首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘若萱  贺纪正  张丽梅 《环境科学》2014,35(11):4275-4283
以湖南桃源县一长期种植水稻的酸性土壤为研究对象,在微宇宙培养条件下设置了4个水分梯度处理,分别为田间持水量(water holding capacity,WHC)的30%、60%、90%和淹水2 cm深.考察了水分条件变化对硝化和反硝化作用影响,并结合定量PCR和限制性末端片段长度多态性(T-RFLP)技术研究了硝化-反硝化微生物的响应特征.结果表明,30%WHC处理土壤无明显的硝化和反硝化作用发生,硝化作用主要发生于60%WHC和90%WHC处理土壤,90%WHC处理土壤硝化作用明显强于60%WHC,并检测到明显的N2O释放,表明该水分条件可能发生了硝化-反硝化耦合作用.淹水处理土壤氧化还原势Eh显著低于非淹水处理土壤,无明显的硝化作用发生,但能检测到N2O释放且释放量小于90%WHC处理土壤.除培养初期(7 d)外,反硝化功能基因nirS和nirK,以及氨氧化细菌(AOB)amoA基因的丰度先随着水分增加而增加,并在淹水处理中小幅下降,三者之间呈明显的正相关关系,且AOB amoA、nirS和nirK基因丰度均在90%WHC处理中最高,与该处理中硝化和反硝化活性最高相一致.T-RFLP结果表明,培养2周后,nirS基因为代表的反硝化微生物群落组成对水分梯度变化产生明显响应,Eh和含水率Cw是影响其群落组成的主要因子.  相似文献   

2.
谢军  王子芳  王蓥燕  熊子怡  高明 《环境科学》2023,44(8):4565-4574
为明确化肥和有机肥配施生物炭对根际土壤反硝化细菌和反硝化势的影响,以柠檬根际土为研究对象,设置不施肥(CK)、化肥(CF)、有机肥(M)、化肥配施生物炭(CFBC)和有机肥配施生物炭(MBC)等5个处理,通过测定根际nirS型、nirK型和nosZ型反硝化菌群落特征、反硝化势和土壤环境因子,明确化肥和有机肥配施生物炭对根际反硝化作用的影响.结果表明,与CK相比,CF处理显著降低根际土壤反硝化势47.7%,M和MBC处理分别显著增加反硝化势的2 192.7%和1 989.9%; M和MBC处理显著增加nirS型和nosZ型反硝化菌的基因拷贝数,CF和CFBC处理显著降低nirS型和nosZ型反硝化菌基因拷贝数,而4个施肥处理均显著增加nirK型反硝化菌基因拷贝数.逐步回归分析结果表明:pH是nirS型反硝化菌丰度的主要影响因子,有机质(SOM)和铵态氮(NH+4-N)是nirK型反硝化菌的主要影响因子,pH、硝态氮(NO-3-N)和氮磷比(N/P)则是nosZ型反硝化菌的主要影响因子.偏最小二乘法分析...  相似文献   

3.
为揭示湖泊近岸浅层地下水升降对菜地土壤剖面硝化与反硝化功能微生物基因丰度的影响,以洱海湖滨带菜地土壤剖面为研究对象,通过模拟地下水升降过程,分析了水位升高(S1)、水位降低(S2)及落干(S3)过程中土壤剖面AOA-amoA、AOB-amoA、nirK、nirS、nosZ基因丰度的变化特征,探讨了功能基因与土壤环境因子的耦合关系.结果表明:S3阶段的土壤剖面AOA-amoA和AOB-amoA基因丰度显著高于S1和S2;S1阶段的土壤剖面nirK、nirS、nosZ基因丰度均显著高于S2和S3.AOA-amoA基因丰度显著高于AOB-amoA基因丰度,nirS基因丰度显著高于nirK、nosZ基因丰度;不同取样时期的土壤剖面AOA-amoA、AOB-amoA、nirK、nirS、nosZ基因丰度均表现为A层B层C层D层.水位升降对土壤剖面AOA-amoA、AOB-amoA、nirK、nirS、nosZ基因丰度有显著影响,且AOA-amoA和nirS基因对水位升降更敏感,分别在硝化与反硝化作用中占主导地位;pH、有机碳(SOC)、全氮(TN)为功能基因AOA-amoA、AOB-amoA的环境驱动因子,而功能基因nirK、nirS、nosZ的环境驱动因子为土壤含水量(W)、铵态氮(NH~+_4-N)、硝态氮(NO~-_3-N)、TN、SOC、pH.该研究结果可为揭示浅层地下水升降过程中菜地土壤剖面氮素循环的微生物学机制提供科学依据.  相似文献   

4.
农业废物好氧堆肥中环境因子对nirKnirSnosZ数量的影响   总被引:2,自引:2,他引:0  
应用定量聚合酶链式反应(real-time PCR)技术对农业废物好氧堆肥过程中参与反硝化过程的功能基因(nirK、nirS和nosZ)丰度在堆体不同位置处随时间的变化情况进行了研究.结果表明,随着堆肥进程,3种基因数量整体呈现出先升后降的变化规律,且不同位置处的反硝化基因数量之间存在着显著的差异性.使用Canoco 4.5软件对获得的反硝化功能基因丰度数据与不同时期不同层次堆体温度、pH、含水率、NH4+-N、NO3--N和水溶性有机碳(WSC)等环境因子的相关性进行冗余分析(redundancy analysis,RDA).基于手动选择的RDA分析结果表明,WSC、NH4+-N和堆体温度对反硝化基因丰度有着显著的影响(P<0.05),且前2个因子达到了极显著水平(P<0.01).应用t-value回归分析方法单独分析每种环境因子与3种基因的相关性,其中nirK与温度和pH显著正相关(P<0.05),nirS与温度显著正相关(P<0.05),nosZ与NH4+-N显著正相关(P<0.05)、与WSC显著负相关(P<0.05).  相似文献   

5.
油田区土壤具有潜在的PAHs(polycyclic aromatic hydrocarbons)污染风险,而以硝酸根为电子受体的反硝化作用可能在PAHs的厌氧代谢中起到重要作用.以具有50多年历史的江汉油田区域为对象,从该油田的油井口附近采集了9个土壤样品,编号为JH-1~JH-9,以反硝化相关的nir K(Cu-亚硝酸还原酶基因)和nirS(细胞色素cd1-亚硝酸还原酶基因)为分子标识,通过定量PCR及克隆文库结合T-RFLP(terminal-restriction fragment length polymorphism)的方法,研究典型油田区土壤反硝化微生物的群落结构,并探讨其与土壤环境因子之间的关系.结果表明,该油田区土壤中nirK基因的丰度高于nirS基因,PAHs含量最高的土壤样品(JH-4)中反硝化功能基因nir K和nir S的丰度均最低,相关性分析表明,土壤nir K及nirS基因的丰度均与土壤PAHs含量呈显著负相关(nirK:R2=0.54,P0.05;nirS:R~2=0.58,P0.05).克隆文库及T-RFLP的结果则表明,该油田土壤中nirK基因的群落组成在不同样品间的变异较大,且PAHs含量最高的JH-4中该基因的群落组成与其它各样品有明显的不同,RDA(redundancy analysis)的分析结果进一步表明除有效氮、有效磷外,土壤PAHs含量也是影响nirK型反硝化微生物群落组成的重要因子.相较于nirK,该油田区土壤中nirS基因的群落组成在不同样品间的差异较小,但发现nirS型假单胞菌的丰度与土壤PAHs含量呈正相关,表明具备较强有机污染物降解能力的假单胞菌属可能在该区域土壤PAHs的反硝化代谢中起到重要作用.  相似文献   

6.
若尔盖湿地作为中国最大的泥炭沼泽区,是生物地球化学循环的重要场所.本文以若尔盖湿地的花湖为研究对象,采集0~47 cm的沉积物样品,通过实时荧光定量PCR(qPCR)技术,探究沉积物中氨氧化(amoA)和反硝化(nirS、nirK、nosZ clade I)功能基因丰度的垂向分布特征,及其对环境因子的响应.结果表明:花湖沉积物中古菌amoA基因丰度在垂向分布上呈下降趋势,而nirS基因丰度呈上升趋势;古菌和细菌的amoA基因丰度相近,nirS基因丰度则远高于nirK基因,且氨氧化功能基因丰度整体上比反硝化功能基因低1~2个数量级.总氮(TN)、总磷(TP)、氨态氮(NH~+_4-N)、硝态氮(NO~-_3-N)和亚硝态氮(NO~-_2-N)与古菌amoA基因丰度均呈显著正相关关系(p0.05),而与nirS基因丰度呈显著负相关关系(p0.05).这两种功能基因明显受到花湖沉积物中不同形式氮素浓度的影响与限制.通过研究花湖沉积物氨氧化与反硝化功能基因的垂向分布特征及其对环境的响应,可为深入了解高原湖泊沉积物中的氮循环机理提供参考.  相似文献   

7.
为了探讨长期施肥对稻田不同土层关键反硝化功能种群丰度的影响及核心驱动因子,以湖南宁乡长期施肥定位试验田为平台,选取不施肥(CK)、全量化肥(NPK)和秸秆还田(ST)3个处理,结合实时荧光定量PCR(qPCR)技术,系统分析了稻田不同土层(0~10,10~20,20~30,30~40cm)关键反硝化功能基因(narG、nirK和nirS)的丰度及其与土壤理化性质的内在联系.结果表明,相比于不施肥处理(CK),施肥处理(NPK和ST)在0~40cm土层土壤SOC、TN、NO3--N、NH4+-N和Olsen-P分别显著增加了2.2%~83.6%,3.5%~58.3%,70.8%~222.1%,0.9%~83.7%和16.5%~94.5%,pH值下降了0.31~0.67个单位;长期施用化肥和秸秆使narG、nirK和nirS基因丰度分别增加0.75~7.18倍,1.57~3.02倍和0.53~3.81倍,其中秸秆还田对反硝化细菌数量的影响比单施化肥更显著;稻田narG、nirK和nirS反硝化型细菌的丰度随土层深度增加而逐渐降低,具有明显的垂直分布特征;RDA分析结果显示,土壤养分如SOC和TN是影响水稻土narG、nirK和nirS反硝化型细菌垂直分布的关键因子,而pH值是调控反硝化细菌在稻田底土分布的核心驱动因子.研究结果可为提升稻田土壤肥力和减少稻田氮素损失和温室气体排放提供理论依据.  相似文献   

8.
长期施用氮肥对水稻土亚硝酸还原酶基因多样性的影响   总被引:5,自引:2,他引:3  
以中国科学院桃源农业生态试验站长期定位试验的土壤样品为对象,采用PCR扩增、克隆测序等分子生物学技术,研究长期施氮肥对水稻土亚硝酸还原酶基因nirK、nirS多样性的影响.序列分析结果表明,从水稻土中克隆的系列nirK基因片段与NCBI数据库中未知菌种的nirK基因相似性较高,平均达90.7%;而nirS基因片段与数据库中已知的nirS基因相似度低,平均74.7%.通过Chao1估计值预测,nirK基因在不施肥处理(CK)、施氮肥处理(N)中分别有58±13和49±9个不同的OTUs,而nirS基因在CK处理、N处理中分别有49±10和132±43个不同的OTUs.Chao1预测曲线95%置信区间(95%CIs)显示,氮肥施用显著提高了nirS基因的多样性,而对nirK基因多样性则无显著影响.LIBSHUFF分析比较N、CK处理克隆文库间的差异,结果显示nirK基因处理间群落结构差异p0.022,达到显著水平;而nirS基因处理间的群落结构无显著差异.系统发育分析显示,nirK、nirS基因的系统发育树分别可分为3个及4个大簇.施用氮肥导致nirK、nirS克隆有不同程度的聚集,说明氮肥改变了nirK和nirS基因群落结构,其中氮肥对nirK基因群落结构的影响更大.总体来说,氮肥的施用对水稻土nirK基因群落多样性无显著影响,但明显提高nirS基因群落的多样性;而长期施氮肥使含nirK基因的反硝化菌群落结构发生显著变化,对nirS基因群落结构则无显著影响.  相似文献   

9.
淡水资源短缺是干旱区农业可持续发展所面临的严峻问题,合理利用咸水灌溉是缓解淡水资源不足的重要手段.长期咸水灌溉会导致土壤盐分积累,进而影响氮素的转化和N_2O的排放.本研究通过10 a咸水灌溉试验,探究咸水灌溉对棉田土壤N_2O排放、反硝化细菌丰度和群落结构组成的影响.试验采用灌溉水盐度和施氮量两因子2×2随机区组设计,其中灌溉水盐度(以电导率表示)设置2个水平:0.35 dS·m~(-1)和8.04 dS·m~(-1),施氮量设2个水平:0 kg·hm~(-2)和360 kg·hm~(-2)(分别用SFN0、SHN0、SFN360和SHN360表示).结果表明,长期咸水滴灌棉田土壤盐分、含水量和NH~+_4-N含量显著增加,pH值、NO~-_3-N、有机质和全氮含量显著降低.咸水灌溉处理显著抑制N_2O排放,不施氮肥和施氮肥处理下分别较淡水灌溉降低45.19%和43.50%.氮肥施用显著增加N_2O排放,施肥处理N_2O排放较不施肥处理增加161%.不施肥条件下,咸水灌溉显著降低反硝化酶活性、nirK、nirS和nosZ基因丰度,α多样性.施肥条件下,咸水灌溉对nosZ型反硝化细菌的丰度无显著影响,但显著降低反硝化酶活性和nirK、nirS基因丰度.咸水灌溉和氮肥施用共同改变nirK、nirS和nosZ型反硝化细菌群落结构,灌溉水盐度对于反硝化细菌群落结构的影响要大于施肥.Lefse分析显示nirK、nirS和nsoZ型反硝化细菌差异物种随着灌溉水盐度的增加而增加,咸水灌溉显著改变反硝化细菌群落结构,导致优势种群数量增加.上述结果表明,长期咸水灌溉降低土壤N_2O排放,但会导致土壤盐分的持续上升,nosZ、nirK和nirS丰度的增加会促进N_2O排放.  相似文献   

10.
近年来随着辽河口两岸经济的发展,大辽河水质受氮素污染越来越严重.反硝化作用是微生物介导的氮循环中一个重要过程,对河口水体中过量氮素的去除和富营养化的缓解意义重大.因此,开展大辽河口水体反硝化作用的研究尤为重要.以大辽河入海河段、大辽河河口和近岸海域为研究对象,采用实时定量PCR法对其进行了水体中反硝化细菌(以功能基因nirS、nirK和nosZ为主)的空间分布特征研究,并通过因子分析和冗余分析(RDA)研究了基因丰度与环境因子间的相关性.结果表明:①不同站位大辽河口及其毗邻区域的水样中nirK、nirS和nosZ基因的丰度变化范围分别为7.73×105~2.54×108、3.19×105~3.19×107、3.22×103~4.92×105 copies/L,各基因平均值大小表现为nirK > nirS > nosZ;3种基因中,nirK和nirS基因大多在调查河流的上游和入海口站位丰度较高,而nosZ基因丰度在河流段由上游到河口逐渐增高,且由河口到近海呈现降低的趋势.②大辽河口及其毗邻区域(nirK+nirS)/nosZ在3.23×101~1.76×103之间,平均值为454.77,表明存在较多的N2O气体排放,特别是河口到近海区域.③ρ(As)、ρ(Cd)、ρ(Cr)、ρ(SiO32-)、ρ(NO3-)、T、pH和盐度主导了大辽河口及毗邻区域水环境的整体状况,应继续关注主导因子对水环境的影响;水环境因子对反硝化功能基因丰度影响的相关性大小表现为ρ(DO)> ρ(TN)> ρ(NO2-)> ρ(SiO32-)> ρ(Cd)> ρ(NO3-)>盐度> ρ(As)> ρ(Cr)> T > ρ(Zn)> pH,蒙特卡罗检验得出无显著影响的因子,因此大辽河口及毗邻区域反硝化功能基因丰度是由各项环境因子相互作用、共同影响的结果.研究显示,水体中反硝化有关的微生物对环境的响应不同,各项环境因素共同控制了群落组成,为了更好地进行水体治理与保护,应持续关注水体中的反硝化功能基因.   相似文献   

11.
随着全球气候变化的不断加剧,大气CO2浓度呈明显增加趋势,这将间接影响土壤-植物-微生物系统的氮循环过程.为研究典型水稻土壤反硝化细菌对CO2浓度升高的响应规律和机制,借助水稻密闭培养箱,运用实时荧光定量聚合酶链式反应(Real-Time qPCR)分子技术,设置不施氮(0 mg/kg)和常规施氮(100 mg/kg)2个处理,研究CO2倍增对水稻不同生长期土壤关键反硝化功能细菌(narG、nirK和nirS型)丰度的影响.结果表明:①在2种施氮水平,CO2倍增显著促进了水稻分蘖期、孕穗期、扬花期和成熟期水稻根系生长(增幅为2.96%~28.4%)、地上部生物量增加(增幅为7.1%~107.3%)以及成熟期籽粒干质量的增加(增幅为19.5%和38.0%),具有显著的增产效应.②反硝化细菌丰度对CO2倍增的响应与生育期及施氮水平有关,CO2倍增在2个施氮水平均抑制分蘖期反硝化细菌的繁殖,显著增加孕穗期反硝化细菌数量;在水稻扬花期,CO2倍增促进了施氮处理narG和nirS型反硝化细菌数量的增加,在成熟期抑制未施氮处理下narG、nirK和nirS型反硝化细菌的生长.另外,narG、nirK、nirS型反硝化细菌丰度整体表现为narG > nirS > nirK,且随水稻的生长,其在成熟期的丰度均呈降低趋势.nirK和nirS基因同属亚硝酸还原酶,但nirS基因丰度高于nirK,且对CO2倍增和施氮的响应有所差异.研究显示,CO2倍增可显著增加水稻生长和产量,不同施氮水平对稻田土壤反硝化细菌丰度的影响存在差异.   相似文献   

12.
为探究中国南方农田土壤氮迁移过程的反硝化与厌氧氨氧化(anaerobic ammonia oxidation,ANAMMOX)速率变化和脱氮贡献本研究采集宛山荡麦稻轮作区农田不同层深土壤及农田、沟道、河岸带和湖泊沉积物等不同土地利用类型土壤样品,分析其理化性质采用Illumina MiSeq测序和实时荧光定量PCR (quantitative real-time PCR,qPCR)技术探究土壤样品的微生物群落组成和功能基因丰度应用同位素培养实验测定各样品的潜在反硝化与厌氧氨氧化速率(以N_2计,下同).结果表明,土壤反硝化速率与TOC、NH_4~+-N和NO_3~--N含量均显著正相关(P0.05),与nirS、nirK及nosZ等功能基因丰度亦呈显著正相关(P 0.05).农田表层土壤反硝化速率为(11.51±1.04) nmol·(g·h)~(-1),显著高于农田其他土壤层以及其他土地利用类型(P 0.05),而农田土壤中厌氧氨氧化速率在20~30 cm层最高,达到(0.48±0.07) nmol·(g·h)~(-1).此外,反硝化作用是农田表层土壤氮损失的主要原因,占91.9%~99.7%,而厌氧氨氧化在深层土壤N_2的产生过程中占有重要地位.  相似文献   

13.
刘莲  汪涛  任晓  邵志江  郑斌 《环境科学学报》2019,39(6):1808-1815
植物是影响沉积物反硝化作用的重要因素之一,国内外已有不少研究探讨了植物对河口或湖泊沉积物反硝化速率的影响,但关于植物类型对自然沟渠沉积物反硝化速率及其相应功能基因的影响研究不多.因此,本文以7种常见沟渠植物为研究对象,通过室内盆栽试验,利用改进的乙炔抑制法和实时荧光定量PCR技术研究了不同植物对自然沟渠沉积物反硝化速率和相应功能基因(nirS和nirK)拷贝数的影响.结果表明,培养至第180 d时,不同植物生长条件下沉积物反硝化速率在2.85~13.20μg·m~(-2)·h~(-1)之间,不同植物间反硝化速率差异显著,且大型挺水植物浮水植物小型挺水植物.不同植物之间沉积物中nirS基因拷贝数在2.70×10~8~5.02×10~8 copies·g~(-1)之间,nirK基因拷贝数在3.97×10~5~6.91×10~5 copies·g~(-1)之间,与培养初期相比,培养180 d后沉积物中nirK、nirS基因拷贝数明显增多.7种植物中,美人蕉沉积物中的反硝化功能基因拷贝数较高,狐尾藻较低,整体来看,基因拷贝数大小顺序为:挺水植物浮水植物.nirS基因拷贝数与NO~-_3-N含量、TN含量及反硝化速率之间均呈显著性的正相关关系(p0.05),但nirK基因拷贝数与沉积物碳氮含量及反硝化速率之间相关性不显著.  相似文献   

14.
朱晓萌  代彬彬  严亚 《环境科学学报》2019,39(11):3877-3887
研究了南明河贵阳城区段中沉积物的5种残留医用抗生素对沉积物反硝化潜势的影响,并采用荧光定量PCR及高通量测序方法检测了5种反硝化过程中的关键功能基因丰度以及编码nirS基因的细菌群落结构,探讨了抗生素残留影响反硝化潜势的微生物学机制.结果表明,南明河沉积物中5种目标抗生素中,诺氟沙星(norfloxacin,NFX)的浓度最高((537.13±212.69) ng·g~(-1)),并且对沉积物中反硝化潜势有显著抑制效果(p0.05).进一步分析表明,NFX对反硝化潜势的抑制作用主要是通过抑制编码nirS细菌主导的亚硝酸盐还原阶段而实现的.本研究揭示了城市河道沉积物中的残留抗生素可能会削弱河道的反硝化脱氮能力从而加重河流氮污染状况,为评估抗生素污染的微生态效应提供了依据.  相似文献   

15.
吴杰  李志琳  徐佳迎  王珏  蒋静艳 《环境科学》2019,40(6):2847-2857
为研究磺胺类兽用抗生素对稻田N_2O排放的影响及其微生物机制,采用田间原位观测试验,对比分析不同浓度磺胺二甲嘧啶(sulfamethazine,SMZ)对稻田N_2O排放及硝化反硝化过程底物和相关功能基因丰度的影响.本试验共设5个处理,分别为:无肥料无抗生素(CK);猪粪为基肥,尿素为追肥,分别添加0、5、15和30 mg·kg~(-1)的SMZ处理(SMZ0、SMZ5、SMZ15和SMZ30),在整个水稻生长季定期采集和分析土壤和气体样品.结果表明,不同浓度SMZ均未改变稻田N_2O排放的季节性规律,整个观测期N_2O排放通量,与SMZ0处理相比,SMZ15有显著差异(P 0. 05),SMZ30和SMZ5无显著差异(P 0. 05).中、高浓度处理SMZ15和SMZ30在均值水平上增加了N_2O累积排放量,分别是SMZ0处理的3. 47和4. 67倍,且增加了土壤NO_3~--N含量.与SMZ0处理相比,中、高浓度处理对土壤总细菌16S rRNA基因丰度、硝化过程中氨氧化古菌AOA amoA和氨氧化细菌AOB amoA基因丰度以及反硝化过程中的nirK、nirS和nosZ基因丰度均有明显的激活作用(P 0. 05),低浓度处理SMZ5对各基因丰度则有轻微抑制作用.具体表现为SMZ30、SMZ15与SMZ0处理的16S rRNA、AOA amoA、AOB amoA以及nirK、nirS、nosZ基因丰度比值的平均值分别为:1. 58、1. 77、2. 15、1. 38、1. 33、1. 42和1. 24、1. 37、1. 08、1. 65、1. 11、1. 64,而SMZ5与SMZ0处理的6个上述基因丰度比值均小于1,仅分别为0. 80、0. 99、0. 92、0. 76、0. 76和0. 77. N_2O排放通量与nir K基因丰度呈极显著正相关(P 0. 01),表明SMZ通过影响反硝化菌活性进而对N_2O排放产生作用.因此,兽用抗生素对农田的污染不可忽视,应从源头上合理控制使用,以减少其环境生态风险.  相似文献   

16.
尹昌  范分良  李兆君  宋阿琳  朱平  彭畅  梁永超 《环境科学》2012,33(11):3967-3975
利用末端限制性片段长度多态性(T-RFLP)和实时荧光定量PCR(real-time quantitative PCR,Q-PCR)技术,结合反硝化潜势(DEA)和土壤理化性质的测定,探索了长期施用有机和无机肥对公主岭黑土nirS型反硝化细菌的群落结构和丰度的影响.试验设不施肥(CK)、单施有机肥(OM)、单施无机肥(NPK)以及有机肥和无机肥混施(MNPK)等4个处理.结果表明,长期施用有机肥显著增加了土壤的DEA,其中OM、NPK和MNPK处理分别为CK处理的5.92、1.81和6.03倍,而NPK和CK间无差异.有机肥处理增加了黑土nirS型反硝化细菌的丰度,OM、NPK和MNPK处理中nirS基因的拷贝数分别为CK的2.73、1.30和3.98倍;NPK处理对nirS基因的拷贝数影响不显著.T-RFLP图谱显示施用有机肥改变了nirS反硝化细菌的群落结构;相比于非有机肥处理,有机肥处理中增加了一类79 bp的片段类型,显著降低了84 bp的片段类型,并完全抑制了一类99 bp的片段类型,而有机肥处理间和非有机肥处理间的nirS群落结构分别相似.系统发育分析表明:黑土中nirS型反硝化菌主要由α、β和γ-变形菌纲及一些尚未培养的微生物组成,79 bp的片段类型与γ-变形菌纲的假单胞菌科(Pseudomonadaceae)和β-变形菌纲的伯克氏菌目(Burkholderiales)相似,84 bp片段类型与Burkholderiales和红环菌目(Rhodocyclales)相似.相关性分析表明,pH、全磷(TP)、全氮(TN)、总有机碳(TOC)、硝态氮(NO3--N)和铵态氮(NH4+-N)依次与nirS型反硝化细菌的种群丰度(r为0.724~0.922,P<0.05)和DEA(r为0.453~0.938,P<0.01)显著相关,DEA与nirS型反硝化细菌的种群丰度显著线性正相关(r=0.85,P<0.01);冗余度分析表明,除含水量外,TN、TP、pH、TOC、NH4+-N和NO3--N(r为0.440~0.862,P<0.01)依次与nirS型反硝化细菌群落结构的变化显著相关,DEA的变化和nirS型反硝化细菌群落结构的变化亦显著相关(r=0.863,P<0.01).本研究表明相比于无机肥处理,公主岭黑土中nirS型反硝化菌的群落结构与丰度对有机肥处理有更显著的响应,且其群落结构的改变与种群丰度的增加与DEA的提高显著相关.  相似文献   

17.
邓正昕  高明  熊子怡  王蓥燕  谢军  王子芳 《环境科学》2023,44(12):6955-6964
为研究有机肥配施生物炭对土壤反硝化势和反硝化微生物群落结构的影响,以柠檬果园土壤为研究对象,采用盆栽试验,设置不施肥(CK)、常规施肥(F)、有机肥(P)、化肥+生物炭(FP)和有机肥+生物炭(PP)共5个施肥处理,通过实时荧光定量PCR技术和末端限制性片段长度多态性分析(T-RFLP)分别研究了反硝化微生物的丰度和群落结构;采用冗余分析(RDA)明确影响反硝化微生物群落结构的环境因子,运用PLS-PM分析揭示影响柠檬果园土壤反硝化势的环境因子.结果表明:①与单施化肥处理(F)相比,有机肥和生物炭(P、FP和PP)处理均显著提高了土壤反硝化势,提高范围为147.8%~1445.3%.有机肥配施生物炭处理较单施有机肥土壤反硝化势降低了23.8%.②与CK处理相比,施肥处理明显提高了nirSnirK型反硝化微生物丰度;化肥处理(F和FP)显著降低nosZ型反硝化微生物丰度.施加生物炭的处理显著改变反硝化微生物的多样性和均匀度,但具体规律及机质尚不清晰.③ RDA分析结果表明,施肥能通过改变C/N、WC、NO3--N、SOC、AK和AP等土壤环境因子,从而影响土壤nirSnirKnosZ型反硝化微生物的群落结构.④ PLS-PM结果分析表明,土壤反硝化势与pH和nirK型反硝化微生物丰度呈极显著正相关,NO3--N通过影响nirK型反硝化微生物群落丰度间接影响土壤反硝化势.此外,nirK型反硝化微生物群落是柠檬果园土壤反硝化作用的主导菌群.综上,有机肥主要通过调控土壤pH直接影响土壤反硝化势,通过调控NO3--N含量影响nirK反硝化微生物丰度间接影响土壤反硝化势,有机肥配施生物炭能减缓单施有机肥造成的土壤反硝化势提高的情况,更适合在该地区果园中进行推广.  相似文献   

18.
硝酸盐对土壤反硝化活性及蒽厌氧降解的影响   总被引:1,自引:1,他引:0  
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)在土壤中的反硝化降解是其厌氧去除的重要途径之一,但严格厌氧条件下反硝化电子受体(硝酸盐)对土壤反硝化活性及PAHs降解影响的报道还不多见.通过添加硝酸盐和蒽的厌氧微宇宙培养实验,探讨厌氧条件下硝酸盐对土壤蒽的厌氧降解及反硝化活性的影响.设置了不添加(N0)和添加硝酸盐(N30:30mg·kg~(-1))的两组处理,每组处理分别含3个蒽浓度(A0:0 mg·kg~(-1)、A15:15 mg·kg~(-1)、A30:30 mg·kg~(-1)),共6个处理(N_0A_0、N_0A_(15)、N_0A_(30)、N_(30)A_0、N_(30)A_(15)、N_(30)A_(30)).厌氧条件下25℃黑暗培养45 d,并于第3、7、15及45 d测定土壤N2O和CO2的产生速率、反硝化相关功能基因(nar G、nir K、nir S)丰度及蒽含量.结果表明,在培养第3 d检测到较强的反硝化活性,且硝酸盐及蒽均能显著促进土壤的反硝化酶活性.随着培养时间的延续,各处理中土壤反硝化活性急剧下降,蒽对土壤反硝化活性却表现出明显的抑制作用.方差分析的结果也表明,硝酸盐、蒽及其交互作用均能显著影响土壤的反硝化活性.3种反硝化功能基因中,只有narG和nirS基因的丰度在培养期间呈现逐渐升高的趋势,且它们能够受到硝酸盐、蒽及其交互作用的显著影响.厌氧条件下土壤蒽的最终去除率在33.83%~55.01%之间,添加硝酸盐对土壤蒽的去除率和降解速率均无显著影响,但高蒽含量(N_0A_(30)、N_(30)A_(30))处理的降解速率显著高于低蒽含量(N_0A_(15)、N_(30)A_(15))处理(P0.05).综上,硝酸盐的添加能显著影响土壤的反硝化活性及与反硝化相关的narG和nirS基因的丰度,但对土壤蒽的厌氧降解无显著影响.  相似文献   

19.
NUA-DAS生态滤池脱氮效果与反硝化菌特征研究   总被引:1,自引:1,他引:0  
构建小型酸中和残渣(neutralized-used acid residue,NUA)和脱水铝污泥(dewatered alum sludge,DAS)联合生态滤池,研究了NUA-DAS生态滤池的脱氮效果和反硝化菌特征.系统运行稳定后,装置总出水中COD、TN、NO_3~--N的平均去除率达到60%、70%和95%,出水中NO_3~--N的浓度范围只有0.02~0.55 mg·L~(-1).采用PCR-DGGE分子生物学技术检测系统运行30d和60d各滤料层中含3类基因(nirS、nirK和nosZ)的反硝化菌群落特征,包括丰富度及相似度.结果表明,系统运行30 d和60 d里,nirS、nirK和nosZ基因反硝化菌丰富度均有明显增加,且处在各个滤料层中的反硝化菌丰富度基本相同.NUA和DAS滤料中检测出3类基因丰富度指数大小均为nosZnirKnirS.运行时间对反硝化菌的群落结构影响并不明显,但空间位置有一定影响.反硝化菌在NUA中的适应能力优于DAS,3类基因中nirK基因对滤料环境的适应能力最强.  相似文献   

20.
土壤中氧化亚氮(N2O)的释放量占全球N2O释放总量的60%.其中,稻田土壤是N2O最主要的释放源.反硝化过程是稻田土壤N2O生成的主要微生物过程之一.本研究选取广东韶关稻田垂向土壤(0~100 cm)为研究对象,通过乙炔抑制剂法测定了N2O产生潜势和反硝化潜势,并利用针对特异性功能基因的实时荧光定量和高通量测序技术分别分析反硝化功能基因丰度和反硝化微生物群落结构.结果显示:0~10 cm深度的土壤样品N2O产生潜势最高,可达(0.020±0.0035)μg·g-1·h-1.反硝化功能基因中,nirK基因的丰度峰值((1.51±0.0015)×108 copies·g-1)出现在0~10 cm深度,而nosZ和nirS基因的丰度峰值((4.29±0.0015)×107 copies·g-1和(8.86±0.0010)×107 copies·g-1)均出现在10~20 cm深度.稻田垂向土壤中N2O产生潜势和相关的反硝化功能基因(nosZ、nirK和nirS)丰度均随土壤深度的增加而逐渐降低.其中在所有深度的土壤样品中nirK基因的丰度均高于nirS.基于nirK基因的高通量测序结果发现慢生根瘤菌(Bradyrhizobium)的相对丰度最高(44.06%±6.14%,n=6).相关性分析表明,稻田土壤中N2O产生潜势与环境因子(TN、TC和含水率)、反硝化功能基因丰度以及慢生根瘤菌(Bradyrhizobium),罗河杆菌属(Rhodanobacter)和亚硝化螺菌属(Nitrosospira)的相对丰度呈正相关.上述结果表明稻田土壤中环境因子和反硝化功能基因丰度影响了N2O产生潜势的垂向分布.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号