首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
试验通过对比分析向氧化沟系统投加填料前后的厌氧池释磷情况来探讨悬浮填料氧化沟系统的除磷途径,发现投加填料前后厌氧池释磷量分别为1.74 mg/L和-1.59 mg/L,投加填料后出现了"厌氧吸磷"现象,推测填料生物膜中存在能在厌氧条件下还原水中含磷化合物并释放出PH3的微生物,为市政污水中磷元素的高效回收利用提供了研究方向。  相似文献   

2.
污泥处理过程中厌氧再释磷的影响因素研究   总被引:2,自引:0,他引:2  
对序批式活性污泥反应器(SBR)试验装置和T型氧化沟污水处理厂的释磷总量进行了研究.同时,利用实验室和污水厂SBR装置考察了富磷污泥中的硝酸盐浓度、碳源种类、初沉池污泥投配比等因素对富磷污泥厌氧再释磷的影响.结果表明:每日通过泥线释磷返回水线的磷约占日处理磷量的10%~16%;不同有机基质诱导的污泥释磷速率不同,乙酸钠等低级脂肪酸能快速诱导污泥再释磷;硝酸盐的存在对污泥再释磷有明显的抑制作用,4h后当NO3--N浓度降低到0.2mg·L-1以下时磷将快速释放;初沉污泥的投加会使释磷时间提前4h,随着初沉污泥投配比的提高,释磷速率会相应提高,但释放总量不变.试验结果可以为SBR污水厂污泥处置过程中控制富磷污泥磷的再释放提供参考.  相似文献   

3.
为使某污水处理厂出水达标排放,对该厂进行了全流程测试,分析其主要污染物沿工艺流程分布特征以及活性污泥特性,评估工艺运行现状,为该污水处理厂优化调控提供基础数据。研究发现,该厂进水ρ(BOD5)/ρ(TN)仅为2.45,属于典型的低碳氮比进水。此外,通过活性污泥特性测试发现,反硝化潜力为9.0 mg/(g·h),反硝化菌群相对丰度较高。进水碳源不足及外部碳源投加位点设置不合理是该厂无法实现TN达标排放的主要原因。在采取改变碳源投加位点、减小好氧池末端曝气量、增加碳源投加量等措施后,出水ρ(TN)由32.0 mg/L降至12.7 mg/L,实现了TN的达标排放;此外,厌氧释磷潜力由1.3 mg/(g·h)提升至2.6 mg/(g·h),生物除磷能力也有了较大提升。研究提供了一种解决污水处理厂出水水质超标问题的思路,可为含低碳氮比进水的城镇污水处理厂运行调控及稳定达标提供参考。  相似文献   

4.
黄筹  王燕  郑凯凯  王硕  李激 《环境工程》2020,38(7):58-65
随着全国重点流域城镇污水处理厂迎来新一轮提标改造,其中部分污水处理厂对出水总磷(TP)的排放限值由0.5 mg/L降低为0.3 mg/L,甚至降至0.2 mg/L,这对城镇污水处理厂除磷提出了新的挑战。通过对全国58座执行GB 18918-2002《城镇污水处理厂污染物排放标准》一级A标准的城镇污水处理厂进行调研分析,探讨了目前污水处理厂在实际生产运行中除磷存在的主要问题并给出相应对策,为今后高TP标准排放下污水处理厂的运行管理提供技术指导。调研结果表明:各污水处理厂的释磷潜力为0.01~23.98 mg/(g·h),其平均值为2.77 mg/(g·h),释磷潜力普遍较弱。生物除磷效果较差的主要原因为进水碳源不足、厌氧区存在高浓度硝态氮及同步化学除磷的抑制作用。基于上述调查分析,有针对性地提出了具体的调控措施,并建议污水处理厂要根据进水水质情况,通过静态实验确定最佳除磷药剂种类及合适的投加量,有效控制化学除磷过程,从而达到节省药耗的目的。  相似文献   

5.
基于生物膜序批式反应器(BSBR)工艺,对模拟城市污水中的磷酸盐进行高效去除、回收.实验在探究不同蓄磷量和碳源对反应器效能、磷回收效率影响的基础上,进一步分析了两者的共同作用对厌氧释磷速率和释磷量的影响.结果表明,在反应器低碳源投加(仅厌氧投加200mg·L-1)和低磷进水(10 mg·L-1)工况下,磷回收液浓度随着蓄磷量增加而增大,磷回收液浓度最高可达到225.5 mg·L-1,蓄磷量可达159.6mg·g-1;同时探究了磷回收液浓度与平均磷回收效率间的关系,在以(6±1)d为回收周期的循环下,磷富集液浓度达到(106.6±10)mg·L-1,此时平均磷回收效率为78.62%±2.3%;而且提高3.6倍蓄磷量可提高1.9倍释磷量,较之4倍碳源投加量时的1.79倍释磷量更为高效.因此,本反应器能基于更低碳源投加量获取高浓度磷回收液,从而为未来废水处理厂中磷的回收提供新的方向.  相似文献   

6.
基于生物膜法磷回收工艺厌氧释磷研究   总被引:4,自引:1,他引:3  
单捷  潘杨  章豪  冯鑫 《环境科学学报》2020,40(8):2749-2757
城市污水经过碳回收后的低碳源进水水质将对活性污泥法强化除磷(EBPR)工艺的运行带来困难.本研究基于生物膜法磷回收的序批式反应器(Biofilm-SBR)对低碳、低磷进水进行磷回收,在BSBR反应器好氧无碳源、厌氧低碳源投加的运行基础上,研究了该工艺在低碳模式下厌氧磷释放的关键影响因素.同时,研究了不同的碳源浓度和碳源投加方式对BSBR工艺释磷的影响.最后,分析了系统中生物膜蓄磷量的变化,并探究其与碳源消耗、释磷效果的量化关系.结果表明,该系统在好氧无碳源、厌氧仅200 mg·L-1的碳源投加下,即可取得115 mg·L-1(可溶性磷)的富磷回收液.系统的Cupt/Prel(释放单位质量磷的COD消耗量)平均为(11.12±1.03)mg·mg-1,最大蓄磷量为124 mg·g-1.  相似文献   

7.
FNA对好氧吸磷的长期抑制及污泥吸磷方式转化   总被引:2,自引:2,他引:0  
马娟  李璐  俞小军  孙雷军  孙洪伟  陈永志 《环境科学》2015,36(10):3786-3793
本研究采用交替厌氧/好氧(An/O)SBR反应器,在21~23℃的条件下启动系统并长期投加亚硝酸盐,考察游离亚硝酸(FNA)对系统好氧吸磷性能的长期抑制作用及驯化后污泥吸磷方式的转化.结果表明,投加FNA后,污泥的释磷和吸磷能力不仅未受到抑制,比释磷速率和比吸磷速率反而高于投加前.FNA浓度(以HNO2-N计)低于0.53×10-3mg·L-1时,系统除磷率均大于96.9%;当FNA浓度提高至0.99×10-3、1.46×10-3、1.94×10-3mg·L-1时,系统除磷率均会大幅下降,分别经过50、12、30 d的运行,除磷率恢复至64.42%、67.33%、44.14%,说明抑制作用导致的除磷性能恶化可以恢复且长期驯化作用能缩短恢复过程.值得注意的是,在低于1.46×10-3mg·L-1范围内,随着FNA投加量的提高,好氧段亚硝酸盐的损失量不断增大.研究还发现,经FNA长期抑制的好氧除磷系统内污泥吸磷方式发生转变,硝酸盐型和亚硝酸盐型缺氧吸磷能力分别为驯化前的3.35倍和3.86倍,说明长期投加FNA有利于富集以NO-2为电子受体的反硝化聚磷菌;而且,长期驯化有利于系统内污泥的沉降.  相似文献   

8.
亚硝酸盐积累对A~2O工艺生物除磷的影响   总被引:1,自引:1,他引:0  
曾薇  李磊  杨莹莹  张悦  彭永臻 《环境科学》2010,31(9):2105-2112
常温条件下,通过控制好氧区DO浓度为0.3~0.5 mg/L,同时增大系统内回流比以降低系统好氧实际水力停留时间(actual hydraulic retention time,AHRT),在处理低C/N比实际生活污水的A2O工艺中成功启动并维持了短程硝化反硝化.但随着系统出水亚硝酸盐含量的升高,系统对磷的去除效果逐渐恶化.当好氧区亚硝酸盐浓度19 mg/L时,系统出水磷浓度大于进水磷浓度,系统处于净释磷状态.通过对原水COD浓度、反应区温度、pH值、游离亚硝酸浓度(free nitrous acid,FNA)等分析,表明碳源不足及短程硝化引起的亚硝酸盐积累影响了聚磷菌厌氧释磷和好氧吸磷;尤其是好氧区较高的FNA浓度(HNO2-N 0.002~0.003 mg/L)对聚磷菌好氧吸磷的抑制是导致系统除磷效果恶化的直接原因.通过外投碳源提高原水COD浓度,提高了聚磷菌厌氧释磷合成PHA的能力;同时增强了系统的反硝化能力,降低好氧区亚硝酸盐浓度,从而降低FNA对聚磷菌好氧吸磷的抑制程度,系统的除磷性能可迅速恢复;系统对磷的去除率可达96%以上.  相似文献   

9.
酸化液对厌氧释磷好氧吸磷速率的影响研究   总被引:3,自引:1,他引:2  
采用序批式试验研究了酸化液对聚磷菌厌氧释磷好氧吸磷速率的影响。同一活性污泥混合液中聚磷菌的释磷潜力相当,混合液中挥发性脂肪酸越多则越有利于激发聚磷菌的释磷潜能。酸化液投加量越大,对应的混合液中聚磷菌的平均释磷速率也越大。当酸化液投加量为30 mg/L(以TOC计)时,聚磷菌的平均释磷速率达0.137 mg/(mg.d),是未投加酸化液工况的3.26倍。聚磷菌厌氧释磷过程中,活性污泥的MLVSS值逐渐增大,而MLSS值却不断减小,这是由聚磷菌释磷反应过程中聚磷颗粒和糖原的消耗,以及PHB的生成而产生的。碳源充足与否,对聚磷菌的平均好氧吸磷速率影响不大,研究各工况中,聚磷菌的平均吸磷速率在0.129~0.160 mg/(mg.d)内。碳源越充足,则聚磷菌在好氧吸磷反应持续的时间越长,因此,具有更强的超量吸磷能力。酸化液投加量为20 mg/L时(以TOC计),聚磷菌在好氧吸磷结束时,出水的SP浓度能减少到0.5 mg/L以下。  相似文献   

10.
采用脉冲进水缺好氧交替工艺(SAOSBR)处理低C/N实际生活污水,考察了短程脱氮对于低碳源生活污水同步脱氮除磷效果的强化作用,并分析了短程脱氮强化生物除磷的机理.结果表明,通过短时的饥饿处理配合缺好氧交替的运行方式实现了系统的短程硝化,亚硝酸盐积累率稳定在95%以上.短程的实现还强化了系统的同步脱氮除磷效果,总氮和磷的平均去除率相比于全程脱氮过程分别提高了约6%和36%.分析表明短程强化生物除磷的原因主要是由于残留的NO2-对聚磷菌厌氧释磷的影响较小.静态试验也证实,在碳源不足的条件下,以NO2-为电子受体的反硝化作用相比于NO3-可以减弱反硝化菌与聚磷菌之间的碳源竞争,从而提高聚磷菌的厌氧释磷量和聚羟基烷酸(PHA)的合成量.因此,在处理低C/N生活污水时,短程脱氮的实现更有利于系统的生物除磷.  相似文献   

11.
The characteristic of phosphorus removal and appropriate change of the traditional operation modes were investigated in UniFed sequencing batch reactor (SBR) laboratory-scale apparatus (40 L), treating actual domestic wastewater with low ratios of C/N (2.57) and C/P (30.18), providing theoretical basis for actual application of wastewater treatment plant. UniFed SBR system with its unique operation mode had the distinct superiority of phosphorus removal. On this occasion, the effect of volumetric exchange ratio (VER) and the method of influent introduction for phosphorus removal were studied. When the carbon source became the limiting factor to phosphorus release, the higher the VER, the lower the phosphorus concentration in the effluent. Three different influent patterns, including one-time filling, four-time filling, and continuous filling with the same quantity of wastewater could increase the release rate of anaerobic phosphorus from 0.082 to 0.143 mg·P·(L·min)−1. Appropriate change of the traditional operation modes could optimize the efficiency of phosphorus removal. When the feed/ decant time was extended from 2 h to 4 h, the phosphorous removal efficiency increased from 59.93% to 88.45% without any external carbon source. In the mode of alternation of anoxic-aerobic (A/O) condition, phosphorous removal efficiency increased from 55.07% to 72.27% clearly. The carbon source in the influent can be used adequately, and denitrifying phosphorus removal was carried out in anoxic stage 2 (A2). This mode was optimal for the treatment of actual domestic wastewater with low C/N and C/P ratios.  相似文献   

12.
IntroductionEutrophicationofwaterbodieshasbeenattendedmanyyearsbyscientistsandthepublic .Phosphorusinthewaterbodiesoriginatesfromtheatmosphere,agricultureanddomesticandindustrialwastewater;domesticandindustrialwastewaterbeingthelargestsource .Therefore ,…  相似文献   

13.
王春英 《环境科技》2009,22(6):24-27
为了进一步了解反硝化聚磷菌(DPB)污泥质量浓度(MLSS)对反硝化除磷过程的影响,进行一系列厌氧、缺氧模拟试验.研究考察DPB污泥的MLSS对厌氧释磷、缺氧反硝化吸磷的影响。结果表明:MLSS越高,释、吸磷速率及反硝化速率越高;MLSS对释、吸磷比速率和反硝化比速率的影响较小;厌氧总释磷量由污水中可利用COD的多少决定,DPB污泥的MLSS只影响到达释磷平衡的时间:污水中含氮量偏低引起反硝化吸磷段NO3^-不足时,DPB污泥厌氧释磷量高于反硝化吸磷量.MLSS越高经缺氧反硝化吸磷处理后水中含磷量越高。  相似文献   

14.
好氧颗粒污泥同时脱氮除磷实时控制的研究   总被引:3,自引:1,他引:2       下载免费PDF全文
为实现以厌氧/好氧方式处理生活污水常低温同时脱氮除磷好氧颗粒污泥(AGS)工艺的实时控制,研究了冬季低温条件下磷负荷变化对系统同时脱氮除磷的影响及DO、pH值和ORP的变化规律;并通过静态实验研究了同时脱氮除磷AGS中聚磷菌(PAO)的组成.结果表明,DO、pH值和ORP的特征点对应反硝化结束、厌氧放磷结束、吸磷结束以及硝化结束等阶段,可以作为AGS同时脱氮除磷的实时控制参数.同时脱氮除磷AGS中,以氧作为电子受体的PAO能够去除总磷酸盐的14.19%;以氧和NO3--N作为电子受体的PAO能够去除总磷酸盐的74.32%;以氧、NO3--N和NO2--N作为电子受体的PAO能够去除总磷酸盐的11.47%.在好氧条件下AGS可以实现同时硝化、反硝化、好氧吸磷和反硝化吸磷.  相似文献   

15.
活性污泥法处理低浓度含磷废水的试验研究   总被引:1,自引:0,他引:1  
对比研究了厌氧—好氧交替条件下(AAA工艺)活性污泥对三组磷浓度不同的模拟生活废水的除磷效果。试验结果表明,活性污泥对磷浓度为6mg/L左右的废水处理效果最好,磷去除率可达97%;对磷浓度为16.66mg/L和2mg/L左右废水的磷去除率则分别为78.4%和75.3%;并探讨了活性污泥法的除磷机理。  相似文献   

16.
通过序批式反应器(SBR)的连续运行,研究了污水不同起始pH值对增强生物除磷的影响(SBR1:pH=6.8;SBR2:pH=7.6).结果表明,在厌氧阶段,SBR2释磷量高于SBR1;在好氧阶段,SBR2降解的聚羟基烷酸(PHA)量低于SBR1,并且糖原合成量/PHA降解量的比例要远远低于SBR1.但是,SBR2反而比SBR1吸收更多的磷.进一步的研究表明,由于SBR2比SBR1合成的糖原少,因此其低PHA降解量并没有导致低吸磷量.推测SBR2中的聚磷菌(PAO)量高于SBR1,从而导致SBR2有着更高的吸磷量以及PHA利用率.在好氧末,SBR2中的可溶解性正磷酸盐(SOP)浓度远远低于SBR1,SBR2的除磷效果达到93.67%,但SBR1仅为65.06%.因此,通过控制污水起始pH值的方法可以达到显著提高增强生物除磷效果的目的,比控制整个污水生物处理过程pH的方法要方便.  相似文献   

17.
庄桂嘉  刘立凡  黄潇  高静思  朱佳 《环境工程》2022,40(12):128-133
为提高电镀废水的污染物去除效率,探讨厌氧-缺氧-好氧(AAO)-生物膜耦合工艺的有机物去除和脱氮除磷效能。结果表明:AAO-生物膜工艺处理电镀难降解有机废水运行效果良好,COD去除率稳定在89%左右;脱氮主要途径是好氧硝化,缺氧反硝化,60 d运行中系统脱氮率达到70%~80%;难降解有机物影响NH4+-N和COD的去除效率,且存在时间差距,在其影响下,NH4+-N的变化稍滞后于COD。AAO-生物膜工艺的除磷效果经50 d运行后趋于稳定,出水TP浓度低于1 mg/L,去除率>65%,除磷主要依靠厌氧释磷和好氧吸磷过程。  相似文献   

18.
相较于传统强化生物除磷工艺通过测流实现污泥磷酸盐的富集和回收,生物膜法可对废水中的磷酸盐进行高效同步去除和富集,具有应用潜力。针对生物膜法厌氧释磷需要高碳源刺激的问题,通过优化工艺条件强化生物膜好氧吸磷能力提高生物膜蓄磷量,进而减少厌氧释磷时的碳源消耗。采用生物膜法序批式反应器(BSBR),考察了在低碳源投加下,蓄磷量与磷富集罐磷浓度的响应关系,采用正交试验探究溶解氧、搅拌速度以及好氧时间对磷酸盐强化吸收的影响。结果表明:当温度为(25±2)℃、厌氧外加碳源为(180±20) mg/L时,富集罐磷浓度随着生物膜蓄磷量的增加而增加,最高可达到90.62 mg/L。相同蓄磷量下,溶解氧浓度从2 mg/L增加至8 mg/L,磷酸盐最大吸收速率可从2.60 mg/(L·h)上升到8.70 mg/(L·h)。正交实验结果表明:各因素对磷酸盐强化吸收的影响顺序为溶解氧>好氧时间>搅拌速度。当溶解氧浓度为6 mg/L,搅拌速度为200 r/min,好氧时间为5 h时,除磷效率最高可达99.98%。  相似文献   

19.
两级生物选择同步除磷脱氮新工艺   总被引:2,自引:0,他引:2       下载免费PDF全文
针对现有市政污水处理工艺难以兼顾同时生物脱氮除磷的矛盾,结合生活污水低碳氮比的特点,通过在传统的A/O工艺的基础上增设了1个厌氧选择器以提供生物释磷最适宜环境,1个缺氧选择器以避免回流污泥中硝酸盐对厌氧释磷影响以及防止污泥膨胀,开发了一种新型的2级生物选择同步除磷脱氮新工艺.研究表明,应用2级生物选择反硝化除磷脱氮工艺处理生活污水,当进水COD/TN=4.4, COD/TP=33的情况下,稳定期的COD、氨氮、总磷的去除效率分别可达到88%、90%和97%,出水水质达到了国家《城镇污水处理厂污染物排放标准》的一级A标准,反硝化除磷量占总除磷量的35%,并且缺氧段硝酸盐量和缺氧吸磷量成明显的线性关系,平均每消耗1mgNO3--N约吸收1.8mgTP,此线性关系可作为本工艺反硝化除磷的一个重要控制参数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号