首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The rice field is the main Iand use type in the watershed of Chaohu Lake.Because of the water dryness alternative farming applied there,the paddy soil has a unique quality regarding soil profile as well as special water and nutrient dynamms.Through the analysis of water and matter dynamics in rice fields.the field water level(H)and the concentrations of total nitrogen(TN)and total phosphorus(TP)in flood water layers of the fields were chosen to estimate the nonpoint pollution from rice fields.A simple model was built and used to calculate the quantRy of N and P pollutants from rice field overflow.it shows the po.tential effects of rice fields on Chaohu Lake eutrophication.  相似文献   

2.
The sediment distributed and insolated under lake was collected for experiments. The nutrient layer distribution conditions of sampled sediment and its physical and chemical characteristics were analyzed to simulate and assess the influence degree to lake water quality. Based on the dynamic water exchanging experiments the nutrient release process in sediment and influence mechanism to substance exchanging on water-sediment interface was studied, and the correlation between the changing content of total phosphors and total nitrogen in sediment and covered water were analyzed for setting up a simulation model. At the same time the influence degree is explained in detail. The experimental results indicated that even if clean water without nutrient contents was used for water exchangement so as to decrease pollution or prevent eutrophication, however owing to the vertical nutrient distribution in lake sediment, it will lead to the increasing release amount greatly especially when the organic nutrient contained in sediment turns into inorganic status because of isolation. Besides the release process of total phosphate (TP) and total nitrogen (TN) were modeled and each nutrient's exchanging equation at interface caused by covered water nutrient concentration changing was set up. According to the simulating prediction, TP and TN content of cover water will also sustain a steady higher level in a long period. The nutrient release amount of sediment is not only affected by the covered water concentration but also connects with accumulative time. The experiments provide the fundamental theoretical and practical basis for taking ecological restoration project. And research is helpful to prevent or restore lake eutrophication.  相似文献   

3.
To understand the transfer process of soluble reactive phosphorus (SRP) on the lake sediment-water interface in a mesotrophic shallow lake in South China, the SRP concentrations and the oxidation-reduction potential (ORP) across the sediment-water interfaces were continually monitored. Sediment samples were collected from Xinghu Lake in Guangdong Province. The ORP dynamics at di erent layers of overlying water was similar for six experimental systems, whereas those in porewater were significantly di erent. The ORP in overlying water was 200–300 mV higher than those in sediments. The oxygen penetration depth ranged from 2 to 10 mm in Xiannu Lake sediments. The variation amplitudes of ORP increased with sediment depth, but the mean ORP values were all about 218 mV. The SRP concentrations in porewater maintained at a low level of about 0.049 mg/L because of high atom ratio of total iron and total manganese to total phosphorus. The SRP concentrations and variation amplitudes in porewater increased with sediment depth. The SRP in overlying water mainly originated from SRP transference of the porewater of middle and bottom sediments (3–15 cm). The ORP variation and SRP transfer in porewater played important roles in changing SRP concentrations. A distinct SRP concentration gradient appeared in overlying water when intense exchange occurred at the sediment-water interface; therefore, it was necessary to monitor the SRP concentration profiles to accurately estimate the internal loading.  相似文献   

4.
A survey concerning the concentration of the nutrients in the Three Gorges Reservoir Area was carried out. This paper presents the parameters(NO3^- -N, NO2^- -N, KjeldahI-N, non-ionic ammonia, P-PO4 and TP)determined at 16 sampling sites from 1997 to 1999. The dominant soluble nitrogen form was NO3^- -N followed by KjeldahI-N, NO2^- -N and non-ionic ammonia. Mean values of NO3^- -N, NO2^- -N, Kjeldahl-N and non-ionic ammonia ranged from 0.50 to 2.37 mg/L, 0.022 to 0.084 mg/L, 0.33 to 0.99 mg/L and 0.007 to 0.092 mg/L respectively.Mean values of P-PO4 at most sampling sites were higher than 0.1 mg/L for subject to eutrophication. The major factors influencing the concentrations of N and P might be agricultural runoff, municipal and industrial effluents. In addition, 6 kinds of soil were sampled at the area where would inundated after the dam completed. Two approaches were adopted to simulate the N and P release from the inundated soils. The results showed that the soils would release nitrogen and phosphorus to the overlying water when the soils were inundated. The characteristics of soil affected the equilibrium concentrations of N and P between the soil and the overlying water.  相似文献   

5.
The concentrations and chemical forms of copper(Cu) and zinc(Zn) in surface soils directly influence the movement of Cu and Zn. In this study, thirteen sandy soil samples with a wide range of total Cu and Zn concentrations were collected for evaluating the relationships between Cu and Zn release and extraction time, ratio of soil to water, pH and electro;yte types. The results indicated that Cu released in batch extraction that represents long-term leaching was mainly from exchangeable, and carbonate bound Cu fractions, and Zn released in the batch extraction was mainly from its carbonate bound fraction. However, the Cu and Zn leached from the soils using the column leaching that represents short-term leaching were mainly from their exchangeable fractions. Soil column leaching at different pH values indicated that the amounts of leached Zn and Cu were greatly affected by pH. The Cu and Zn release experiments with varying extraction times and ratio of soil to water suggest that long-term water-logging in the soils after rain may increase contact time of the soils with water and the release of Cu and Zn to water from the soils, and total amounts of Cu or Zn released from the soils increase, but the Cu or Zn concentration in the surface runoff decrease with increasing rainfall intensity. The increased Ca concentration in soil solution increased stability of organic matter-mineral complexes and might decrease the dissolution of organic matter, and thus decreased the release of Cu-binding component of organic matter. However, high concentration of Na in the soil solution increased the dispersion of the organic matter-mineral complexes and increased dissolution of organic matter and the release of Cu from the soils.  相似文献   

6.
A small subwatershed of Chaohu Lake was chosen for research on the relationships of landuse,nonpoint source pollution and its prevention.The distributions of nitrogen and phosphorus in the different land use types were shown by monitoring N and P in water samples from rainfall,surface runoff,ponds,a stream and the lake,and in soil samples from rice fields,nonirrigated land and mountain forests.A multi-pond agroecosystem was found to prevent the nonpoint source pollutants and sediment loading to eutrophic Chaohu Lake from its catchment area,because this multi-pond system can effectively keep water and nutrients inside the catchment area and be reused to irrigate the rice field.It requires only a Small investment and energy consumption.and that is suitable for this large under-development agricultural watershed.  相似文献   

7.
A model in which a river model was layered on a distributed model (double-layered model) was developed to analyse the transport of water and pollutants (nitrogen,phosphorus,and BOD as organic matter) in watersheds and rivers.The model was applied to the watershed of Abragafuchi Lake,Japan,where serious water pollution has occurred over three decades,and the applicability of the model was demonstrated.Scenarios of recycling of sewage treated-water into agriculture to reduce pollutant load discharged into the lake were analysed.The results showed that irrigating paddy fields with the sewage-treated water could contribute to conserving water and reducing pollutant load,with reduction rate in BOD,nitrogen,and phosphorus ranging from 6%–36%,16%–46%,and 18%–51%,respectively.Particularly,the results indicated that,irrigating paddy fields with the treated water during non-cropping periods and the accompanying reduction in withdrawn water from the river were more effective in reducing pollutant loads discharged into the lake.Further study is required on the effect of recycled water on crop cultivation and soil conditions for safe implementation.  相似文献   

8.
Decomposition of Microcystis is accompanied by the release of phosphorus, during bacteria play an important role. A series of experiments were undertaken to evaluate the e ect of bacteria on the decomposition of Microcystis taken from Lake Taihu, China, a lake that is su ering from dense Microcystis blooms. The 16 experiments involved four size fractions of colonial Microcystis with or without the addition of lake sediment and Gram-negative bacterial inhibitor NaN3. The highest decomposition rates were recorded for the smallest size Microcystis fraction (< 25 m) with the addition of the sediment. The lowest decomposition rates were recorded for the smallest Microcystis fraction without the sediment, but with the addition of Gram-negative bacterial inhibitor NaN3. The higher decomposition rates in the treatments with NaN3 and sediment suggest that Gram-positive bacteria in the sediment are important for the decomposition process. Additionally, higher concentrations of total dissolved phosphorus (TDP) in the treatments with NaN3 suggest that more phosphorus accumulates in the Gram-negative bacterial cells around the colony, which may be an important source of phosphorus for Microcystis cells. In the no-sediment treatments, the ratios of TDP concentration to initial TP concentration were 64%–82%. The results of this experiment suggest that both Gram-negative and Gram-positive bacteria play an important role in the decomposition of Microcystis cells and the release of phosphorus from Microcystis colonies.  相似文献   

9.
The seasonal changes in dissolved organic matter (DOM), and its correlation with the release of internal nutrients during the annual cycle of cyanobacteria in the eutrophic Lake Chaohu, China, were investigated from four sampling periods between November 2020 and July 2021. The DOM fluorescence components were identified as protein-like C1, microbial humic-like C2, and terrestrial humic-like C3. The highest total fluorescence intensity (FT) of DOM in sediments during the incubation stage is due to the decomposition and degradation of cyanobacteria remains. The lowest humification of DOM and the highest proportion of C1 in waters during the initial cyanobacterial growth indicate that fresh algae are the main source. The highest molecular weight of DOM and FT of the C2 in sediments during cyanobacterial outbreaks indicate the concurrent deposition of undegraded cyanobacterial remains and microbial degradation. The components of DOM are affected mainly by the dissolved total phosphorus in waters, while the temperature drives the annual cycle of cyanobacteria. The decreasing C1 in sediments and increasing nutrients in waters from the cyanobacterial incubation to outbreak indicate that mineralization of algal organic matter contributes importantly to the release of internal nutrients, with the strongest release of phosphorus observed during the early growth of cyanobacteria. The humic-like C2 and C3 components could also affect the dynamics of internal phosphorus through the formation of organic colloids and organic–inorganic ligands. The results show that the degradation of DOM leads to nutrients release and thus supports the continuous growth of cyanobacteria in eutrophic Lake Chaohu.  相似文献   

10.
The internal sedimentary phosphorus(P) load of aquatic systems is able to support eutrophication, especially in dam–reservoir systems where sedimentary P stock is high and where temporary anaerobic conditions occur. The aim of this study therefore is to examine the response of sedimentary P exposed to redox oscillations. Surface sediments collected in the Champsanglard dam–reservoir(on the Creuse River, France) were subjected to two aerobic phases(10 and 12 days) alternated with two anaerobic periods(21 and 27 days)through batch incubations. The studied sediment contained 77 ± 3 μmol/g DW of P, mainly associated with the ascorbate fraction(amorphous Fe/Mn oxyhydroxides). The used sediment was rich in organic matter(OM)(21% ± 1%) with primarily allochthone signature.Our results showed that redox oscillations enhance dissolved inorganic phosphorus release at sediment/water interface. During the first anaerobic stage, the P release was mainly controlled by the dissolution/precipitation of iron minerals. The more pronounced increase of P release during the second anaerobic stage(44%) was due to various mechanisms related to the change in quality of dissolved organic matter(DOM), namely a higher SUVA254 and humification indices. The release of more refractory DOM(rDOM) served to lower the microbial metabolism activity, possibly favored iron oxyhydroxide aggregation and thus limiting iron reduction. In addition, rDOM is able to compete for mineral P sorption sites,leading to a greater P release. In reservoir with predominant allochthone OM input, the release of more aromatic DOM therefore plays an important role in P mobility.  相似文献   

11.
总结了水生植物对湖泊生态系统的影响、水生植物生物量控制与收割管理的研究,分析了目前浅水富营养化湖泊恢复过程中水生植物生物量确定方法的不足;立足于水生植物生长特点,提出了基于湖泊生态模型的浅水湖泊大型水生植物在生长期和衰亡期的适宜生物量评估方法的研究框架,本文可为指导湖泊生态修复工程及其后续维护,为完善健康湖泊的综合评价标准和湖泊生态修复理论提供科学支撑.  相似文献   

12.
湖泊流域清水产流机制修复方法及其修复策略   总被引:16,自引:1,他引:15       下载免费PDF全文
基于湖泊水污染防治领域长期的研究与实践经验,提出了“以污染源系统治理+流域清水产流机制修复+湖泊水体生境改善+流域管理”为主的湖泊水污染防治的总体思路,并着重阐述了流域清水产流机制修复的方法及其修复策略.由流域径流的产流、汇流输送与入湖过程的分析引出了湖泊流域清水产流机制的概念,对其破坏原因进行了解析,提出了清水产流机制修复的理念、思路、技术路线及修复中的关键问题.以抚仙湖东大河流域为例,将入湖河流小流域分成清水产流区﹑污染控制与净化区、湖滨入湖区3部分区域.在对3区域清水量与污染物产生量进行分析的基础上,根据3区域现状特征与主要环境问题分别提出其修复策略.  相似文献   

13.
日本琵琶湖流域生态系统的修复与重建   总被引:1,自引:0,他引:1       下载免费PDF全文
琵琶湖流域生态系统的修复与重建着眼于全流域及中长期目标的实现. 在《琵琶湖综合保全整备规划》基础上,滋贺县政府提出了流域生物生息空间网络化构筑的长期构想,在全流域划定了16个重要生物生息空间及10条重要河流作为生态回廊;从上游的森林建设、内湖重建、河流治理到湖滨带芦苇群落的保护等开展了一系列的流域修复工作,如针对湖滨带修复,制定了芦苇群落保护条例与规划,划定了琵琶湖湖岸及周边内湖的芦苇群落保护与恢复区域,面积达138 hm2,其中芦苇带栽植面积达15 hm2,收割等维护管理每年达30 hm2等. 琵琶湖修复与重建工程的开展使生物多样性逐渐提高,生态系统功能得到恢复. 与之相比,我国湖泊流域生态修复存在的问题主要体现在生态修复缺乏流域整体的长远规划以及在湿地修复、低污染尾水的生物处理、湖滨带修复等领域存在一定的理念差异.   相似文献   

14.
湖泊陡岸带生态建设基底修复工程技术   总被引:3,自引:2,他引:3  
文章介绍最新开发的湖滨陡坎沿岸水域基底修复技术,主要采用人工方法在需要进行大型水生植物群落恢复的湖滨陡坎沿岸的水域实施基底修复工程措施,在目标水域边界构筑水下围埝,采用绞吸式挖泥船将疏浚的湖泥按设计高程要求吹填至基底修复工程区内,形成缓坡浅滩,改善湖泊沿岸带自然条件,为湖泊沿岸带生态修复创造良好的生境条件。文章对该技术方案、工程效果进行了介绍,并将本技术与同类技术特点进行对比分析和探讨。  相似文献   

15.
以深圳市荔枝湖为例,通过枯水期历时8个月的水质连续监测,分析臭氧技术在修复城市湖泊水质中的作用及效果。结果表明,监测期间湖水CODMn≤10mg/L,氨氮<0.6mg/L,总磷<0.08mg/L,透明度在60~120cm间,水质满足景观水体要求,表明应用该技术可以取得较好的修复效果。  相似文献   

16.
采用问卷调查的方法,试图真实反映艾比湖周边居民对艾比湖湿地生态系统退化的认知及对艾比湖湿地生态系统健康保护意识的强弱.结果表明:(1)艾比湖周边居民对湿地生态系统退化带来的危害有较为清晰地认识,99%被调查者意识到了艾比湖湿地生态系统退化对周边环境会带来不同程度的危害,78.2%调查对象认为艾比湖湿地生态系统的退化主要是由人类活动引发的,通过正规渠道获取艾比湖湿地生态系统退化信息不够通畅;(2)调查对象对艾比湖湿地生态系统退化情况持有较高的关注度,但支持度不高,85.6%的被调查者对退化湿地的生态恢复有支付意愿;(3)65.5%调查对象对艾比湖湿地生态恢复有信心,但对当地政府宣传和保护艾比湖湿地的力度满意度不高,因此政府部门还需进一步加强对艾比湖的宣传和保护力度.  相似文献   

17.
湖泊生态环境需水量计算方法研究   总被引:69,自引:2,他引:69  
中国北方干旱和半干旱地区湖泊面临不断干枯、萎缩和水质污染严重的局面。水资源的不合理配置和使用,造成资源性缺水和水质性缺水;维护湖泊和水库的合理水位及其水体的自净能力已经成为淡水资源科学配置和永续利用的基本保证。确定和保证湖泊生态系统必需的最小水量是解决问题的关键和前提,计算湖泊最小生态环境需水量的方法有:①水量平衡法;②换水周期法;③最小水位法;④功能法。研究结果表明:对于受损严重的湖泊,功能法无论从理论基础、计算原则和计算步骤,还是从需水量的分类和组成,都比较准确地反映了湖泊生态系统的健康现状和湖泊生态系统需水量之间的相互关系,可以为防止湖泊生态系统日益恶化的趋势和生态恢复提供技术支持。针对不同类型湖泊、生态环境特性和生态系统管理目标可以选择不同的计算方法,在确定了湖泊最小生态环境需水量和生态环境建设实施方案,北方地区湖泊生态系统将进入科学管理和生态恢复阶段。  相似文献   

18.
Research on lake eutrophication in China began in the early 1970s, and many lakes in China are now known to be in meso-eutrophic status. Lake eutrophication has been showing a rapidly increasing trend since 2000. Investigations show that the main reasons for lake eutrophication include a fragile lake background environment, excessive nutrient loading into lakes, excessive human activities, ecological degeneration, weak environmental protection awareness, and lax lake management. Major mechanisms resulting from lake eutrophication include nutrient recycling imbalance, major changes in water chemistry (pH, oxygen, and carbon), lake ecosystem imbalance, and algal prevalence in lakes. Some concepts for controlling eutrophication should be persistently proposed, including lake catchment control, combination of pollutant source control with ecological restoration, protection of three important aspects (terrestrial ecology, lake coast zone, and submerged plant), and combination of lake management with regulation. Measures to control lake eutrophication should include pollution source control (i.e., optimize industrial structural adjustments in the lake catchment, reduce nitrogen and phosphorus emission amounts, and control endogenous pollution) and lake ecological restoration (i.e. establish a zone-lake buffer region and lakeside zone, protect regional vegetation, utilize hydrophytes in renovation technology); countermeasures for lake management should include implementing water quality management, identifying environmental and lake water goals, legislating and formulating laws and regulations to protect lakes, strengthening publicity and the education of people, increasing public awareness through participation in systems and mechanic innovations, establishing lake region management institutions, and ensuring implementation of governance and management measures.  相似文献   

19.
底泥黑臭,向水面冒气泡是福州西湖水体富营养化现象的一个突出表现。目前,有关管理部门主要靠定期挖泥清淤来控制底泥富营养状况。然而1999年秋季福州西湖底栖动物种类和数量调查结果却显示,由于底栖动物贫乏,西湖底泥富营养化问题将由于生态失调而进一步深化。建议将控制入湖泥沙量、减少挖泥频度、恢复底栖生态作为一项治淤措施予以考虑。  相似文献   

20.
深圳荔枝湖富营养化综合治理工程效果研究   总被引:1,自引:0,他引:1  
分析和比较了深圳荔枝湖综合治理工程运行9个月内不同湖区水体的叶绿素a、总磷、总氮及透明度的变化,探讨了综合治理工程对城市富营养化湖泊荔枝湖的水质改善情况.结果表明,治理工程运行期间全湖湖水营养水平控制在较低水平(总磷<0.1 mg·L-1,总氮<1.5 mg·L-1),四湖区藻类水平北湖区(16.77μg·L-1)和东湖区(21.45μg·L-1)较低,南湖区(35.83μg·L-1)、西湖区(32.69μg·L-1)相对较高,全湖水体透明度提高(全湖平均>0.5 m);治理工程将湖水水质由劣Ⅴ类改善为Ⅳ类,由重富营养化水平改善为富营养化水平.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号