首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
实际生活污水短程/全程硝化反硝化处理中试研究   总被引:7,自引:0,他引:7  
马勇  彭永臻  陈伦强  吴学蕾 《环境科学》2006,27(12):2477-2482
常温条件下,用A/O生物脱氮工艺中试试验装置处理实际生活污水,控制好氧区低DO浓度(0.5 mg/L),实现了短程硝化反硝化反应,亚硝酸氮平均积累率可达85%或更高.研究了低DO短程硝化反硝化、低DO全程硝化反硝化和高DO全程硝化反硝化3种运行方式或状态在总氮去除率、耗氧量、污泥性能和反应机理上的差别.结果表明,短程硝化反硝化是生物脱氮的最优运行方式,它可有效提高系统脱氮率、降低运行费用.短程硝化反硝化过程中缺氧区和好氧区的pH值变化幅度较大;而全程硝化反硝化过程中,缺氧区pH值变化很小或基本不变化,好氧区pH值变化幅度较大.全程硝化和短程硝化的硝化速率相差不大,但短程反硝化速率和全程反硝化速率相比增加了15%.可以应用DO和pH在线控制A/O工艺硝化反应过程.  相似文献   

2.
高浓度氨氮消化污泥脱水液半短程硝化试验研究   总被引:3,自引:2,他引:1  
采用A/O工艺考察了消化污泥脱水液半短程硝化及维持的影响因素和控制方法.结果表明,在温度9~20℃、平均DO浓度5.4 mg/L、SRT 30 d左右时,进水氨氮负荷(以N计,下同)0.64 kg/(m3·d)的条件下启动,经过29 d实现了短程硝化,此后的65 d内,动态控制反应器游离氨FA>4 mg/L时,70%亚硝氮累积率的短程硝化得以维持;在实现短程硝化的基础上,进而实现了半短程硝化,出水氨氮与亚硝氮浓度比维持在1∶1.32左右;当氨氮负荷降至0.19 kg/(m3·d)时(FA<1 mg/L),短程遭到破坏,在不同FA下取样做FISH分析,进一步证明了高FA是维持半短程硝化的主要因素;在进水中COD为282 mg/L, C/N仅为0.85的条件下,由于实现了短程硝化,系统TN去除量约为91 mg/L.结果分析表明,消化污泥脱水液在中低温、高DO浓度、长SRT下,通过动态控制氨氮负荷和pH值等运行参数,在系统中维持适宜的FA浓度(>4 mg/L),可以实现并维持半短程硝化,为后续的厌氧氨氧化提供进水或回流到污水厂主流区而节省反硝化碳源.  相似文献   

3.
低温低氨氮SBR短程硝化稳定性试验研究   总被引:8,自引:0,他引:8       下载免费PDF全文
在11~15℃条件下,采用序批式反应器(SBR)研究(50±5)mg/L氨氮浓度下短程硝化的稳定性.结果表明,2种溶解氧浓度(初始DO浓度分别为0.9~1.5,4.5~5.0mg/L)下反应器均能达到良好的稳定性和去除效果,150个周期内亚硝化率一直维持在95%以上,氨氧化率85%以上,平均SVI为35.22mL/g,2种DO水平下的平均氨氮污泥负荷分别为0.15,0.23kgN/(kgMLSS·d).当初始DO浓度为4.5~5.0mg/L时,21~23℃条件下无法实现短程硝化的稳定运行,经过42个周期亚硝化率降至70%,而31~33℃条件可以实现短程硝化的恢复并维持其稳定.经过不同温度条件下的对比分析及FISH试验研究,表明11~15℃与31~33℃均可抑制NOB的活性,从而有利于实现生活污水短程硝化的稳定运行.  相似文献   

4.
低温低氨氮SBR短程硝化稳定性试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在11~15℃条件下,采用序批式反应器(SBR)研究(50±5)mg/L氨氮浓度下短程硝化的稳定性.结果表明,2种溶解氧浓度(初始DO浓度分别为0.9~1.5,4.5~5.0mg/L)下反应器均能达到良好的稳定性和去除效果,150个周期内亚硝化率一直维持在95%以上,氨氧化率85%以上,平均SVI为35.22mL/g,2种DO水平下的平均氨氮污泥负荷分别为0.15,0.23kgN/(kgMLSS·d).当初始DO浓度为4.5~5.0mg/L时,21~23℃条件下无法实现短程硝化的稳定运行,经过42个周期亚硝化率降至70%,而31~33℃条件可以实现短程硝化的恢复并维持其稳定.经过不同温度条件下的对比分析及FISH试验研究,表明11~15℃与31~33℃均可抑制NOB的活性,从而有利于实现生活污水短程硝化的稳定运行.  相似文献   

5.
以模拟城市生活污水为处理对象,采用SBR反应器,在低DO浓度条件下,成功快速启动了亚硝化反应工艺,并对启动过程中的影响因素及实现过程进行研究。反应过程中控制反应器主要参数:DO为0.5~0.7 mg/L,pH为7.2~7.5,温度30~33℃,曝气时间6 h,通过循序递增的氨氮浓度(35~85 mg/L)间歇交替进水,经过33天的稳定运行成功实现了亚硝化的快速启动并且实现亚硝态氮积累率90%以上。考察了SBR亚硝化启动过程的影响因素。研究结果表明,DO直接影响亚硝化进程,当DO平均浓度约为0.5 mg/L时,亚硝酸盐氧化菌的活性得到恢复;在SBR周期试验中,pH、DO浓度与短程硝化密切相关,可作为亚硝化过程的控制参数。  相似文献   

6.
供氧充足环境下SBBR实现短程硝化的控制研究   总被引:2,自引:0,他引:2  
在供氧充足条件下对序批式生物膜反应器SBBR实现短程硝化的途径和机理进行研究.以垃圾渗滤液为处理对象,控制反应器主要环境参数为:溶解氧(DO)5mg/L, pH7.0,温度(t)25℃,采用全排水方式,进水周期为12h.通过数学推导和模型分析,确定以游离氨FA、C02和HN02浓度为直接控制因素,进水周期为间接控制因素,在SBBR反应器中实现了有效的短程硝化.结果表明,在氨氮NH ,4-N容积负荷0.52kg/(m3·d), NaHCO3浓度1.5mg/L的进水条件下, NH 4-N转化率达到89%, NO-2-N积累率达到83%,短程硝化作用显著.由此得出FA浓度是供氧充足情况下实现亚硝态氮NO-2-N积累的关键因素, CO2作为氨氧化细菌AOB的碳源,则具有进一步提升反应器性能的作用.  相似文献   

7.
固定化氨氧化细菌短程硝化稳定性研究   总被引:9,自引:5,他引:4  
以高分子聚合物为载体,采用细胞增殖技术固定氨氧化细菌,研究了氨氮负荷、HRT、初始游离氨(FA)和有机物等因素对短程硝化过程稳定性的影响.实验结果表明,当进水氨氮负荷分别为100、150和200 mg/L时,出水氨氮浓度均小于10 mg/L;当进水氨氮浓度为25.8、51.1和93.3 mg/L时,分别经历3、6、12 h后,出水氨氮浓度低,亚硝化效果好,可以根据进水氨氮浓度的变化,适当地凋整系统水力停留时间(HRT)并优化系统的运行;当游离氨(FA)浓度>9 mg/L时,对氨氧化细菌会产生抑制;低分子有机物的存在对氨氧化细菌的活性具有一定的促进作用,有机物浓度对亚硝化率基本不产生影响,实验过程中在有机物存在的条件下.发生了短程硝化反硝化反应.使得系统总氮减少.  相似文献   

8.
应用A/O生物脱氮中试试验装置处理实际生活污水,从pH、污泥浓度(MLSS)、自由氨(FA)、温度、污泥龄(SRT)、溶解氧(DO)和水力停留时间(HRT)等方面系统的分析了A/O工艺实现短程硝化反硝化的主要影响因素.结果表明,DO浓度是A/O工艺实现短程硝化反硝化的主要因素,由FISH检测发现长期控制低DO浓度(0.3~0.7 mg·L-1)可以导致亚硝酸盐氧化菌(NOB)的淘洗,从而实现稳定的亚硝酸盐积累率,试验获得平均亚硝酸氮积累率为85%,有时甚至超过95%.提高DO浓度,1周内亚硝酸氮积累率从85%降到10%,继续维持低DO浓度,大约需要2个污泥龄时间才可重新恢复到较高的亚硝酸氮积累率(>75%).低DO浓度下,试验初期污泥沉淀性能随着亚硝酸氮积累率的增加而变差,而在试验后期,无论亚硝酸氮积累率多高,污泥沉淀性能一直很好,SVI值处于80~120 mL·g-1  相似文献   

9.
A2O工艺处理生活污水短程硝化反硝化的研究   总被引:6,自引:2,他引:4       下载免费PDF全文
在常温条件下,采用A2O工艺处理低C/N比实际生活污水,通过控制好氧区DO为0.3~0.5mg/L以及增大系统内回流比以降低好氧实际水力停留时间(AHRT),成功启动并维持了短程硝化反硝化;系统亚硝态氮积累率稳定维持在90%左右.在C/N比仅为2.34的情况下,短程硝化系统对总氮(TN)的去除率高达75.4%.通过对不同碳源类型、不同硝化类型以及不同DO水平下A2O系统脱氮效率的比较研究发现,低氧短程硝化反硝化阶段与外加碳源的全程硝化反硝化阶段的TN去除率相当.同时研究表明,低DO运行并不会导致A2O工艺发生污泥膨胀.当接种污泥为膨胀污泥时,控制DO在0.3~0.5mg/L反而有助于改善污泥沉降性能和出水水质.  相似文献   

10.
CSTR和MBR反应器的短程硝化快速启动   总被引:9,自引:6,他引:3  
为实现短程硝化的快速启动,采用完全混合反应器(CSTR)和膜生物反应器(MBR)进行短程硝化启动性能对比研究,考察两个反应器在启动时间、氮素转化和污泥性能3个方面的差异.结果表明在进水C/N=1,温度为30℃±1℃,pH为7.5~8.0,DO为0.6~1.0 mg·L~(-1),结合缺氧/好氧比为1∶3(15 min∶45 min)和缩短HRT,CSTR和MBR分别运行56 d和44 d成功启动短程硝化,MBR启动周期较短.运行至第14 d、第28 d和第56 d时,CSTR和MBR亚硝累积率平均为51%、66%、89%和50%、71%、93%,硝酸盐氮生成速率(以NO_3~--N/MLVSS计)依次为7.4、4.0、1.7和7.6、3.5、1.0 mg·(g·h)~(-1),MBR在第28 d和第56 d表现出较高的亚硝累积率和较低的NO_3~--N产率,有利于短程硝化的快速启动.整个运行过程中,两个反应器内的亚硝化污泥均呈黄色,SVI在55~110 mL·g~(-1),MLVSS/MLSS稳定在0.6~0.8左右,良好的污泥性能为CSTR和MBR短程硝化的快速启动创造了有利条件.MBR在短程硝化快速启动中展现出更明显的优势.  相似文献   

11.
低溶解氧下SBR内短程硝化影响因素试验研究   总被引:5,自引:1,他引:4  
为了明确低溶解氧下短程硝化的其它控制因素,文章采用序批式反应器(SBR)系统研究了低溶解氧下实现短程硝化影响因素的控制范围。试验结果表明:SBR内较高的游离氨浓度(0.50~20.73 mg/L)对亚硝酸的积累起到一定促进作用;实现低溶解氧下短程硝化的温度和泥龄范围较大,在温度为21~30℃、泥龄为15~40 d的范围内都可以实现稳定的短程硝化,实验过程中亚硝酸积累率一直维持在80%以上;有机物的存在对氨氧化速率影响不大,但高有机物浓度(COD为900 mg/L)下,SBR内发生了高粘性膨胀。  相似文献   

12.
采用生物紊动床反应器(BTBR),分别研究了氨氮浓度、溶解氧浓度和有机物浓度对硝化过程的影响,以及不同条件下短程硝化的实现方法及特点。试验结果表明,通过高浓度游离氨对硝化菌选择性抑制所获得的亚硝酸盐积累是不稳定的;在0.5 ̄1.0mg/L溶解氧下,DO成为增殖的限制基质,可实现亚硝酸盐稳定的积累;当进水NH+4-N为300mg/L时,出水硝态氮中亚硝酸盐氮比例稳定在80%以上。在DO浓度为2 ̄3mg/L的条件下,有机物浓度为200m gTOC/L时对硝化作用影响不大;DO浓度为0.5 ̄1.0mg/L、TOC为100mg/L时硝化系统即受到破坏。  相似文献   

13.
好氧颗粒污泥亚硝化工艺的启动与运行特性研究   总被引:10,自引:8,他引:2  
杨洋  左剑恶  卜德华  顾夏声 《环境科学》2007,28(11):2462-2466
以具有硝化功能的活性污泥与厌氧产甲烷颗粒污泥的混合物接种小试曝气上流式污泥床反应器,采用自配无机氨氮废水为进水,在中温(30~35℃)条件下成功培养获得亚硝化颗粒污泥,亚硝化工艺的进水NH4-N负荷可达2 .5~3 .0 kg/(m·d),氨氮去除率和亚硝化率均可稳定在90%以上;进水中约100 mg/L的有机COD对亚硝化工艺的运行无明显影响;常温(约20℃)条件下亚硝化工艺也能高效稳定运行.  相似文献   

14.
游离氨对城市生活垃圾渗滤液短程硝化的影响   总被引:12,自引:5,他引:7  
吴莉娜  彭永臻  王淑莹  张树军 《环境科学》2008,29(12):3428-3432
为了考察游离氨(free ammonia,FA)对高氮城市生活垃圾渗滤液短程硝化的影响,采用“两级UASB-缺氧-好氧系统”处理实际城市生活垃圾渗滤液.首先在UASB1中实现同时反硝化与产甲烷反应,COD在UASB2中进一步去除,在A/O反应器中利用残余COD进行反硝化以及将NH+4-N彻底硝化.试验共进行79 d,经历3个阶段,即稳定短程硝化(40 d)、短程硝化破坏(19 d)、短程硝化恢复(20 d).结果表明,适当的游离氨浓度(40~70 mg·L-1)可实现稳定的短程硝化,如在阶段1中亚硝态氮积累率为97%,氨氮的去除率为99%.但游离氨浓度在160 mg·L-1左右会抑制全部的硝化反应.在阶段3中,通过稀释原水降低了游离氨浓度,在短时间内就恢复了短程硝化.可见,游离氨是实现和维持城市生活垃圾渗滤液短程硝化的重要影响因素.  相似文献   

15.
移动床生物膜反应器对垃圾渗滤液短程硝化研究   总被引:2,自引:0,他引:2  
杜月  陈胜  孙德智 《环境科学》2007,28(5):1039-1043
采用好氧移动床生物膜反应器(MBBR)对经过厌氧脱碳处理的垃圾渗滤液进行了深度短程硝化研究,考察了在中温(25℃)条件下DO浓度、pH值、C/N等因素对氨氮去除效果和短程硝化效果的影响.结果表明,在进水氨氮浓度为400 mg·L-1,HRT为24 h情况下,当控制DO为2 mg·L-1、pH值在8左右和C/N小于3时,氨氮去除率能达到70%以上,亚硝酸盐氮的积累率高达90%.间歇试验证明了该生物膜反应器中亚硝化菌的数量和活性要远高于硝化菌.该移动床生物膜工艺可以选择性固定和积累氨氧化细菌,从而实现较高的氨氮去除率和稳定的亚硝酸盐氮积累率.  相似文献   

16.
亚硝酸盐积累对A~2O工艺生物除磷的影响   总被引:1,自引:1,他引:0  
曾薇  李磊  杨莹莹  张悦  彭永臻 《环境科学》2010,31(9):2105-2112
常温条件下,通过控制好氧区DO浓度为0.3~0.5 mg/L,同时增大系统内回流比以降低系统好氧实际水力停留时间(actual hydraulic retention time,AHRT),在处理低C/N比实际生活污水的A2O工艺中成功启动并维持了短程硝化反硝化.但随着系统出水亚硝酸盐含量的升高,系统对磷的去除效果逐渐恶化.当好氧区亚硝酸盐浓度19 mg/L时,系统出水磷浓度大于进水磷浓度,系统处于净释磷状态.通过对原水COD浓度、反应区温度、pH值、游离亚硝酸浓度(free nitrous acid,FNA)等分析,表明碳源不足及短程硝化引起的亚硝酸盐积累影响了聚磷菌厌氧释磷和好氧吸磷;尤其是好氧区较高的FNA浓度(HNO2-N 0.002~0.003 mg/L)对聚磷菌好氧吸磷的抑制是导致系统除磷效果恶化的直接原因.通过外投碳源提高原水COD浓度,提高了聚磷菌厌氧释磷合成PHA的能力;同时增强了系统的反硝化能力,降低好氧区亚硝酸盐浓度,从而降低FNA对聚磷菌好氧吸磷的抑制程度,系统的除磷性能可迅速恢复;系统对磷的去除率可达96%以上.  相似文献   

17.
Nitrogen removal via nitrite from municipal landfill leachate   总被引:2,自引:0,他引:2  
A system consisting of a two-stage up-flow anaerobic sludge blanket (UASB), an anoxic/aerobic (A/O) reactor and a sequencing batch reactor (SBR), was used to treat landfill leachate. During operation, denitrification and methanogenesis took place simultaneously in the first stage UASB, and the e uent chemical oxygen demand (COD) was further removed in the second stage UASB. Then the denitrification of nitrite and nitrate in the returned sludge by using the residual COD was accomplished in the A/O reactor, and ammonia was removed via nitrite in it. Last but not least, the residual ammonia was removed in SBR as well as nitrite and nitrate which were produced by nitrification. The results over 120 d (60 d for phase I and 60 d for phase II) were as follows: when the total nitrogen (TN) concentration of influent leachate was about 2500 mg/L and the ammonia nitrogen concentration was about 2000 mg/L, the shortcut nitrification with 85%–90% nitrite accumulation was achieved stably in the A/O reactor. The TN and ammonia nitrogen removal e ciencies of the system were 98% and 97%, respectively. The residual ammonia, nitrite and nitrate produced during nitrification in the A/O reactor could be washed out almost completely in SBR. The TN and ammonia nitrogen concentrations of final e uent were about 39 mg/L and 12 mg/L, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号