、49.81%。鸢尾对TN、NO~-_3-N的去除率最好,富贵竹对NH~+_4-N、TP的去除中效果最佳,富贵竹+鸢尾组合处于中间状态,可见植物组合会使去除效果产生协同效应。通过实验组植物的生长状况和去除能力分析,单一植物组比混合组去除能力更强,但考虑综合去除效果还需要应用组合型生态浮床。  相似文献   

15.
静态条件下沉水植物净化污水厂尾水能力研究   总被引:3,自引:0,他引:3  
为了解沉水植物对污水处理厂尾水水质净化效果,研究了滇池流域常见的5种沉水植物对昆明市第五污水处理厂尾水的净化能力。通过室外模拟、实验室测定,分析了单一种沉水植物对水环境质量的改善能力。结果表明:5种沉水植物均有一定能力去除水体中总磷、总氮、氨氮、COD,但随着沉水植物的生长,其叶片的腐烂分解又提高了水体氮磷等有机物的含量。该研究从水体水质的多个指标可见,苦草、马来眼子菜和金鱼藻在各方面表现能力均较强,可作为滇池流域河道水体修复优先选用的物种。以污水厂活性污泥和红壤混合物作为底质,在静态条件下菹草和浮叶眼子菜在污水厂尾水中很难长期存活下来,作为构建富营养化水体生态修复方案还需进一步研究。  相似文献   

16.
针对北京市沙河水库目前水体自净能力弱、水质较差等问题,研究以大型溞-沉水植物组合系统为核心的库区水体与底泥净化方法.通过前期投放大型溞提高水体透明度为沉水植物生长提供先决条件,然后利用3种沉水植物(即金鱼藻、狐尾藻和黑藻=1:1:1)去除湖库污染水体中污染物,本文重点考察在不同种植密度下组合系统对沙河水库水体、底泥污染物的去除效果.研究结果表明:在种植密度分别为30%和50%时,3种植物均长势良好,而在种植密度为80%时,金鱼藻和狐尾藻生长受到胁迫,但黑藻仍能继续增长,表现出较好的耐受性;当沉水植物种植密度为50%时,各污染物去除效果较好,系统稳定后COD、TN、NH4+-N、NO3--N和TP的去除率分别可达45.4%、42.8%、66.0%、46.4%和85.9%.底泥有机质、总氮和总磷的去除率分别达到15.8%、33.3%和19.6%.  相似文献   

17.
5种沉水植物的氮、磷吸收和水质净化能力比较   总被引:11,自引:3,他引:8  
选取轮叶黑藻(Hydrilla verticillata)、苦草(Vallisneria natans)、金鱼藻(Ceratophyllum demersum)、穗状狐尾藻(Myriophyllum spicatum)、微齿眼子菜(Potamogeton maackianus)等5种乡土沉水植物为研究对象,在室内静水条件下对其氮、磷吸收和水质净化能力进行比较研究.结果表明,不同沉水植物试验前后的含水率差异较小,变化范围为89.8%~92.0%,但净增生物量差异较大且均存在显著性差异,变化范围(干重计)为1.52~12.92 g·m-2,其中净增生物量最高的轮叶黑藻是最低的微齿眼子菜的8.5倍.不同沉水植物试验前后植株氮、磷含量变化范围分别为26.54~34.44 g·kg~(-1)和2.54~4.01g·kg~(-1),其中金鱼藻的植株氮、磷含量相对偏高.不同沉水植物处理的水质TN、TP去除率范围分别为63.8%~83.1%和49.2%~70.8%,均显著高于CK处理的39.9%和36.9%,去除率大小顺序均为:轮叶黑藻金鱼藻苦草穗状狐尾藻微齿眼子菜CK.不同沉水植物处理的水质TN、TP去除率与净增生物量存在较高相关性,相关性系数分别为0.994(P0.01)和0.996(P0.01).不同沉水植物氮、磷直接吸收贡献率范围分别为1.5%~13.3%和2.2%~13.2%,扣除水体自身自净能力后沉水植物的增效作用贡献率范围分别为22.5%~29.9%和10.1%~20.6%,表明水质净化氮、磷去除过程中沉水植物的增效作用要大于直接吸收作用.  相似文献   

18.
生物膜生态浮床对城市尾水净化特征分析   总被引:1,自引:1,他引:0  
为探究生物膜对城市尾水的净化特征,通过采用联合生物膜生态浮床技术,考察生物膜长度、水力停留时间(HRT)及生物膜覆盖面积对含氮尾水的净化特征.结果表明,生物膜为1/2水深长度时,NH_4~+-N、NO_3~--N和TN的去除率分别可达到90. 82%、62. 7%和81. 96%,氮去除率较高,而生物膜长度为整个河道水深时,NH_4~+-N的去除率最高只有22. 07%,NO_3~--N和TN的浓度变化不明显.在HRT为6 d时,NH_4~+-N和TN的去除率最高分别可达到82. 01%和62. 88%,最低分别为55. 24%和46. 82%;当HRT为12 d时,NH_4~+-N和TN的去除率最高分别可达81. 4%和79. 93%,但最低分别达到了8. 73%和17. 23%,对比发现,HRT为6 d时氮的去除效率较高且稳定.在生物膜覆盖面积为10%时,一个运行周期内NH_4~+-N去除率呈下降趋势,而覆盖面积为20%时,去除率呈上升趋势; TN在10%和20%的膜覆盖面积条件下去除率分别为62. 88%和71. 09%.  相似文献   

19.
水体/底泥生物基城市河道富营养化水体修复试验研究   总被引:3,自引:0,他引:3  
周慧华  宋晓光  吴革  谢鑫源 《环境科学》2013,34(10):3879-3887
针对城市水体富营养化现状,自主研发了水体生物基、底泥生物基和微动力涡轮水循环曝气系统.水体生物基对水体中COD、NH+4-N和TP的去除效果,平均去除率分别为82.33%、98.00%和54.73%;底泥生物基在投加5 d内可达到20%以上的底泥减量率,上覆水曝气可有效缓解由底泥有机质降解而引起的营养盐释放;由水体/底泥生物基相结合并辅以微动力涡轮水循环曝气系统的组合技术,在中试试验中表现出较好的水体营养盐去除及底泥有机质降解效果,COD、NH+4-N、TP的去除率分别为52.0%、33.6%、23.4%,河道底泥中有机质成分由试验前的38.20%降至试验结束时的12.20%.  相似文献   

20.
黑藻与金鱼藻自然衰亡过程中营养盐释放规律研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究在自然衰亡状态下黑藻(Hydrilla verticillata)与金鱼藻(Ceratophyllum demersum)营养盐释放规律,采用人工模拟的方式,于黑藻和金鱼藻进入衰亡期时,采用塑料薄膜捆扎植物根部的方式,阻隔水和底泥界面之间的物质交换,避免底泥释放对水营养盐的影响;同时,监测水中环境因子和营养盐的动态变化,分析营养盐的释放与环境因子之间的关系.结果表明:①黑藻和金鱼藻两种沉水植物在模拟自然状态下分解速率和生物量无显著性差异(P>0.05),Olson指数的分解速率分别为0.011、0.010 d-1.②水中氮、磷质量浓度峰值在试验的第40~50天.水中磷形态以DTP(溶解性总磷)和SRP(溶解性活性磷)为主,氮形态以DTN(溶解性总氮)和NO3--N为主.由于SRP、NO3--N分别是DTP、DTN的组分之一,因此黑藻和金鱼藻在衰亡期向水中释放的氮、磷形态主要为NO3--N和SRP.③环境因子pH、DO、ORP(氧化还原电位)均呈不同程度的先降后升趋势.主成分分析结果表明,金鱼藻和黑藻环境因子主成分Fj和Fh、生物量剩余百分比分别与两植物组营养盐第一主成分之间二次曲线拟合效果较好,因此通过对数据进行降维处理,可建立二者之间的函数方程.研究显示,黑藻和金鱼藻两种沉水植物自然分解速率基本一致,衰亡期间向水中主要释放NO3--N和SRP,水中氮、磷质量浓度呈单峰变化,通过主成分分析可以建立环境因子和营养盐之间的函数关系.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号