首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 147 毫秒
1.
This article presents the application of an integrated method that estimates the dispersion of polycyclic aromatic hydrocarbons (PAHs) in air, and assesses the human health risk associated with PAHs inhalation. An uncertainty analysis method consisting of three components were applied in this study, where the three components include a bootstrapping method for analyzing the whole process associated uncertainty, an inhalation rate (IR) representation for evaluating the total PAH inhalation risk for human health, and a normally distributed absorption fraction (AF) ranging from 0% to 100% to represent the absorption capability of PAHs in human body. Using this method, an integrated process was employed to assess the health risk of the residents in Beijing, China, from inhaling PAHs in the air. The results indicate that the ambient air PAHs in Beijing is an important contributor to human health impairment, although over 68% of residents seem to be safe from daily PAH carcinogenic inhalation. In general, the accumulated daily inhalation amount is relatively higher for male and children at 10 years old of age than for female and children at 6 years old. In 1997, about 1.73% cancer sufferers in Beijing were more or less related to ambient air PAHs inhalation. At 95% confidence interval, approximately 272–309 individual cancer incidences can be attributed to PAHs pollution in the air. The probability of greater than 500 cancer occurrence is 15.3%. While the inhalation of ambient air PAHs was shown to be an important factor responsible for higher cancer occurrence in Beijing, while the contribution might not be the most significant one.  相似文献   

2.
Quantification of regulated and emerging disinfection byproducts (DBPs) in swimming pool water, as well as the assessment of their lifetime health risk are limited in China. In this study, the occurrence of regulated DBPs (e.g., trihalomethanes, haloacetic acids) and emerging DBPs (e.g., haloacetonitriles, haloacetaldehydes) in indoor swimming pool water and the corresponding source water at a city in Eastern China were determined. The concentrations of DBPs in swimming pool water were 1-2 orders of magnitude higher than that in source water. Lifetime cancer and non-cancer risks of DBPs stemming from swimming pool water were also estimated. Inhalation and dermal exposure were the most significant exposure routes related to swimming pool DBP cancer and non-cancer risks. For the first time, buccal and aural exposure were considered, and were proven to be important routes of DBP exposure (accounting for 17.9%-38.9% of total risk). The cancer risks of DBPs for all swimmers were higher than 10−6 of lifetime exposure risk recommended by United States Environmental Protection Agency, and the competitive adult swimmers experienced the highest cancer risk (7.82 × 10−5). These findings provide important information and perspectives for future efforts to lower the health risks associated with exposure to DBPs in swimming pool water.  相似文献   

3.
Volatile organic compounds (VOCs) are major contributors to air pollution. Based on the emission characteristics of 99 VOCs that daily measured at 10 am in winter from 15 December 2015 to 17 January 2016 and in summer from 21 July to 25 August 2016 in Beijing, the environmental impact and health risk of VOC were assessed. In the winter polluted days, the secondary organic aerosol formation potential (SOAP) of VOC (199.70 ± 15.05 μg/m3) was significantly higher than that on other days. And aromatics were the primary contributor (98.03%) to the SOAP during the observation period. Additionally, the result of the ozone formation potential (OFP) showed that ethylene contributed the most to OFP in winter (26.00% and 27.64% on the normal and polluted days). In summer, however, acetaldehyde was the primary contributor to OFP (22.00% and 21.61% on the normal and polluted days). Simultaneously, study showed that hazard ratios and lifetime cancer risk values of acrolein, chloroform, benzene, 1,2-dichloroethane, acetaldehyde and 1,3-butadiene exceeded the thresholds established by USEPA, thereby presenting a health risk to the residents. Besides, the ratio of toluene-to-benzene indicated that vehicle exhausts were the main source of VOC pollution in Beijing. The ratio of m-/p-xylene-to-ethylbenzene demonstrated that there were more prominent atmospheric photochemical reactions in summer than that in winter. Finally, according to the potential source contribution function (PSCF) results, compared with local pollution sources, the spread of pollution from long-distance VOCs had a greater impact on Beijing.  相似文献   

4.
Heavy metal concentrations in urban soils are likely to increase over time because of continuous urbanization and heavy metal emissions. To estimate the accumulation rates of heavy metals in urban soils, we collected soil samples from residential areas with different building ages in the metropolitan cities of Shanghai, Shenzhen, and Beijing, China. Heavy metal concentrations in the soils varied among the cities and were primarily affected by soil parent material and the intensity of anthropogenic sources. Regression analyses revealed that the accumulation rates of Cd and Cu in the soils ranged from 0.0034 to 0.0039 mg/(kg•year) and 0.343 to 0.391 mg/(kg•year), respectively, and were similar across the three cities, while accumulation rates of Zn and Pb in Shanghai were higher than those in Shenzhen and Beijing. The higher accumulation rates of Zn and Pb in Shanghai can be explained by differences in city history and industrial structures among the cities. Residential soils with high health risks posed by the heavy metals were mostly collected from old towns of Shanghai because of high Pb content in the areas. Although recent urbanization resulted in elevated concentrations of Cd, Cu, Zn, and Pb in the residential soils, the effect on the total health risks of residents exposed to the soils was negligible.  相似文献   

5.
Beijing–Tianjin–Hebei(BTH) and its surrounding areas are very important to air pollution control in China.To analyze the characteristics of BTH and its surrounding areas of China,we collected 5,641,440 air quality data from 161 air monitoring stations and 37,123,000 continuous monitoring data from air polluting enterprises in BTH and surrounding cities to establish an indicator system for urban air quality portraits.The results showed that particulate matter with aerodynamic diameters of 2.5 μm(PM_(2.5)),particulate matter with aerodynamic diameters of 10 μm(PM_(10)) and SO_2 improved significantly in 31 cities from2015 to 2018,but ozone deteriorated.Air quality in BTH and the surrounding areas showed obvious seasonal characteristics,among which PM_(2.5),PM_(10),SO_2,and NO_2 showed a "U" type distribution from January to December,while O_3 had an "inverted U" distribution.The hourly changes in air quality revealed that peaks of PM_(2.5),PM_(10) and NO_2 appeared from 8:00 to 10:00,while those for O_3 appeared at 15:00–16:00.The exposure characteristics of the 31 cities showed that six districts in Beijing had the highest air quality population exposure,and that exposure levels in Zhengzhou,Puyang,Anyang,Jincheng were higher than the average of the 31 investigated cities.Additionally,multiple linear regression revealed a negative correlation between meteorological factors(especially wind and precipitation) and air quality,while a positive correlation existed between industrial pollution emissions and air quality in most of BTH and its surrounding cities.  相似文献   

6.
Polycyclic aromatic hydrocarbons(PAHs) have been of health concern due to its carcinogenesis and mutagenesis. In this study, we aimed to assess the variations, sources, and lifetime excessive cancer risk(ECR) attributable to PAHs bound to ambient particulate matters with aerodynamic diameter less than 2.5 μm(PM_(2.5)) in metropolitan Beijing, China. We collected24-hour integrated PM_(2.5) samples on daily basis between November 2014 and June 2015 across both central heating(cold months) and non-heating(warm months) seasons, and further analyzed the PAH components in these daily PM_(2.5) samples. Our results showed that total concentrations of PM_(2.5)-bound PAHs varied between(88.6 ± 75.4) ng/m~3 in the cold months and(11.0 ± 5.9) ng/m~3 in the warm months. Benzo[a]pyrene(Ba P), the carcinogenic marker of PAHs,averaged at 5.7 and 0.4 ng/m~3 in the cold and warm months, respectively. Source apportionment analyses illustrated that gasoline, biomass burning, diesel, coal combustion and cooking were the major contributors, accounting for 12.9%, 17.8%, 24.7%, 24.3% and 6.4% of PM_(2.5)-bound PAHs, respectively. The BaP equivalent lifetime ECR from inhalation of PM_(2.5)-bound PAHs was 16.2 cases per million habitants. Our results suggested that ambient particulate reduction from energy reconstruction and adaption of clean fuels would result in reductions PM_(2.5)-bound PAHs and its associated cancer risks. However, as only particulate phased PAHs was analyzed in the present study, the concentration of ambient PAHs could be underestimated.  相似文献   

7.
Nowadays, more people tend to spend their recreational time in large national parks, and trace metal(loid)s in soils have attracted long-term attention due to their possible harm to human health. To investigate the pollution levels, potential sources and health risks of trace metal(loid)s in road soils, a total of eight trace metal(loid)s (including As, Cd, Cr, Cu, Ni, Pb, Zn and Hg) from 47 soil samples along roads were studied in the Huangshan National Park in Southeast China. The results showed that the concentrations of As, Cd, Pb, Zn and Hg appeared different degrees of pollution compared with their corresponding background values. According to the pollution indices, Hg and Cd were recognized as significant pollutants presenting moderate to high ecological risk. Combining principal component analysis and positive matrix factorization model, the results showed that traffic, industrial, agricultural and natural sources were the potential origins of trace metal(loid)s in this area, with contribution rates of 39.93%, 25.92%, 10.53% and 23.62%, respectively. Non-carcinogenic risks were all negligible, while the carcinogenic risk of As was higher than the limit (1 × 10−6). Moreover, children were more susceptible to trace metal(loid)s by ingestion which appeared to be a more important exposure pathway than dermal contact and inhalation. The contribution rates of different sources to non-carcinogenic risks and carcinogenic risks were similar among children and adults, while traffic and industrial sources have a significant impact on health risks. This study will give more insights to control the environmental risks of trace metal(loid)s in national parks.  相似文献   

8.
In China, the health risk from overexposure to particles is becoming an important public health concern. To investigate daily exposure characteristics to PM 2.5 with high ambient concentration in urban area, a personal exposure study was conducted for school children, and office workers in Beijing, China. For all participants (N = 114), the mean personal 24-hr exposure concentration was 102.5, 14.7, 0.093, 0.528, 0.934, 0.174 and 0.703 μg/m 3 for PM 2.5 , black carbon, Mn, Al, Ca, Pb, and Fe. Children's exposure concentrations of PM 2.5 were 4-5 times higher than those in related studies. The ambient concentration of PM 2.5 (128.5 μg/m 3 ) was significantly higher than the personal exposure concentration (P 0.05), and exceed the reference concentration (25 μg/m 3 ) of WHO air quality guideline. Good correlation relationships and significant differences were identified between ambient concentration and personal exposure concentration. The relationships indicate that the ambient concentration is the main factor influencing personal exposure concentration, but is not a good indicator of personal exposure concentration. Outdoor activities (commute mode, exposure to heating, workday or weekend travel) influenced personal exposure concentrations significantly, but the magnitude of the influence from indoor activities (exposure to cooking) was masked by the high ambient concentrations.  相似文献   

9.
Soil is an important environmental medium that is closely associated with humans and their health. Despite this, very few studies have measured toxicants in soils, and associated them with health risks in humans. An assessment of health effects from exposure to contaminants in soils surrounding industrial areas of chemical production and storage is important. This article aims at determining pollution characteristics of persistent toxic substances (PTS) in an industrial area in China to unravel the relationship between soil pollution by PTS and human health. One hundred and five soil samples were collected and 742 questionnaires were handed out to residents living in and around an industrial area around Bohai Bay, Tianjin in Northern China. Concentrations of organochlorine pesticides and polycyclic aromatic hydrocarbons (PAHs) were determined in soil. Mann-Whitney U and binary multivariate nonconditional logistic regression models were employed to analyze the relationship between health indicators of local residents and contaminant levels. Odds ratio (OR) and a 95% confidence interval (CI) for health incidences were also calculated. The average concentrations of DDT (73.9 ng/g), HCH (654 ng/g) and PAHs (1225 ng/g) were relatively high in the industrial area. Residents living in the chemical industry parks were exposed to a higher levels of PTS than those living outside the chemical industry parks. This exposure was associated with a higher risk of breast cancer (OR 1.87, 95% CI 0.12–30.06), stomach cancer (OR 1.87, 95% CI 0.26– 13.41), dermatitis (OR 1.72, 95% CI 1.05–2.80), gastroenteritis (OR 1.59, 95% CI 0.94–2.68), and pneumonia (OR 1.05, 95% CI 0.58–1.89).  相似文献   

10.
Continuous observation of isoprene, α-pinene and β-pinene was carried out in a typical urban area of Beijing from March 2014 to February 2015, using an AirmoV OC online analyzer. Based on the analysis of the ambient level and variation characteristics of isoprene, α-pinene and β-pinene, the chemical reactivity was studied, and their sources were identified. Results showed that the concentrations of isoprene, α-pinene and β-pinene in the urban area of Beijing were lower than those in richly vegetated areas; the concentrations of isoprene were at a moderate level compared with those of previous studies of Beijing. Concentrations of isoprene, α-pinene and β-pinene showed different seasonal, monthly, daily and diurnal variations, and all of the three species showed higher level at night than those in the daytime as a whole, the variations of isoprene, α-pinene and β-pinene mainly influenced by emission of sources, photochemical reaction, and meteorological parameters. Isoprene was the largest contributor to the total OFP values than α-pinene and β-pinene. α-Pinene was the largest contributor to the total SOAFP values than isoprene and β-pinene in autumn, while isoprene was the largest one in other seasons. Isoprene, α-pinene and β-pinene were derived mainly from biological sources; and α-pinene level were also affected by industrial sources. To reduce the concentrations of isoprene, α-pinene and β-pinene, it is necessary to scientifically select urban green plant species, and more strict control measures should be taken to reduce the emission of α-pinene from industrial sources, such as artificial flavors and resins synthesis processes.  相似文献   

11.
BTEX pollution caused by motorcycles in the megacity of HoChiMinh   总被引:2,自引:0,他引:2  
Monitoring of benzene, toluene and xylenes (BTEX) was conducted along with traffic counts at 17 roadside sites in urban areas of HoChiMinh. Toluene was the most abundant substance, followed by p,m-xylenes, benzene, o-xylene and ethylbenzene. The maximum observed hour-average benzene concentration was 254 μg/m3 . Motorcycles contributed to 91% of the traffic fleet. High correlations among BTEX species, between BTEX concentrations and the volume of on-road motorcycles, and between inter-species ratios in air and in gasoline indicate the motorcycle-exhaust origin of BTEX species. Daily concentrations of benzene, toluene, ethylbenzene, p,m-xylenes and o-xylene were 56, 121, 21, 64 and 23 μg/m 3 , respectively. p,m-xylenes possess the highest ozone formation potential among the BTEX family.  相似文献   

12.
The aim of this work was to determine the level of benzene, toluene, o-xylene and m, p-xylene (BTX) in air samples collected from the cabins of new and used vehicles of the same model. Ten new vehicles were examined in order to check interior emission from materials used to equip the passenger compartment. In order to compare and define the impact of exhaust gases, air samples were also collected from two used cars, at different mileages (up to 20,000 kin). All vehicles tested were of the same type. Samples were collected onto Carbograph 1TD sorbent, thermally desorbed and examined with the use of gas chromatography with flame ionisation and mass spectrometry detectors. All results obtained were referred to Polish and German requirements for indoor air quality (both in public buildings and in workspace environments). Average benzene, toluene, o-xylene and m, p-xylene concentrations in new cars were determined at the level of 11.8 μg/m^3, 82.7 μg/m^3, 21.2 μg/m^3 and 89.5 μg/m^3, respectively. In the used cars, BTX concentration increased with increasing vehicle mileage. The most significant increase of BTX concentration was observed above 11,000 km mileage.  相似文献   

13.
为分析车内苯系物污染对不同性别驾乘人员的致癌风险和非致癌风险,对65辆轿车内空气中ρ(苯)、ρ(甲苯)、ρ(乙苯)和ρ(二甲苯)进行评价;提出车内苯的基本致癌风险浓度与危险致癌风险浓度概念及其计算公式,并与国内外相关标准中苯系物浓度标准限值进行对比分析. 结果表明:65辆轿车内空气中苯系物Hfz(综合非致癌指数)的最大值为0.44,低于US EPA(美国国家环境保护局)规定的非致癌风险基本值(1),对乘客与司机均不存在非致癌风险;但苯对司机Hza(致癌指数)的平均值为129.3×10-6,致癌风险较高;苯对男性乘客、女性乘客、男性司机与女性司机的Cwx(危险致癌风险浓度)分别为450.0、470.0、67.5和70.4 μg/m3. GB/T 27630—2011《乘用车内空气质量评价指南》中苯浓度标准限值对司机Hza的平均值为1.59×10-4,大于US EPA规定的苯致癌风险危险值(1×10-4),构成致癌危害;苯系物浓度标准限值对司机Hfz的平均值为1.15,构成非致癌危害. 轿车内空气中ρ(苯)、ρ(甲苯)、ρ(乙苯)和ρ(二甲苯)的合理限值分别为0.068、1.000、1.350和1.350 mg/m3.   相似文献   

14.
Benzene homologues are important chemical precursors to the formation of ground-level ozone and secondary organic aerosol (SOA) in the atmosphere, in addition, some toxic species are harmful to human health. Strict countermeasures have been taken to fight air pollution since 2013, and total amount control of volatile organic compounds is being promoted in China at present. Therefore, it is important to understand the pollution situation and the control status of ambient benzene homologues in China. This paper reviews research progress from published papers on pollution characteristics, atmospheric photochemical reactivity, health risk assessment and source identification of ambient benzene homologues in recent years in China, and also summarizes policies and countermeasures for the control of ambient benzene homologues and the relevant achievements. The total ambient levels of benzene, toluene, ethylbenzene and xylenes (BTEX) shows a declining tendency from 2001 to 2016 in China. The mass concentrations of BTEX are generally higher in southern regions than in northern regions, and they present vertical decreasing variation characteristics with increasing altitude within the height range of about 5500 m. Toluene has the highest ozone formation potential and SOA formation potential both in urban areas and background areas, while benzene poses an obvious carcinogenic risk to the exposed adult populations in urban areas. Source identification of ambient benzene homologues suggested that local governments should adopt differentiated control strategies for ambient benzene homologues. Several recommendations are put forward for future research and policy-making on the control of ambient benzene homologues in China.  相似文献   

15.
北京城乡结合地空气中挥发性有机物健康风险评价   总被引:19,自引:14,他引:5  
周裕敏  郝郑平  王海林 《环境科学》2011,32(12):3566-3570
采用低温固体吸附采样,热脱附-气相色谱-质谱方法对北京城乡结合地空气中挥发性有机物(VOCs)进行了观测分析,并利用国际公认的健康风险评价四步法评价模型,对北京城乡结合地空气中挥发性有机物的健康风险进行了初步评价.结果表明,芳香族类的非致癌风险值在10-4~10-1数量级,卤代烃的非致癌风险值在10-4~10-5数量级,挥发性有机污染物的非致癌风险系数〈1,不会对暴露人群健康造成明显的非致癌危害.但苯的致癌指数较高(2.21×10-5),超过了USEPA的建议值(1×10-6),可能对人体健康造成潜在危害.在一年四季的健康风险中,冬季VOCs的健康风险最高,秋季次之,夏季最低.  相似文献   

16.
我国典型城市环境大气挥发性有机物特征比值   总被引:21,自引:10,他引:11  
王鸣  陈文泰  陆思华  邵敏 《环境科学》2018,39(10):4393-4399
城市环境大气挥发性有机物(VOCs)比值能够提供有用信息.基于在我国典型城市进行的7次VOCs观测数据,利用正交最小二乘法(ODR)、线性拟合法等4种方法计算了VOCs组分比值,并探讨其在监测数据质量评估、来源诊断和光化学过程研究中的应用.结果显示:间,对-二甲苯与邻-二甲苯浓度在7次观测中均呈现非常好的相关性(r为0.975~0.997),且不同观测中比值接近(2.78~3.05),这一比值可以用来对城市大气VOCs(尤其是芳香烃)测量数据的可靠性进行评估.以甲苯/苯(T/B)和丙烷/乙烷(P/E)为例初步分析了我国不同城市大气VOCs来源的差异.上海和广州T/B最高,分别为2.37和1.78,高于隧道实验中T/B比值(1.52),说明还受到溶剂涂料等富含甲苯的排放源影响,北京夏季T/B与隧道实验接近,而成都、北京冬季和重庆T/B较低(0.744~1.36),说明受到生物质燃烧、煤燃烧等其他富含苯的排放源影响.P/E分析结果显示,广州P/E(1.27)显著高于其他数据集(0.270~0.645),与2010年广州部分公交车和出租车仍利用液化石油气(LPG)作为燃料有关.另外,基于邻-二甲苯/乙苯变化特征表征光化学反应程度,并初步估算出典型城市大气上午·OH暴露量为(2.70~4.45)×10~(10)molecule·cm~(-3)·s.  相似文献   

17.
电子产品加工制造企业挥发性有机物(VOCs)排放特征   总被引:11,自引:4,他引:7  
崔如  马永亮 《环境科学》2013,34(12):4585-4591
根据美国EPA挥发性有机物标准检测法TO-11及TO-14/15,采用VOCs快速检测仪、Summa罐及DNPH吸附管,对我国某大型电子产品加工制造企业中不同工艺环节生产车间内部及生产线最终废气排放管道中VOCs含量水平及组分特征进行检测.结果表明,该企业涉及VOCs排放工艺中压铸车间总挥发性有机物(TVOCs)浓度为0.1~0.5 mg·m-3、机加工车间TVOCs浓度为1.5~2.5 mg·m-3、喷涂车间中TVOCs浓度为20~200 mg·m-3,各车间VOCs组分主要包括烷类、烯炔类、芳香类、酮类、酯类和醚类,共20余种.其中涂装车间内苯系物及酮类物质为主要VOCs组分,各物质浓度分别为苯0.02~0.34 mg·m-3、甲苯0.24~3.35 mg·m-3、乙苯0.04~1.33 mg·m-3、对二甲苯0.13~0.96 mg·m-3、邻/间二甲苯0.02~1.18mg·m-3、丙酮0.29~15.77 mg·m-3、2-丁酮0.06~22.88 mg·m-3、环己酮0.02~25.79 mg·m-3、甲基异丁基甲酮0~21.29mg·m-3.根据该企业生产特征及工艺数据计算,其单条生产线VOCs年排放量为14 t,整个厂区年排放量约为840 t.结合生产流程及生产工艺分析,喷涂过程中的溶剂使用是电子产品加工制造企业的VOCs主要排放来源,废气排放口是重点排放点.  相似文献   

18.
印刷电路板(PCB)厂挥发性有机物(VOCs)排放指示物筛选   总被引:5,自引:2,他引:3  
马英歌 《环境科学》2012,33(9):2967-2972
采用VOCs快速测定仪和SUMMA罐采样、GC/MS分析方法,采样分析了上海某工业区3个印刷电路板厂生产车间和废气排放口的VOCs含量水平、组成特征和源成分谱.结果表明,在9月和12月2次采样期间,A、B、H厂生产车间总挥发性有机物(TVOCs)(9月/12月)最高浓度分别为(2.94/2.01)×10-9、(3.18/1.11)×10-6、(0.70/0.18)×10-9;废气排放口TVOCs最高浓度则分别为(0.86/0.90)×10-9、(31.2/12.0)×10-6、(1.24/0.30)×10-9.GC/MS分析结果表明,主要检出了烷烃、烯烃、苯系物、酮类、氯代烷烃、氯代苯类、酯类等7大类共67种VOCs化合物;A、B、H厂生产车间/废气排放口最高检出物和检出浓度分别为:2-丁酮6.73 mg.m-3/2-甲基己烷5.93 mg.m-3、乙酸乙酯8.90 mg.m-3/丙烷9.64 mg.m-3、丙烷2.04 mg.m-3/丙烷1.69 mg.m-3.苯、甲苯、二甲苯检出率均为100%,三厂各点位最高检出浓度/平均浓度分别为0.077 mg.m-3/0.035 mg.m-3、0.56 mg.m-3/0.31 mg.m-3、0.21 mg.m-3/0.12 mg.m-3(间+对-二甲苯)和0.081 mg.m-3/0.050 mg.m-3(邻-二甲苯).源成分谱和PCA分析结果表明,A、B厂的VOCs特征轮廓图谱较相似,特征化合物为苯、甲苯、二甲苯以及丙酮和2-丁酮;H厂主要特征污染物除三苯外,还有氯苯和氯代烷烃类化合物.结合原辅材料及生产工艺分析,溶剂、涂料使用和工艺过程的逸散是生产车间面源VOCs排放的主要来源,废气排放口是VOCs重点排放点源.  相似文献   

19.
BTEX(苯、甲苯、乙苯、二甲苯等)是对空气质量和人体健康具有重要影响的挥发性有机物.为研究长沙市城市大气BTEX污染特征,选择2个典型城市站点(采样点S和W)于2017年8月进行了连续采样分析.结果显示:2个采样点BTEX平均浓度分别为(9.84±5.44),(6.35±4.68)μg/m3;其中间/对-二甲苯是占比...  相似文献   

20.
苯系化合物在硝酸盐还原条件下的生物降解性能   总被引:5,自引:0,他引:5  
豆俊峰  刘翔 《环境科学》2006,27(9):1846-1852
运用驯化的反硝化混合菌群进行了苯系化合物(BTEX)的厌氧降解试验.结果表明,混合菌群能够在反硝化条件下有效降解苯、甲苯、乙苯、邻二甲苯、间二甲苯和对二甲苯.BTEX的降解规律符合底物抑制的Monod模型,当初始浓度小于50mg·L-1时,6种受试基质的厌氧降解速率顺序为:甲苯>乙苯>间二甲苯>邻二甲苯>对二甲苯>苯.整个试验过程中NO3-的消耗与苯、甲苯、乙苯、邻二甲苯、间二甲苯及对二甲苯生物降解之间的摩尔比分别为:9.47,9.26,1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号