首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
用10 a(2003~2012年)的MACC(monitoring atmospheric composition and climate)再分析臭氧资料与同期中国大陆6个地面观测站的臭氧数据,以及AIRS(atmospheric infrared sounder)卫星资料反演的大气臭氧数据进行对比分析.结果表明,MACC臭氧柱浓度与所有地面站臭氧柱浓度相对偏差基本控制在17%之内,相关系数在0. 79~0. 97之间,MACC臭氧柱浓度与地面站臭氧柱浓度具有很好的一致性.对于多年平均臭氧柱浓度空间分布,MACC再分析与AIRS卫星反演臭氧柱浓度的相对偏差在-3%~5%之间,MACC臭氧柱浓度相比AIRS柱浓度在青藏高原、南部沿海地区偏高,在东北地区偏低.各季节空间变化,MACC臭氧柱浓度与AIRS基本一致.在瓦里关站,MACC近地面臭氧与地面观测臭氧浓度月平均变化趋势存在一致性. MACC再分析近地面臭氧数据可以反映春季、夏季和秋季地面臭氧浓度的变化趋势,但冬季MACC近地层臭氧资料出现了较大的偏差.  相似文献   

2.
基于日本GOSAT及美国AIRS反演数据产品,对我国中部六省大气CO2时空分布特征进行研究,结果表明:由GOSAT反演的中部地区2010~2013年大气CO2年均柱浓度由389.36×10-6增长到396.52×10-6,年均绝对增长率达2.39×10-6/a,呈现出冬春季高值、夏秋季低值的季节变化特征,其柱浓度年均值及去长期趋势后的月均值均略低于长三角地区,高于京津冀和东三省地区;其CO2柱浓度高值区集中在湖南、江西及周边一带,年均绝对增长率为2.01×10-6,其柱浓度年均值及去长期趋势后的月均值与长三角地区相当,略低于京津冀和东三省地区,由于受地面源汇影响较小,其与GOSAT反演结果相反,可能是由于AIRS反映了对流层中层大气状况,而GOSAT则更多地反映了近地面层大气CO2变化.  相似文献   

3.
长江三角洲背景地区CO2浓度变化特征研究   总被引:4,自引:0,他引:4       下载免费PDF全文
通过分析2009年1月~2010年12月临安区域大气本底站在线观测获得的CO2浓度,研究地面风向、地面风速、气团输送等因素对长江三角洲背景地区CO2浓度的影响.结果表明,临安站CO2浓度的日变化分布表现为单峰型形态,下午低、凌晨高,浓度日变幅在9.5′10-6~44.3′10-6 (V/V)之间;季节变化特征表现为冬春季高,夏季低,浓度年较差为10.1′10-6 (V/V).通过分析地面风向、地面风速和气团输送等因素对临安站CO2浓度的影响表明,引起CO2浓度升高的地面风向夏季主要为NW~NNE,冬季主要为NNE~ESE;地面风速越大,CO2浓度越小;气团远距离输送的影响主要取决于气团途径区域的CO2排放情况.  相似文献   

4.
龙凤山本底站大气CO2数据筛分及浓度特征研究   总被引:1,自引:0,他引:1  
栾天  周凌晞  方双喜  姚波  王红阳  刘钊 《环境科学》2014,35(8):2864-2870
针对黑龙江龙凤山区域大气本底站2009年1月~2011年12月低层(离地10 m)和高层(离地80 m)大气CO2在线观测数据,选取低层数据重点开展研究,分析地面风向和风速等因素对观测CO2浓度的影响.结果表明,龙凤山低层大气CO2浓度明显受局地源汇影响,其与高层观测结果差异在白天08:00~17:00相对较小,小于(0.5±0.5)×10-6(物质的量比).春、夏和秋这3个季节E-ESE-SE-SSE扇区来向的地面风会明显抬升大气CO2浓度,而冬季N-NNW-NW-WNW扇区CO2浓度明显较高.该站4个季节近地面CO2浓度随着风速增大而逐渐减小,在冬季尤为明显.结合日变化及地面风的影响,对低层观测数据进行初步本底/非本底筛分,筛选出代表东北区域混合均匀CO2水平的本底数据占总数据的30.7%.本底CO2浓度季节变化显示该站大气CO2浓度呈现冬季高夏季低的趋势,季振幅约为(36.3±1.4)×10-6,明显大于同期WMO/GAW同纬度站点观测结果,2009~2011年龙凤山大气CO2平均增长率为2.4×10-6a-1.  相似文献   

5.
地面风对瓦里关山大气CO2本底浓度的影响分析   总被引:10,自引:2,他引:10       下载免费PDF全文
使用 1994年 7月— 2 0 0 0年 7月大气CO2 和地面风现场连续观测资料 ,分析了瓦里关全球大气本底基准站 (36°17′N ,10 0°5 4′E ,海拔 3816m)地面风变化对大气CO2 本底浓度的影响 .结果表明 ,水平风向、风速和垂直风向、风速的变化对大气CO2 观测值的影响在春、夏、秋、冬季有明显不同 .由大量观测事实的统计平均还给出了瓦里关山大气CO2 浓度在不同季节的分布范围和日变化类型 ,并分析了形成原因 .将地面风数据作为大气CO2 本底资料的过滤因子之一 ,提出了适用于不同使用目的和要求的我国内陆高原地区大气CO2 本底数据筛选方法  相似文献   

6.
四川盆地大气NO2特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
肖钟湧  江洪 《中国环境科学》2011,31(11):1782-1788
利用臭氧观测仪(OMI)卫星遥感反演的NO2柱密度数据,分析了2004年以来四川盆地对流层NO2柱密度和总NO2柱密度的时空特征.结果表明,对流层NO2柱密度和总NO2柱密度呈逐渐上升的趋势,年平均增长率分别约为5.14%和3.42%,而且对流层NO2柱密度的变化特征和总NO2柱密度的相似(r =0.91).春、夏季对流层NO2柱密度和总NO2柱密度明显大于秋、冬季,对流层NO2柱密度与总NO2柱密度比率的最小值和最大值分别出现在6月和12月,分别为0.51和0.66,比率的变化特征呈现了人为排放影响的特征.在重庆市、成都市等经济较为发达的城市地区出现NO2柱密度高值中心,对流层NO2柱密度更为明显,多年平均值分别达10.52′1015和8.92′1015 molec/cm2.对流层NO2柱密度和总NO2柱密度的变化呈现强的正相关,大部分地区的相关系数>0.95(比率>0.5),特别是在成都市和重庆市等经济较为发达的城市地区,相关系数接近1,比率达到0.8以上,突出了人为排放NO2的作用.  相似文献   

7.
中国八大经济区域5月与7月CO地面浓度时空分布规律研究   总被引:3,自引:0,他引:3  
利用2013年5月与7月全国76个城市CO地面小时浓度连续自动监测数据,分析了我国八大经济区域春(5月)、夏(7月)季CO地面浓度的时空分布规律.结果发现,76个城市春夏季CO浓度日变化基本一致,1 d中CO最低浓度出现于傍晚17:00左右,但各个区域峰值出现的时间略不同,多数地区出现于早晨8:00—10:00,南部沿海地区出现于凌晨1:00;CO地面浓度季节变化明显,5月CO地面浓度高于7月,但西北地区7月CO地面浓度高于5月;西北地区和长江中游地区春夏季CO地面浓度变化差异大,南部沿海地区季节变化小;黄河中游和北部沿海等地区CO地面浓度相对较高,东北地区CO地面浓度较低.机动车尾气排放是造成CO空间分布差异的原因之一.  相似文献   

8.
本文采用AIRS仪器遥感观察获得的2003至2010年CH4产品L3数据的月平均结果.分析了三峡库区CH4浓度的时空变化特征。将空间分辨率为1°×1°的CH4数据产品联合成20X20,选取三峡库区周边12个网格点。结果表明2003至2010年三峡库区周边区域CH4浓度有明显的季节变化.未发现显著的年变化。不同地区cH4浓度与平均浓度的偏差均在仪器测量误差范围以内。未发现不同地区CH4浓度分布和变化规律有明显的差异。  相似文献   

9.
天津市环境空气中一氧化碳污染特征及变化趋势研究   总被引:3,自引:0,他引:3  
文章通过对2010年天津市12个环境空气质量监测国控点(不含清洁对照点)实时连续监测的CO数据的深入分析,探讨了其浓度趋势变化和污染特征。结果表明:CO日变化规律呈典型的双峰型,冬季CO浓度最高,夏季最低,CO与O3和温度均呈较好的负相关性。  相似文献   

10.
基于2010年福建省CO2排放量,对人均CO2排放量和万元产值CO2排放量的区域分布格局及其成因进行了分析,并依据2000—2010年CO2排放量和经济发展数据,建立了福建省CO2排放量随人均GDP变化的环境学习曲线,据此分析了2005—2010年6个时段CO2减排潜力变化及其空间分布。结果表明:经济发展水平越高的地区,万元产值CO2排放的负荷越小,万元产值CO2减排的潜力也越小;反之,经济发展水平越低的地区,万元产值CO2排放的负荷越大,万元产值CO2减排的潜力也越大。  相似文献   

11.
基于卫星遥感与地面监测分析北京大气NO_2污染特征   总被引:5,自引:2,他引:3  
李令军  王英 《环境科学学报》2011,31(12):2762-2768
分析了1999—2010年北京大气NO2地面质量浓度、2004年以来北京及周边NO2柱浓度的变化.结果表明:1999—2007年来北京大气NO2质量浓度以升高为主.2008年实施奥运空气质量保障措施极大地缓解了北京NO2污染状况,地面质量浓度与垂直柱浓度都出现不同程度的回落.2009年北京大气NO2污染又有所反弹,但低...  相似文献   

12.
河口湿地近地面大气 CO2浓度日变化和季节变化   总被引:1,自引:0,他引:1  
张林海  仝川  曾从盛 《环境科学》2014,35(3):879-884
2011年12月~2012年11月对闽江河口湿地近地面大气CO2浓度(摩尔分数)进行观测,研究CO2浓度的日变化和季节变化特征,结果表明,闽江河口湿地近地面大气CO2浓度的日变化和季节变化都呈典型的"单峰型",表现为"昼低夜高"和"夏低冬高"的规律,日变幅在16.96~38.30μmol·mol-1之间.春、夏、秋、冬这4个季节近地面大气CO2平均浓度分别为(353.74±18.35)、(327.28±8.58)、(354.78±14.76)和(392.82±9.71)μmol·mol-1,而年平均浓度为(357.16±26.89)μmol·mol-1.闽江河口湿地近地面大气CO2浓度的日变化与温度、风速、光合有效辐射、总辐射等主要气象因子呈负相关关系(P<0.05),而1月近地面大气CO2浓度日变化与潮汐水位呈负相关,7月与潮汐水位呈正相关.  相似文献   

13.
比较NOAA/CMDL本底观测站CO月均值序列和MOPITT卫星观测值时间序列,结果表明两者在时间变化规律上一致性较好。利用2000-2015年MOPITT观测的CO数据,展示了对流层CO浓度的空间分布和时间变化。中国地区MOPITTCO表面混合比与人口密度分布规律相似,呈现出东部高西部低的特征,其自然分界线与中国人口分界线——胡焕庸线相契合。中国大多数工业发达、人口密集的地区CO柱浓度在2000-2015年期间有一个温和的下降趋势,平均每年下降约3%。合成15 a的月平均值,显示中国CO柱浓度冬春季节较高,夏秋季节较低,峰值多在3、4月,谷值多在7月。但位于不同纬度地区CO柱浓度有着不同的季节变化规律,例如随着纬度的升高,春季到夏季的CO柱浓度下降幅度降低。造成CO浓度季节循环特征的原因是CO源和汇的季节变化规律以及与纬度相关的太阳辐射变化。  相似文献   

14.
本文采用OMI臭氧遥感数据,结合甲醛垂直柱浓度、气象数据以及经济数据,分析了2005~2015年兰州地区臭氧柱浓度时空变化格局,并探索了影响臭氧的新气象因子,总结达到臭氧污染的日照、气压等气象条件,确定影响臭氧柱浓度的主要人为源并确定其限域。结果表明:1)2005~2015年夏季柱浓度值最高,冬季、秋季次之,春季最低;夏季波动幅度最大,其余三季波动幅度较小且平稳。2)11年中,臭氧柱浓度具有较大的波动。2005年至2010年快速增长到最高值331.997 DU。2010年之后,臭氧柱浓度缓慢下降,2014年起有回升趋势。3)OMI遥感数据具有较高的可靠性,并根据AQI的线性关系划分了臭氧柱浓度的污染等级。结果指示了11年大气臭氧空间变化,2005~2009年5年间研究区全区空气质量一直处于良,2010年全区轻度污染,后两年污染逐渐减弱,2013~2015年全区恢复至良。4)根据兰州发展的趋势以及周边城市的关系,划分了兰州经济圈及功能区,并结合臭氧柱浓度空间分布图得出臭氧污染与经济特征的密切关系。5)正弦模型拟合后臭氧柱浓度变化趋势呈不明显的周期性,说明臭氧的人为来源贡献较大。6)创新探索影响臭氧污染的新气象因子(日照、气压等参数),并确定其重要人为源限域。  相似文献   

15.
在现有CO2盐水溶液密度模型的基础上,根据CO2地下盐水溶液密度实验数据,考虑了温度、压力和CO2质量分数三个参数的影响,建立了CO2盐水溶液的表观摩尔体积模型。模型结果表明该模型能在30~50℃、10~20 MPa温压范围内准确预测CO2在盐水溶液中的表观摩尔体积,将预测结果与实验数据进行对比发现最大相对误差为0.25%,平均相对误差为0.1%,模型预测精度明显高于现有的CO2盐水溶液表观摩尔体积模型,为CO2地下盐水层封存提供了必要的基础。  相似文献   

16.
利用瓦里关全球本底站和番禺气象局站地面观测的CO2浓度资料对改进的Carbon Tracker-2010(CT-2010)模式系统进行了验证.结果显示,CT-2010能较好地反映近地层CO2浓度的分布状况,在瓦里关地区,模拟值与观测值的决定系数(R2)为0.584,残差为4.49μmol·mol-1,相对误差为1.18%;在珠三角地区,上述3个参数值分别为0.430、13.89μmol·mol-1和3.63%.利用CT-2010模式对广东地区近地层典型CO2过程及其影响因素进行了模拟和分析研究.结果表明:在典型高、低浓度CO2过程中,以广州为中心的珠三角区域始终为CO2浓度高值区,从东北至西南方向的梅州、河源、广州、肇庆和云浮等区域存在明显的CO2聚集带.在典型高浓度CO2过程中,珠三角和粤北区域的CO2浓度上升最明显,而粤东和粤西地区的CO2浓度变化较小;在典型低浓度过程中,珠三角、粤北及粤东的CO2浓度波动明显小于过程前和过程后,而粤西地区的CO2浓度波动较大.这些变化主要是受到了风场、下垫面植被、相对湿度及气温等因子的显著影响.  相似文献   

17.
于2009~2010对瓦里关山大气二氧化碳(CO2)和甲烷(CH4)进行了连续观测.结果表明,瓦里关山夏季频繁受到区域排放的影响,大约17%的CO2浓度标识为污染浓度.2009~2010年CO2平均浓度390.72×10-6,较1995~2008年高17.4×10-6;2009~2010年CH4中位浓度为1851.11×10-9,较2002~2006年高16×10-9,意味着区域内CO2和CH4的排放仍在不断增加.利用遗传算法改进的神经网络模型插补数据获得了完整的空气温度、风速、CO2和CH4浓度时间序列,并对时间序列展开了傅立叶分析.在天时间尺度,由于太阳活动的逐日变化,气象因子、CO2和CH4功率谱在24 h和12 h有着非常明显的谱峰.在月时间尺度,CO2浓度在30 d的周期内有明显的谱隙,意味着气象和物候因素在这个时间尺度上对CO2浓度的影响并不明显.  相似文献   

18.
利用南京大学城市大气环境观测站(32°03′20″N,118°46′32″E)2011年1~12月一氧化碳(CO)连续观测资料,分析南京市CO浓度变化特征;利用后向轨迹模式和聚类分析方法研究影响南京市的主要气团及其化学性质;基于MOPITT资料分析南京市CO的垂直分布.研究表明,南京市CO的年均浓度为(757.5±410.5)×10-9.CO浓度具有明显日变化特征,早上8:00浓度最高,下午16:00浓度最低.CO日变化具有季节差异性,春季最为明显,夏季幅度最小.一周之中CO在周五的浓度最高.CO存在明显季节变化,冬季1月浓度最高,夏季6月浓度最低.HYSPLIT4把影响该观测站的主要气团分为6类,其中来自江苏南部、浙江、上海的气团的污染物浓度最高,对南京市CO浓度贡献最大;源于西伯利亚高原,伴随强冷空气迅速向南移动的气团对南京市CO贡献最小.卫星数据分析结果表明,南京市夏季CO的垂直分布与其他3个季节有较大差异.与地面观测站相比,卫星反演的CO地面浓度要明显偏低.  相似文献   

19.
搭载在EOS AURA卫星上的OMI探测器由于其较高时空分辨率在大气痕量气体(O3,NO2,SO2)探测中得到广泛应用.利用2010~2012年OMI NO2柱浓度数据产品重构了兰州市以及周边地区NO2柱浓度分布,分析了其时空变化特征,并利用西南风场下NO2空间分布特征采用拟合方法研究了NOx冬季排放通量以及寿命.研究表明,NO2柱浓度空间分布呈现以兰州市为中心,浓度向四周扩散的特征;兰州市NO2柱浓度的年变化特征为12月达到最大浓度,8月达到最小浓度;2010~2012年NO2寿命分别为10.6,9.9,9.1h,NOx冬季排放通量分别为175.3, 183.7,179.9mol/s.其排放通量与兰州环境公报提供的氮氧化物排放通量数量级之间具有较好的一致性,说明利用卫星数据估算兰州的NOx通量方法的有效性.  相似文献   

20.
以中国一氧化碳(CO)排放反演为例,利用敏感性分析手段评估了集合数目、局地化半径、膨胀因子、观测站点密度和观测数据时间分辨率对排放清单反演的影响.结果表明:站点密度是影响排放反演的最重要参数.在不同站点密度下,反演的中国CO排放总量差异可达34%.同时,站点密度还会影响排放反演对其他参数的敏感性.随着站点密度的降低,排放反演对局地化半径、集合数目和膨胀因子参数变得更为敏感,但对观测数据时间分辨率的敏感性则有所下降.因此在站点稀疏地区,局地化半径是排放反演的主要影响参数,集合数目和膨胀因子次之;但在观测站点密集地区,局地化半径和观测数据时间分辨率是主要的影响参数,而膨胀因子和集合数目的影响相对较小.该研究能够为不同尺度的排放反演开展参数优化提供借鉴.在中国CO排放反演案例(站点密度为1.55个/104km2)中,建议反演参数设置为:集合数目为50、局地化半径为100km、最大似然估计膨胀方案(MLE)、日均或小时观测数据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号