首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
一次严重灰霾过程的气溶胶光学特性垂直分布   总被引:2,自引:0,他引:2       下载免费PDF全文
利用激光雷达在广州地区一次严重灰霾过程进行探测,并反演气溶胶消光系数及退偏比,分析边界层结构演变对气溶胶消光系数廓线分布的影响.结果表明,气溶胶主要在1.5km以下.发生灰霾天气时,霾层达到1km,午后可达1.5km,发生严重灰霾天气时,霾层只有500m.气溶胶消光系数随高度分布在清洁过程中呈线性递减,标高为1490m,在灰霾过程中呈指数递减,标高为789.5m.从气溶胶消光系数廓线变化可以很好地反演边界层结构的演变.气溶胶消光系数在残留层顶出现极大值.气溶胶退偏比有明显的日变化,白天的退偏比比夜间的高,午后出现峰值.该次过程气溶胶的退偏比小于0.2.本地气溶胶廓线只有在清洁过程时与Elterman廓线接近.  相似文献   

2.
利用微脉冲激光雷达分析上海地区一次灰霾过程   总被引:20,自引:7,他引:13  
通过分析2008年6月至2009年5月期间浦东新区灰霾天气出现的特征,并以2008年12月19日至2008年12月21日一次典型的灰霾天气过程为例,利用激光雷达(Light laser detection and ranging,简称Lidar)数据资料反演得到气溶胶消光系数及其强度图和廓线图,结合地面气象数据和气溶胶观测资料,分析了此次灰霾天气形成的原因.一年的观测资料表明,上海地区冬季和春季易产生灰霾天气,冬季出现重度霾最多,秋季和夏季灰霾天气较少.较弱的太阳辐射以及静风、小风是导致灰霾天气发生的重要原因,且高湿度的霾天气对能见度影响更大.大气边界层(以下简称边界层)高度变化决定着灰霾天气发生的强度,当边界层高度在1km左右时,易发生轻微霾天气,当边界层高度降至600m左右时,易发生中度、重度霾天气,而太阳辐射强度变化决定着边界层高度的变化.轻微霾天气下,大气气溶胶垂直分布最强消光值约为0.15km-1,而重霾天气下可达0.30km-1以上.本次霾过程还受地面颗粒物排放的影响,主要是PM1和PM2.5,且在消光作用中散射性气溶胶的贡献大于吸收性气溶胶.轻微霾天气下PM2.5浓度为50μg·m-3,黑碳浓度为5000ng·m-3,浊度为200Mm-1,而重度霾时则分别达到200μg·m-3、24000ng·m-3和1400Mm-1.随着此次霾的出现,整层大气气溶胶光学厚度(AOD,550nm)不断增加,在重度霾时达到0.6左右,Angstrom指数在重度霾时显著降低,表明有大颗粒物导入,说明此次重度霾天气的发生还与气溶胶的输送有关.  相似文献   

3.
为探讨西安市典型霾过程中的气溶胶垂直分布特征和气象要素影响,利用地面空气质量数据、CALIPSO卫星激光雷达资料以及气象要素资料,并结合HYSPLIT后向轨迹模式、天气形势分析、相关性分析等,对西安市2016年12月17-21日霾过程依据RH(相对湿度)进行干霾、湿霾和雾霾的划分,并分析不同阶段的气溶胶垂直分布特征.结果表明:前期干霾阶段,西北沙尘的输送使得高空气溶胶退偏比和色比较大,以沙尘型气溶胶为主;中期湿霾阶段,RH的增大使得低层细粒子增多,消光系数达1.7 km-1,以污染型气溶胶为主;后期干霾阶段时,低层大气中非球形粗粒子增多,以混合型气溶胶占主导.气象要素对霾过程影响较大,静风、高湿、"双逆温"效应不利于颗粒物的清除,逆温强度的变化与污染物的消长具有一定的滞后一致性.RH和ρ(PM)共同影响能见度变化,RH高于80%时,能见度由RH主导,相关系数达到-0.871;RH低于80%的污染阶段,ρ(PM)对能见度起主导作用,相关系数达0.85以上.研究显示,不同霾阶段气溶胶垂直分布特征差异较大,气象要素对霾过程的消长有重要影响.   相似文献   

4.
利用2009—2013年冬季地面气象观测数据筛选出非霾和不同强度霾的影响时次,采用能见度与消光系数的定量关系和冬季波长系数对微霾冲激光雷达反演修正得到的气溶胶消光系数,分析了上海地区气溶胶在垂直高度上的集中范围,当地面出现轻微霾、轻度霾、中度霾、重度霾时气溶胶分别主要集中于近地面0.81、0.49、0.41、0.40 km以下,非霾时气溶胶主要集中在近地面1.35 km以下;在此基础上,根据判别不同强度霾的能见度标准和能见度与消光系数的定量关系,将能见度换算为消光系数,再对微脉冲激光雷达反演消光系数进行修正,从而判断高空霾的强度及所处的高度;另外还探讨了云对产生重度霾的影响、降水与中度霾和重度霾的关系以及颗粒物质量浓度与不同强度霾的关系,发现48.53%的重度霾是受云影响而产生的,37.11%中度霾发生前后伴有降水现象,51.14%的重度霾发生前后伴有降水现象,非霾、轻微霾,轻度霾、中度霾、重度霾期间的颗粒物浓度和细颗粒物占的比例依次增大.  相似文献   

5.
为总结出霾天气发生时的相关影响因子、特征共性,选取长三角地区8个主要城市,2016~2019年秋冬季发生的7次典型霾天气过程,对比分析了3次霾天气过程中AQI、PM2.5浓度、气象要素、天气形势、边界层特征的变化以及污染物来源.结果表明:不利的气象条件及高低空配置的静稳天气型导致霾天气的形成.3次过程AQI指数峰值分别为247、306及272,与PM2.5浓度变化趋于一致.PM2.5浓度和能见度呈明显负相关关系,且污染过程发生时能见度普遍偏低,2、3次过程能见度谷值均低于50m.高相对湿度、稳定的气温及静风与霾过程的形成有着紧密的联系.总体上混合层高度与AQI呈现负相关关系,混合层高度较低抑制垂直对流,从而使污染物在低空区域性积聚,3次污染过程混合层高度最低值均小于100m.逆温层的出现利于霾污染过程中污染物的累积,近地层的贴地逆温将污染物集聚在地表,第1次过程贴地逆温强度高达8.2℃;脱地逆温导致污染物在边界层内堆积并抑制其扩散,均易导致高浓度污染发生,第2次过程脱地逆温为主,强度高达4.8℃.气溶胶类型多为沙尘、大陆型污染物、污染型沙尘及烟粒.污染发生通常受局地排放、区域输送及长距离输送的共同影响,气团携带的因人为产生的细粒子也是造成污染的主要原因之一.  相似文献   

6.
杭州市区大气气溶胶吸收系数观测研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用2011年6~8月和2011年12月~2012年2月杭州国家基准气候站内黑碳及气象观测资料,分析了杭州市区气溶胶吸收系数的变化特征.结果表明,杭州市区气溶胶吸收系数冬季[(42.3±17.7)Mm-1]要高于夏季[(35.8±10.5)Mm-1],且冬季气溶胶吸收系数变化较为剧烈.在边界层变化以及人类活动的共同影响下,气溶胶吸收系数呈现明显的双峰型日变化特征,峰值出现在07:00~09:00,谷值出现在14:00,次峰值出现在19:00~20:00.通过拟合小时平均值最大出现频率得出该地区气溶胶吸收系数本底值为24.7Mm-1.霾时气溶胶吸收系数要高于非霾时,随着霾污染的加重,气溶胶吸收系数呈现阶梯上升趋势.霾期间气溶胶吸收系数的增加是造成能见度下降的重要原因之一.  相似文献   

7.
西安市两次雾霾期间气象要素和气溶胶特性分析   总被引:4,自引:0,他引:4  
利用气象要素和气溶胶观测资料,分析了西安市2013年12月17~25日、2014年2月20~26日两次雾霾过程的气象要素风、温、湿变化,气溶胶质量浓度、粒子谱分布及散射系数的变化及其在雾霾天气的形成、发展、维持与变化中的作用.结果表明:APS观测的粒子谱变化表明,雾霾过程中,粒径在0.5~0.835μm之间的粒子的数浓度增加最明显,雾霾后,3.5μm粒子的数浓度下降显著;SMPS观测的粒子谱变化表明,霾过程中细粒子的数浓度主要集中在30~300nm,且具有明显的日变化特征,08:00~14:00、18:00~02:00为数浓度的大值时段,细粒子段污染物浓度的增加主要是由粒径大于140nm以上的粒子引起的.散射系数的增加与粒径小于1.0mm粒子的数浓度增加有关,也是雾霾期间能见度恶化的重要原因之一.  相似文献   

8.
采用上海地区2007年1月~2010年11月CALIPSO星载激光雷达Level 2反演资料,对清洁海洋型、沙尘型、大陆污染型、大陆清洁型、污染沙尘型和烟尘型等类型气溶胶垂直分布进行了分析,研究了其季节变化规律.结果表明:霾发生时0~2km高度烟尘型气溶胶出现频率明显高于非霾时,而在2~8km高度,沙尘型、污染沙尘型与大陆污染型明显高于非霾时.0~2km高度春季霾大陆污染型气溶胶出现频率高于其他季节;0~2km夏季污染沙尘型气溶胶与海洋型气溶胶出现频率均高于其他季节,特别是污染沙尘型;秋季霾期间,0~2km高度范围内烟尘型出现频率明显高于2~6km高度;冬季污染沙尘型、烟尘、大陆污染型气溶胶出现频率高于其他季节.  相似文献   

9.
2016冬季京津冀一次持续重度霾天气过程分析   总被引:1,自引:1,他引:0  
毛曳  张恒德  朱彬 《环境科学》2021,42(8):3615-3621
2016年12月16~21日我国京津冀地区发生了一次持续重度霾天气过程.为了进一步加深对霾的认识和提高对霾的分析预报能力,利用多种资料,对此次重度霾天气过程的环流背景和气象要素等进行了综合性分析.结果表明,此次过程持续时间长,污染强度大,影响范围广,能见度低,以外来输送为主,气溶胶主要分布在600 m以下高度,有一定的极端异常性,静稳天气指数与空气质量指数有较好的对应关系;京津冀地区高空受高压脊前的纬向环流控制,维持偏西气流,冷空气活动弱,以下沉气流为主,水汽含量较低,高空云量较少,低空有暖脊北伸,地面位于高压东南部,受均压场控制,气压梯度较小,受偏南风影响,污染物易于堆积;地面静小风,相对湿度较高,混合层高度较低,不利于污染物的水平和垂直扩散.  相似文献   

10.
北京地区夏冬季颗粒物污染边界层的激光雷达观测   总被引:35,自引:4,他引:31  
在对激光雷达测量数据处理方法讨论的基础上,根据"北京空气污染物垂直结构测量试验"(BAPIE)冬季和夏季测量的数据,对北京地区气溶胶高度分布及近地面气溶胶污染边界层指标、气溶胶污染边界层统计特征、气溶胶输送南北通量高度分布、API-Ⅰ级优质大气和Ⅴ级重度污染个例等,进行了讨论。   相似文献   

11.
基于CALIOP的安徽沿淮地区霾天气溶胶类型及垂直分布特征   总被引:2,自引:0,他引:2  
利用CALIPSO卫星气溶胶廓线数据、地面观测资料进行统计分析,给出了2012—2013年安徽沿淮地区霾日气溶胶的垂直廓线分布.基于后向轨迹及聚类分析,获得沿淮地区污染的主要来源及传输方向,并进一步利用卫星类型掩码产品(VFM)及EC再分析资料,对不同来源的气溶胶类型、气溶胶垂直分布及导致污染的典型天气形势进行分析.结果表明,沿淮地区消光系数随高度减小,霾日近地面消光系数为0.53km~(-1),约为晴空日的2.5倍.污染性天气主要为本地污染积累(占比为46%),其次为长三角区域污染带及京津冀等地污染传输作用影响.在静稳天气背景下,850 h Pa暖平流形成逆温层易导致沿淮地区本地污染,大陆污染型气溶胶为主要成分,近地面受低压上升气流影响,污染物在垂直方向上略有抬升,聚集高度为0.4~0.8 km.当西太平洋副热带高压5880位势高度等值线西伸北进,长三角区域整层大气均被高压控制,易产生污染沙尘型气溶胶,污染物聚集在近地面且浓度随高度减小.而在冷空气南下早期,850 h Pa冷平流易将京津冀地区污染传输到沿淮地区,气溶胶类型为大陆污染型气溶胶和污染沙尘型气溶胶,在1~2 km处高污染浓度最高,高于近地层.  相似文献   

12.
利用2013年9月—2014年11月广州地区激光雷达观测结果,使用小波分析反演边界层高度(PBLH),通过归一化后向散射信号(NRB)的小波分解对小波分析中直接影响PBLH识别的尺度因子a进行了选取.并以2014年1月发生的一次灰霾过程为例,对灰霾过程的PBLH等边界层特征进行了分析,并对边界层垂直结构进行了初步探究.同时,利用自组织映射神经网络(SOM)进行了天气分型,对整个观测时段激光雷达反演的PBLH与天气型之间的关系进行了统计.结果表明,通过对NRB廓线的小波分解,小波分析尺度因子a取300较为合适.灰霾过程中PBLH均存在日变化.从平均结果来看,PBLH最高值出现在13:00,为850 m;最低值出现在5:00,为483 m.灰霾过程PBLH与PM_(2.5)之间呈显著负相关(r=-0.62,p0.01),风速与PM_(2.5)之间也呈显著负相关(r=-0.39,p0.01).对流边界层平均高度约为稳定边界层的1.5倍,峰值高度约为稳定边界层的3倍.低压天气系统控制下灰霾天气出现的概率较低,对应的PBLH明显较高,峰值高度在1200~1600 m,日间边界层发展极为明显.而高压天气系统控制下边界层发展容易受到抑制,峰值高度均低于1000 m.  相似文献   

13.
南京地区一次灰霾天气的微脉冲激光雷达观测分析   总被引:3,自引:0,他引:3  
利用微脉冲激光雷达(MPL)对2012年10月南京地区的一次灰霾天气进行了不间断观测,结合地面气象要素和PM10、PM2.5质量浓度资料分析了此次污染过程颗粒物质量浓度、气象要素、气溶胶垂直方向光学特性和混合层高度(MLH)日变化趋势以及相关性并与11月11~12日非灰霾天气做了消光系数和MLH的比较.结果表明,本次灰霾天气颗粒物浓度与近地面消光系数日变化较相似,基本上呈现夜间高午后低的趋势;灰霾期间MLH峰值滞后于地面温度峰值2h,MLH与PM2.5呈现负相关关系,两者相关系数为-0.57;霾天MLH远低于非灰霾天;霾期间近地面消光系数大部分时刻大于1.0km-1,远大于非霾日0.1~0.25km-1范围的消光系数.  相似文献   

14.
激光雷达是大气边界层气溶胶和云的一个高效探测工具。2010年12月利用Mie散射激光雷达对广州城区冬季大气边界层进行系统观测,分析讨论了测站地域上空大气气溶胶的消光系数垂直分布和时间变化的主要特征。结果表明:冬季广州大气边界层气溶胶主要分布在1100m以下区域,气溶胶分布具有多层结构;大气边界层高度稳定分布在500~620m左右,边界层高度日变化不明显;冬季广州气溶胶源较为稳定并且变化慢;广州城区气溶胶浓度白天比晚上大,峰值出现11颐00~14颐00左右,谷值出现在20颐00左右。  相似文献   

15.
将微脉冲激光雷达与GPS等仪器集成在车辆上组成移动观测系统,以徐州市为研究区域,开展大气环境立体走航式观测获取了2015年1月11日(重度污染)、12日(空气质量良好)、17日(轻度污染)3d的市区不同路线的1.5km以下的气溶胶消光廓线信号.结果表明,空气质量良好和轻度污染情况时,徐州市近地面气溶胶消光系数相对高值点主要位于商业区域和工业区域.商业区域的污染物主要来自车辆尾气的排放,车流量的大小决定了消光系数值的高低;工业区域的污染物主要来自火电厂的排放,占比达到70%以上.重度污染天气情况下,近地面气溶胶消光系数主要受污染过程的时间演变控制.气溶胶的垂直分布与边界层的演变密切相关,下午的边界层高度比上午普遍要高,晴朗且空气质量良好的情况下,边界层最高,达到1km以上.气溶胶消光系数高值基本出现在250m以下的近地面.工业区域火电厂排放的烟尘主要出现在1km左右.使用不同的仪器测量得到的气溶胶光学厚度趋势大致相同,激光雷达反演的气溶胶光学厚度波动最大.微脉冲激光雷达与GPS等仪器组成的移动观测平台能够有效地探测城市小范围的气溶胶时空分布,而且便捷有效,具有灵活机动性和推广应用价值.  相似文献   

16.
北京城区夏季静稳天气下大气边界层与大气污染的关系   总被引:7,自引:2,他引:5  
王耀庭  李威  张小玲  孟伟 《环境科学研究》2012,25(10):1092-1098
利用ALS300激光雷达系统测量的信号,根据Fernald方法反演的气溶胶消光系数的最大突变即最大递减率的高度确定大气边界层高度. 结果表明:在夏季静稳天气下,大气边界层平均高度为600 m,其中晴天为1 000 m,雾天为700 m,阴雨天在200~300 m之间. 静稳天气下的大气边界层不容易被有效突破,故不利于大气污染物扩散. 大气边界层高度对污染物浓度影响显著,没有降雨时,大气边界层降低(400 m),大气污染加重,在城区宝联站监测的ρ(PM2.5)近200 μg/m3,在大气本底站——上甸子站近150 μg/m3;如果伴有降水,大气边界层高度升至600 m,大气污染则减轻,2个站点观测的ρ(PM2.5)均降至50 μg/m3以下. 静稳天气下的大气污染呈现区域性特点.   相似文献   

17.
简要介绍了法国Losphere公司ALS300型偏振Mie散射激光雷达的基本结构、探测原理及反演算法,并通过在重庆主城区2009年11月23~27日一次典型灰霾天气条件下连续的气溶胶激光雷达探测结果分析得出,重庆冬季典型灰霾天气下PBL平均高度约为600米,AOD值在4及以上。  相似文献   

18.
云岗石窟地区大气气溶胶污染特征研究   总被引:1,自引:1,他引:0       下载免费PDF全文
云岗石窟群(山西大同)正在受到大气污染的危害,特别是气溶胶粒子所造成的危害十分显著。本工作采集并分析了该地的气溶胶粒子并研究了其物理化学特性。结果显示,大部分气溶胶是由人为污染产生并且主要集中在粒径较小的范围。细粒子中有较多的酸性污染物并比粗粒子酸性强,这些细粒子对石窟有侵蚀作用。本文还对侵蚀机理进行了探讨并评价了危害程度。   相似文献   

19.
为研究北京市气溶胶垂直方向上的分布特征,利用微脉冲激光雷达(MPL)对北京市2015年12月-2016年11月的气溶胶光学特征进行分析,讨论了气溶胶消光系数的季节性特点以及不同污染等级下的垂直分布,并对其影响因素进行了探讨.结果表明:①北京市气溶胶消光系数垂直特征在季节上存在异质性.秋、冬两季近地面1.0 km以下气溶胶消光系数显著增大,最大气溶胶消光系数大于1.0 km-1;春、夏两季污染日较少,气溶胶消光系数在垂直方向上变化较为平缓.②不同污染等级下气溶胶消光系数的垂直特征差异明显.空气质量为优-良水平时,气溶胶消光系数较低,基本不高于0.7 km-1;轻-中度污染时,气溶胶消光系数在不同季节差异较大,冬、春两季气溶胶消光系数不超过0.8 km-1,夏、秋两季在1.0 km-1左右,部分监测站甚至在1.4 km-1左右;重度及以上污染时,气溶胶消光系数基本在1.0 km-1以上,最高可达1.7 km-1.③105 m处气溶胶消光系数与ρ(PM2.5)相关性较好.气溶胶消光系数除受ρ(PM2.5)影响外,还受相对湿度影响较大.夏、秋两季对流层底层大气相对湿度偏高,致使气溶胶消光系数显著高于春季和冬季.研究显示,利用激光雷达可对北京市气溶胶垂直方向分布特征进行有效分析,气溶胶的垂直分布受污染水平和相对湿度的影响呈季节性变化.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号