首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

2.
Agrobacterium radiobacter MTCC 8161 completely decolorized the Crystal Violet with 8 hr (10 mg/L) at static anoxic conditions. The decreased decolorization capability by A. radiobacter was observed, when the Crystal Violet concentration was increased from 10 to 100 mg/L. Semi-synthetic medium containing 1% yeast extract and 0.1% NH4Cl has shown 100% decolorization of Crystal Violet within 5 hr. A complete degradation of Crystal Violet by A. radiobacter was observed up to 7 cycles of repeated addition (10 mg/L). When the effect of increasing inoculum concentration on decolorization of Crystal Violet (100 mg/L) was studied, maximum decolorization was observed with 15% inoculum concentration. A significant increase in the activities of laccase (184%) and aminopyrine N-demethylase (300%) in cells obtained after decolorization indicated the involvement of these enzymes in decolorization process. The intermediates formed during the degradation of Crystal Violet were analyzed by gas chromatography and mass spectroscopy (GC/MS). It was detected the presence of N,N,N′,N′′-tetramethylpararosaniline, [N; N-dimethylaminophenyl] [N-methylaminophenyl] benzophenone, N; N-dimethylaminobenzaldehyde, 4-methyl amino phenol and phenol. We proposed the hypothetical metabolic pathway of Crystal Violet biodegradation by A. radiobacter. Phytotoxicity and microbial toxicity study showed that Crystal Violet biodegradation metabolites were less toxic to bacteria (A. radiobacter, P. aurugenosa and A. vinelandii) contributing to soil fertility and for four kinds of plants (Sorghum bicolor, Vigna radiata, Lens culinaris and Triticum aestivum) which are most sensitive, fast growing and commonly used in Indian agriculture.  相似文献   

3.
To achieve effective decolorization of reactive dyes,laccase immobilization was investigated.Laccase 0.2%(m/V)(Denilite IIS) was trapped in beads of alginate/gelatin blent with polyethylene glycol(PEG),and then the supporters were activated by cross-linking with glutaraldehyde.The results of repeated batch decolorization showed that gelatin and appropriate concentration of glutaraldehyde accelerated the decolorization of Reactive Red B-3BF(RRB);PEG had a positive effect on enzyme stability and led to an inc...  相似文献   

4.
Decolorization of oxygen-delignified bleaching effluent (abbreviated as OBE) and biobleaching of oxygen-delignified kraft pulp (OKP) were conducted using a non-white rot fungus Geotrichum candidum Dec 1 (abbreviated as Dec 1) which has ability to decolorize various synthetic dyes and molasses. Dec 1 decolorized up to 77% of OBE for 6 days. In addition, Dec 1 increased the brightness of OKP from 47.8% to 51.2% and decreased the kappa value of OKP from 12.4 to 10.4 points during a 6-day incubation period at a 25% of pulpconcentration. At 2% pulp-concentration, the brightness of OKP increased by 13% and the kappa value of OKP decreased by 4 points only for a 3-day incubation period. When the decolorized OBE was used for bleaching of OKP, the brightness of OKP increased to 62.7% under the shaking culture to a 2% pulp-concentration using culture fluid of decolorized OBE. It was revealed that Dec 1 is a potential to apply for decolorization of wastewater and biobleaching of pulp in paper-mills.  相似文献   

5.
The capability of decolorization for commercial dyes by Coriolus versicolur fermentation broth containing laccase with or without immobilized mycelium was evaluated.With cell-free fermentation broth containing laccase,high decolorization ratio was achieved for acid orange 7,but not for the other dyes concerned.The immobilized mycelium was proved to be more efficient than the cell-free system.All the four dyestuffs studied were found being decolourized with certain extent by immobilized mycelium.The repeated-batch decolorization was carried out with satisfactory results.The experimental data showed that the continuous decolorization of wastewater from a printing and dyeing industry was possible by using self-immobilized C.Versicolor.  相似文献   

6.
The decolorization of Reactive Yellow 86(RY 86),one of reactive azo dyes,was investigated in the presence of Fenton reagent under solar light irradiation.The decolorization rate was strongly influenced by pH,initial concentrations of H 2 O 2 and Fe(II),and so on.An initial concentration of 40 mg/L was decolored more than 90% after 20 min under optimum conditions.The activation energy of the solar photo-Fenton reaction was 1.50 kJ/mol for RY 86 in the temperature range of 10-60°C.In the kinetic study,the rate constant of RY 86 with OH· radicals could be estimated to be 1.7 × 10 10 L/(mol·sec).The decolorization efficiency of RY 86 under solar light irradiation was comparable to the artificial light irradiation.The decrease of TOC as a result of mineralization of RY 86 was observed during photo-Fenton process.The rate of RY 86 mineralization was about 83% under UV irradiation after 24 hr.The formation of chloride,sulfate,nitrate and ammonium ions as end-products was observed during the photocatalytic process.The decomposition of RY 86 gave two kinds of intermediate products.The degradation mechanism of RY 86 was proposed on the base of the identified intermediates.  相似文献   

7.
The extracellular enzyme secretion and biodegradation of polycyclic aromatic hydrocarbons (PAHs) were studied in agitated and shallow stationary liquid cultures of Phanerochaete chrysosporium. Veratryl alcohol and Tween80 were added to cultures as lignin peroxidase (LIP) and manganese peroxidase (MnP) inducer, respectively. Shallow stationary cultures were suitable for the production of enzyme, whereas agitated cultures enhanced overall biodegradation by facilitating interphase mass transfer of PAHs into aqueous phases. The use of a LIP stimulator, veratryl alcohol, did not increase PAH degradation but significantly enhanced LiP activity. In contrast, Tween80 increased both MnP secretion and PAH degradation in shallow stationary cultures. On the other hand, high PAH degradation was observed in agitated cultures in the absence of detectable LIP and MnP activities. The results suggested that extracellular peroxidase activities are not directly related to the PAH degradation, and the increased solubility rather than enzyme activity may be more important in the promotion of PAH degradation.  相似文献   

8.
Immobilization of enzymes on mesoporous silicas (MS) allows for good reusability. MS with two-dimensional hexagonal pores in diameter up to 14.13 nm were synthesized using Pluronic P123 as template and 1,3,5-triisopropylbenzene as a swelling agent in acetate buffer. The surface of MS was modified by the silanization reagents 3-aminopropyltriethoxysilane. Lignin peroxidase (LiP) was successfully immobilized on the modified MS through covalent binding method by four agents: glutaraldehyde, 1,4- phenylene diisothiocyanate, cyanotic chloride and water-soluble carbodiimide. Results showed that cyanotic chloride provided the best performance for LiP immobilization. The loaded protein concentration was 12.15 mg/g and the immobilized LiP activity was 812.9 U/L. Immobilized LiP had better pH stability. Acid Orange II was used to examine the reusability of immobilized LiP, showing more than 50% of the dye was decolorized at the fifth cycle.  相似文献   

9.
The cometabolic roles of glucose were investigated in decolorization of an azo dye, Reactive Black 5, by yeast isolates, Debaryomyces polymorphus and Candida tropicalis. The results indicated that the dye degradation by the two yeasts was highly associated with the yeast growth process and glucose presence in the medium. Color removal of 200 mg dye/L was increased from 76.4% to 92.7% within 60 h to 100% within 18-24 h with the increase of glucose from 5 to 10 g/L, although the activity of manganese dependent peroxidase (MnP) decreased by 2-8 times in this case. Hydrogen peroxide of 233.3 μg/L was detected in 6 h in D. polymorphus culture. The cometabolic functions of glucose and hydrogen peroxide could be also confirmed by the further color removals of 95.8% or 78,9% in the second cycle of decolorization tests in which 7 g glucose/L or 250 μg H202/L was superadded respectively together with 200 mg dye/L.  相似文献   

10.
Removal of noxious dyes is gaining public and technological attention. Herein grafting polymerization was employed to produce a novel adsorbent using acrylic acid and carboxymethyl cellulose for dye removal. Scanning electron microscopy and Fourier-transform infrared spectroscopy verified the adsorbent formed under optimized reaction conditions. The removal ratio of adsorbent to Methyl Orange, Disperse Blue 2BLN and malachite green chloride reached to 84.2%, 79.6% and 99.9%, respectively. The greater agreement between the calculated and experimental results suggested that pseudo second-order kinetic model better represents the kinetic adsorption data. Equilibrium adsorptions of dyes were better explained by the Temkin isotherm. The results implied that this new cellulose-based absorbent had the universaiity for removal of dyes through the chemical adsorption mechanism.  相似文献   

11.
真菌和细菌对染料的吸附脱色及再生能力的研究   总被引:9,自引:0,他引:9  
进行了真菌和细菌共培养对染料的吸附脱色和吸附脱色能力再生的研究。结果表明,青霉菌G-1首先对偶氮染料S-119、蒽醌染料艳紫KN-B(C.I.Reactive violet 22)水溶液中染料进行快速吸附去除,菌丝对同种染料的吸附速度随菌丝培养液中葡萄糖浓度的增加而加快,吸附染料的G-1菌丝在与细菌的共培养中完成对染料的脱色降解,脱色速度受培养液中葡萄和氮源浓度影响较大,从吸附速率和完全脱色时间综合评价,以葡萄糖浓度为5g/L、酒石酸铵为20mmol/L的培养基中培养的菌丝对染料的吸附脱色效果最好,吸附在菌丝上的艳紫KN-B脱色后菌丝吸附脱色能力得到再生,菌丝对100mg/L的艳紫KN-B染料水溶液可重复处理4次。青霉菌G-1对酸性染料废水处理3h,色度去除率为75.9%,吸附染料的菌丝在与细菌共培养中完成对染料的脱色,对试验所用染料废水,菌丝的处理能力获得1次再生。  相似文献   

12.
裂褶菌F17对偶氮染料刚果红的脱色降解及其产物分析   总被引:4,自引:0,他引:4  
利用本实验室新构建的染料脱色降解体系,对裂褶菌F17(Schizophyllum sp.F17)脱色降解刚果红进行了研究,分析了该菌的主要降解酶,并对刚果红降解产物进行分离和鉴定.结果表明,裂褶菌F17在此体系中对刚果红表现出较高的脱色降解能力,菌球加入48h后脱色率达到91.5%;酶活检测表明,该菌主要产生锰过氧化物酶(MnP),并在脱色48h时,MnP酶活达到最大值96.1U·L-1.此外,对脱色96h和192h后的脱色液进行紫外-可见扫描,发现刚果红在可见光区495nm处的吸收峰已消失,并在紫外区出现多个吸收峰.通过高效液相色谱分离得到1种刚果红降解产物,用质谱和傅立叶红外光谱鉴定,发现该产物相对分子量为184.2,主要官能团为-C6H4-和芳基-NH2,结合刚果红结构和该产物的核磁共振波谱推断其为联苯胺;并且随着降解时间的延长,联苯胺逐渐被降解.  相似文献   

13.
DTT对三苯基甲烷染料脱色的研究   总被引:1,自引:1,他引:0  
研究了二硫苏糖醇(dithiothreitol,DTT)对三苯基甲烷染料的还原脱色作用.以孔雀石绿为代表,优化了反应体系中DTT的用量,目的是考察孔雀石绿和DTT之间的定量关系,并明确DTT对孔雀石绿的脱色能力.分析了反应体系pH值对DTT还原力的影响.结果表明,在pH值>5的反应体系中,平均每1 mol DTT可在1 min内脱色4 mol孔雀石绿,脱色率高达97%.脱色产物经HPLC分析表明,孔雀石绿被DTT还原脱色为隐色孔雀石绿.隐色孔雀石绿可继续与氧化态的DTT结合成为水不溶性的络合物,形成白色沉淀.DTT对结晶紫、灿烂绿及碱性品红的脱色作用均达到85%以上,以此确定DTT是一类广谱的三苯基甲烷类染料脱色剂.  相似文献   

14.
利用本实验室新构建的白腐菌Trametes sp.SQ01和毛壳菌Chaetomium sp.R01混合培养体系,对刚果红、酸性红、橙黄G和溴酚蓝4种染料进行了脱色研究.结果表明,SQ01与R01混合培养所产生的锰过氧化物酶(MnP)酶活比菌株SQ01单独培养时提高了约5.5倍.菌株R01的接种量、接种时间对混合培养中...  相似文献   

15.
以黄曲霉菌株A5p1为生物材料,研究其脱色染料的广谱性,并选择偶氮染料直接蓝71(DB71)为模型底物,探讨脱色特性及降解产物.该菌株对15种染料的脱色测试结果表明,染料浓度为100mg/L时脱色效率为61.7%~100%.该菌对偶氮染料DB71具有生物吸附和生物降解的双重作用,在pH值7.0,温度30℃,染料浓度300mg/L,蔗糖为碳源时对DB71 脱色率为100%.酶分析显示葡萄糖氧化酶和锰过氧化物酶参与染料的降解.FTIR、GC-MS和LC-MS分析确定代谢终产物为萘胺、叠氮萘、2-羟基-6-草酰-苯甲酸和1-萘酚.  相似文献   

16.
PhotocatalyticdecolorizationofdispersoldyesYouDaoxin;DaiShugui(DepartmentofEnvironmentalScienee,NankaiUniversity,Tianjin30007...  相似文献   

17.
利用一种能够产生大体积水下脉冲电晕放电的同轴棒-筒电极结构对亮蓝及日落黄染料溶液进行脱色降解,从耗时及耗能角度对脱色效果进行对比。实验发现溶液电导率增加对两种染料脱色速率影响都不大,但能耗增加,相同电导率下日落黄脱色速率大于亮蓝,而能耗低于亮蓝。pH值升高时两种染料脱色速率都减慢且能耗增加,酸性条件下日落黄脱色速率大于亮蓝、能耗低于亮蓝。  相似文献   

18.
蜜环菌漆酶对蒽醌类染料的脱色条件优化   总被引:1,自引:1,他引:0  
利用蜜环菌发酵所得的漆酶,直接对印染工业中常见的两种蒽醌类染料活性艳蓝KN-R和活性艳蓝X-BR进行催化脱色实验,得出了最佳脱色条件.结果表明,活性艳蓝KN-R最适脱色温度为30℃,最适染料浓度为80 mg.L-1,最适酶量为0.25U.mL-1,最适pH值为5,在最优条件下活性艳蓝KN-R最高脱色率达90%以上.活性艳蓝X-BR的最适脱色温度为30℃,最适染料浓度为50 mg.L-1,最适酶量为0.5 U.mL-1,最适pH值为4,在最优条件下活性艳蓝X-BR最高脱色率达70%以上.本研究利用蜜环菌粗漆酶液直接对印染工业中常见蒽醌类染料进行脱色,结果表明蜜环菌粗漆酶液具有良好的脱色效果,蜜环菌漆酶在印染工业染料废水脱色方面具有潜在的应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号