首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 781 毫秒
1.
为探索后奥运时期京津冀区域大气本底污染状况及变化趋势,在中国科学院华北兴隆大气本底观测站,对夏季大气主要污染物(NOx、SO2、O3和PM2.5)进行了连续3年的在线观测,结合气流轨迹模式对大气污染物的传输路径及贡献率进行了分析. 结果表明:兴隆站大气本底夏季ρ(NOx)、 ρ(SO2)、 ρ(O3)和ρ(PM2.5)的平均值分别为(11.5±5.9)、(8.3±7.0)、(137.6±38.4)和(50.9±33.0)μg/m3;首要污染物为O3和PM2.5,ρ(O3)和ρ(PM2.5)日均值超过GB 3095─2012《环境空气质量标准》二级标准〔ρ(O3)为200 μg/m3,ρ(PM2.5)为75 μg/m3〕的天数分别为102和60 d,占观测期间有效天数的39%和23%,表现为大气氧化性增强、二次污染逐年上升;受偏南气流影响,太行山沿线区域和山东半岛—渤海湾地区是兴隆夏季大气本底污染的主要贡献区域,特别是京津冀城市区域夏季高浓度O3和PM2.5,对华北区域大气本底污染物浓度的整体上升具有重要影响.   相似文献   

2.
广州城区近地面层大气污染物垂直分布特征   总被引:7,自引:1,他引:6       下载免费PDF全文
为更好地了解广州城区近地面层大气污染物的扩散与输送过程,利用广州塔4层大气污染物垂直梯度观测平台(高度分别为地面、118、168和488 m)于2014年1月—2015年12月对多种大气污染物进行连续观测,分析了广州城区近地面层大气污染物的垂直分布特征.结果表明:①ρ(PM10)、ρ(PM2.5)、ρ(PM1)、ρ(NO2)和ρ(NO)随高度的上升而降低,其中ρ(PM10)、ρ(PM2.5)和ρ(PM1)在低层(地面点位)—高层(488 m点位)的递减率分别为35%、30%和26%,ρ(NO2)和ρ(NO)分别为75%和84%;ρ(O3)随高度上升而增加,其低层—高层的增长率为135%;ρ(SO2)和ρ(CO)则随高度上升先增后减.②除ρ(O3)外,其余污染物浓度均符合“冬强夏弱”的季节特征,ρ(O3)则在夏秋季较高,春冬季较低.冬季ρ(PM10)、ρ(PM2.5)、ρ(NO2)和ρ(NO)高、低层间差异为全年各季最大,分别为38.6、18.5、49.4和31.9 μg/m3.③各污染物小时浓度日变化特征均不同程度地受混合层发展过程的影响,各高度污染物浓度在一天中混合层高度最高的时段(12:00—17:00)最接近,而在其余时段分层较明显.除O3外,其余污染物质量浓度在中、低层大致呈早晚双峰分布,而在高层大致呈单峰分布.ρ(O3)则在各层均保持单峰分布,峰值一致出现在14:00.④对一次典型污染过程分析发现,不同高度的ρ(PM2.5)和ρ(NO2)最大差值分别可达183.0和148.0 μg/m3,ρ(PM2.5)显著地受到本地近地面污染源的影响,污染物高浓度区域主要集中在488 m以下.   相似文献   

3.
为研究新型冠状病毒肺炎(COVID-19)疫情防控政策实施对上海市大气污染物质量浓度的影响,利用上海市内环某高层顶楼微环境平台观测了政策实施前10 d(2020-01-14—23)和实施后20 d(2020-01-24—02-12)的PM2.5和PM10质量浓度及气象要素(温度、相对湿度、风向、风速、大气压及降雨),结合2019年同期观测数据和杨浦四漂空气质量监测点的气态污染物逐时数据,采用描述性统计、合成分析、拉格朗日粒子扩散模式和Spearman相关系数方法,分析了政策实施前、后大气污染物特征及其影响因素。结果表明:1)污染物浓度变化方面。政策实施后,ρ(PM2.5)和ρ(PM10)和ρ(NO2)均明显降低,ρ(PM2.5)和ρ(PM10)分别由61.4,102.4 μg/m3降至38.1,63.5 μg/m3,降幅均为38.0%,ρ(NO2)由57.3 μg/m3降至27.0 μg/m3,降幅达到52.9%,而ρ(O3)由47.6 μg/m3增至69.5 μg/m3。ρ(PM2.5)和ρ(PM10)日变化特征由实施前的双峰双谷型变为单谷型。2)气象因素影响方面。上海地区南风异常减弱了冬季风强度,对流层中层正距平异常抑制了对流活动的发展,易导致大气污染物在近地面的汇聚。ρ(PM2.5)和ρ(PM10)与相对湿度呈负相关,风速对ρ(PM2.5)和ρ(PM10)的影响与风向有关。3)外源输入影响方面。长三角城市群及山东省、河南省等周边区域对上海市ρ(PM2.5)和ρ(PM10)贡献显著。  相似文献   

4.
武清地区冬季一次重污染过程垂直分布特征   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究京津冀地区重污染过程大气污染物的垂直分布特征,于2016年12月13日重污染前(11:49-12:18)和12月18日重污染期间(11:00-11:16)在北京市、天津市、河北省交界处的武清地区利用系留气球开展1 000 m以下的大气观测,探究污染物的垂直分布特征及对流边界层、覆盖逆温层和混合层等要素对重污染形成的影响.结果表明:①在重污染前,大气层结不稳定,ρ(PM2.5)、ρ(NOx)与ρ(O3)随高度变化不明显,存在明显的垂直对流运动,有利于大气污染物的扩散;PM2.5/PM10[ρ(PM2.5)/ρ(PM10)]在800 m以下为0.60~0.80,在800~1 000 m以上大于0.90.②重污染期间,近地面大气层分为对流边界层(距地面0~150 m)、覆盖逆温层(150~370 m)、混合层(370~500 m)和自由大气(500 m以上)4个层次.③NOx主要在对流边界层内聚积;高空O3在向近地面扩散时受强混合层阻挡,在混合层出现一个小峰值;PM2.5不仅在近地面聚积,而且在覆盖逆温层内聚积,ρ(PM2.5)在覆盖逆温层内呈双峰(峰值分别出现在150和370 m)分布,其粒径集中在0.5~1.0 μm,属于积聚态气溶胶.研究显示,在不利扩散条件下,汽车排放、村镇居民供暖排放的污染物聚积及二次颗粒物的生成是重污染形成的重要因素.   相似文献   

5.
为深入探究高ρ(PM2.5)地区重污染过程的发展变化规律,以石家庄市一次重污染过程(2017年1月13-20日)为例,结合空气质量监测数据、PM2.5组分测试数据、气象观测资料,从重污染发展阶段(简称"P1阶段")、维持阶段(简称"P2阶段")和清除阶段(简称"P3阶段")分析PM2.5及其化学组分的变化特征、气象条件和高低空天气形势演变特征,并利用WRF-Chem模型定量研究重污染过程气溶胶反馈效应对典型气象要素的影响.结果表明:①此次重污染过程属于逐步累积增长、快速清除型,在P2阶段ρ(PM2.5)平均值为241.0 μg/m3,最大值为367.5 μg/m3.②P1和P2阶段高低空大气环流配置稳定,大气边界层高度范围为620.6~712.2 m,风速范围为1.3~2.5 m/s,相对湿度范围为60%~80%.③P2阶段SOR(硫氧化率)和NOR(氮氧化率)均为0.3,ρ(SNA)(SNA为SO42-、NO3-和NH4+的统称)为128.8 μg/m3,占ρ(PM2.5)的56.2%;OM[有机质,ρ(OM)=ρ(POA)+ρ(SOA),其中,POA为一次有机气溶胶,SOA为二次有机气溶胶]是除SNA以外的第二大组分,在P1和P3阶段ρ(POA)大于ρ(SOA),而在P2阶段ρ(SOA)与ρ(POA)相等,均为28.0 μg/m3,表明在重污染过程中二次污染严重;整个污染过程ρ(NO3-)/ρ(SO42-)为1.0,表明石家庄市移动源和固定源对ρ(PM2.5)贡献相当.④WRF-Chem模型模拟结果表明,太阳辐射量、温度和大气边界层高度受气溶胶反馈效应的影响在P2阶段的下降量分别为75.1 W/m2、2.7℃和109.9 m,比P1阶段分别高33.6%、91.4%和18.6%,比P3阶段分别高147.0%、305.3%和24.1%.研究显示,此次静稳天气下的重污染过程二次污染严重,气溶胶反馈效应整体使得太阳辐射量、温度和大气边界层高度均向不利于污染扩散的趋势发展,造成石家庄市的ρ(PM2.5)进一步增加.   相似文献   

6.
济南市大气颗粒物背景值确定方法   总被引:1,自引:0,他引:1       下载免费PDF全文
城市大气颗粒物背景值的确定能够为制订城市大气颗粒物污染防治目标提供重要基础支撑,探索大气颗粒物背景值确定方法对于大气污染防治具有重要意义.以济南市清洁对照点跑马岭监测数据为基础,直接采用概率密度法计算得到的ρ(PM10)和ρ(PM2.5)背景值范围分别是100~110和40~50 μg/m3.综合应用空气质量模型模拟法和概率密度法,提出基于数值模拟的城市大气颗粒物环境背景值确定方法,并在此基础上确定了济南市大气颗粒物背景值.结果表明:济南市ρ(PM10)和ρ(PM2.5)背景值范围分别是30~35和15~20 μg/m3,其中ρ(PM10)环境背景值秋季(40~45 μg/m3)最高、夏季(25~30 μg/m3)最低;ρ(PM2.5)环境背景值秋季(25~30 μg/m3)最高、冬季(10~15 μg/m3)最低.研究显示,基于数值模拟计算得到的颗粒物背景值明显低于直接采用概率密度法得到的结果,表明跑马岭受人为因素影响明显,监测结果已不能完全代表济南市大气颗粒物背景值水平;而数值模拟法可以完全剔除了人为源的贡献,计算得到较为准确的ρ(PM10)和ρ(PM2.5)背景值.   相似文献   

7.
基于车载微脉冲气溶胶激光雷达、多普勒风廓线激光雷达和扭转拉曼廓线激光雷达的中山大学环境气象综合观测车,于2018年12月18日-22日在河北省望都县PM2.5重污染期间开展定点观测.结合地面PM2.5浓度和气象要素观测资料,对本次污染过程的成因展开分析.本次重污染过程日均PM2.5浓度为163.2μg·m-3,PM2.5浓度的日变化特征明显,表现为白天PM2.5浓度降低,傍晚至次日早晨PM2.5浓度升高.气溶胶激光雷达观测结果发现,污染期间,700 m高度以下存在明显的消光系数高值区;夜间存在明显的消光系数高值区分层现象,气溶胶消光系数高值区出现高度可达1700 m.本次PM2.5重污染过程受静稳边界层气象条件和高空气溶胶输送、沉降共同影响.在污染时段内,大气边界层低层小风持续,近地面和大气低层逆温和同温层频发,静稳边界层条件不利于PM2.5的输送和扩散;此外,夜间高空气溶胶伴随强西风带出现...  相似文献   

8.
韩笑颜  周颖  吕喆  王晓琦 《环境科学研究》2020,33(10):2235-2245
为探究典型重污染过程的污染特征与大气边界层结构演变规律,基于PM2.5采样数据、气象观测数据及WRF-Chem模式,以北京市和石家庄市2016年12月27日—2017年1月10日一次重污染过程为研究对象,对气象要素、PM2.5化学组分、天气背景场、边界层结构演变特征,以及大气边界层结构变化对ρ(PM2.5)及其主要化学组分的影响进行分析.结果表明:①研究期间,北京市和石家庄市ρ(PM2.5)分别为(165.63±110.89)(247.67±95.22)μg/m3,石家庄市污染程度高于北京市;高空纬向环流和地面弱高压控制的天气背景场,低于1.75 m/s的风速以及超过75%的相对湿度是造成北京市与石家庄市重污染的不利气象条件.②重污染时段北京市与石家庄市SNA(SO42-、NO3-、NH4+三者的统称)与碳质组分(OC、EC)占比之和超过76%,是PM2.5中的两大主要组分;重污染时段ρ(SNA)占比明显上升,北京市与石家庄市ρ(SNA)占比由非重污染时段的42.23%、45.93%分别升至重污染时段的58.87%、59.62%;北京市与石家庄市ρ(OC)/ρ(EC)分别为5.13、3.51,表明在重污染时段两城市存在明显的二次有机气溶胶污染.③WRF-Chem模式模拟结果表明,PM2.5污染严重时北京市与石家庄市在300~500 m处均出现明显的逆温,垂直风场主要表现为低层偏南风顺时针向上切变为偏西风,切变高度在400~1 000 m,逆温层结与明显垂直风切变的边界层特征共同抑制了污染物的湍流与扩散.④北京市与石家庄市重污染时段的PBLH(Planetary Boundary Layer Height,大气边界层高度)日均值与非重污染时段相比分别下降了202、128 m,PBLH每下降100 m,北京市与石家庄市ρ(PM2.5)分别上升18.81、29.85 μg/m3,PBLH下降是导致两城市ρ(PM2.5)快速上升的重要因素.北京市与石家庄市的PBLH与PM2.5组分质量浓度之间的相关性不同,北京市PBLH与ρ(SNA)的相关性高于与碳质组分质量浓度的相关性,石家庄市PBLH与ρ(EC)相关性最高,表明此次重污染过程中北京市PM2.5污染特征以二次形成为主,而石家庄市以一次排放为主.研究显示,北京市与石家庄市此次重污染过程与大气边界层结构变化密切相关.   相似文献   

9.
为研究济南市机动车排气对城市区域空气质量的影响,利用环境空气质量监测站点(简称"1号站点")和路边机动车尾气监测站点(简称"2号站点")的在线数据,以及基于4种模拟情景的CMAQ空气质量模型预测数据,研究了济南市城市区域大气污染物质量浓度变化规律及不同机动车车型对6种常规大气污染物的贡献.结果表明:①在采暖季,1号站点ρ(PM2.5)、ρ(PM10)、ρ(NO2)、ρ(CO)、ρ(O3)和ρ(SO2)月均值分别为435 μg/m3、702 μg/m3、84.2 μg/m3、6.8 mg/m3、4.5 μg/m3和92 μg/m3.②2015年12月24日(灰霾天),1号站点ρ(CO)、ρ(PM2.5)和ρ(PM10)均明显升高,ρ(SO2)、ρ(O3)和ρ(NO2)均变化不明显.2个监测站点中ρ(NO2)和ρ(PM10)均呈双峰趋势,2个峰值出现的时间与上、下班高峰期基本一致.除ρ(O3)和ρ(SO2)达GB 3095-2012《环境空气质量标准》二级标准外,其他污染物均超过GB 3095-2012二级标准限值,采暖季大气污染特征为颗粒物型污染.③机动车对研究区域NO2和PM10贡献率较大,其中,小型车对CO、NO2、PM10和PM2.5贡献率最大,其贡献率分别为85.7%、50.1%、53.4%和52.8%.机动车排放源能降低空气中ρ(O3),其总贡献率为-25.5%,其中大型车、中型车、小型车对O3的贡献率分别为-8.8%、-2.7%和-8.9%.灰霾天下不同机动车车型对空气中污染物质量浓度的总贡献率均比采暖季大.研究显示,济南市采暖季大气污染特征为颗粒物型污染,机动车排放源对空气中NO2和PM2.5有较大贡献.   相似文献   

10.
为了解鞍型场对西安市PM2.5重污染过程的影响.以西安市2016年2月6—14日重污染过程ρ(PM2.5)及气象要素的小时变化为研究对象,综合分析了此次重污染过程特征、天气型以及气象要素变化.结果表明:①西安市此次重污染过程可分为污染上升阶段(6—7日)、污染维持阶段(8—11日)及污染减轻阶段(12—14日),3个阶段分别处于均压场、鞍型场、高压前部等天气型的影响下.②此次鞍型场发生时,天气持续静稳,气压梯度力小,且西安市处于气流的辐合地带,导致污染物的形成和积累,ρ(PM2.5)最高值达198 μg/m3.③在鞍型场的控制下,西安市日均气温维持在偏高的水平(最高达7.2℃),相对湿度呈上升的趋势,最高达86.5%;而风速和能见度则波动下降,平均风速和能见度最低值分别为0.8 m/s和0.5 km.高温、高湿、小风的气象条件有利于污染物的吸湿增长从而导致PM2.5重污染.④受鞍型场的影响,西安市边界层高度较低,最低时只有55 m,且逆温层较厚,强度较大,最大值达3.8℃/(100 m),极低的边界层高度和较厚的逆温层削弱了污染物的垂直扩散能力,污染物被抑制在近地面,形成较严重的污染.研究显示,鞍型场天气型导致的均压场、暖湿、静风、低边界层及强逆温层是此次西安市PM2.5重污染过程的重要原因.   相似文献   

11.
为了探究边界层气象要素时空分布及其变化对银川市冬季持续污染天气过程污染物质量浓度变化的影响机制,利用2016年12月1日-2017年1月31日逐时空气质量以及地面和逐日定时探空气象观测数据,根据大气污染级别和过程持续时间,选取2016年12月9-21日(简称"1211过程")和2016年12月29日-2017年1月9日(简称"1231过程")为研究对象,采用统计和天气诊断相结合的方法,在分析比较银川市冬季两次典型持续污染过程演变特征及其与地面气象要素关系的基础上,探讨了大气环流、边界层要素变化对银川市冬季典型污染过程的可能影响机制.结果表明:①银川市冬季两次大气污染过程持续阶段,地面均以偏东或偏南风为主,风速较小,相对湿度较大,能见度较低;在污染清除阶段,地面风向转为西北或偏北风,风速较大,相对湿度较小,能见度较高.②当冬季欧亚大陆中纬度区域500 hPa高空盛行纬向气流,850 hPa高度上银川市受反气旋环流和暖温度脊控制,并且有弱暖平流从西南部向北输送时,银川市易出现静稳型持续污染天气.③冬季银川市持续大气污染过程中,ρ(PM2.5)与风速呈负相关(R平均值为-0.326),与相对湿度呈正相关(R平均值为0.688),与能见度呈显著负相关(R平均值为-0.905),与边界层高度呈较显著负相关(R平均值为-0.575).④银川市冬季静稳型持续污染天气主要分为弱西北和平直西风气流型两种,弱西北气流型具有近地面层逆温弱,污染物积累慢,清除快的特征;平直西风气流型具有近地面层逆温强,污染物积累快,清除慢的特征.研究显示,冬季银川市上空500 hPa高度盛行纬向气流,地面主导风向为偏东或偏南风时,随着地面相对湿度增大、近地层风速减小、大气垂直上升运动减弱、边界层高度降低,大气中ρ(PM2.5)将迅速升高,银川市易出现以PM2.5为首要污染物的静稳型持续污染天气.   相似文献   

12.
2013年6月23~24日南京及其周边地区发生了一次小范围、突发性的气溶胶污染事件,PM_(2.5)的平均浓度达到242μg/m3,在夏季比较少见.本文利用WRF-chem模式对该PM_(2.5)污染事件进行模拟,通过对模式结果进行分析表明:此次污染事件与天气形势和边界层结构有着直接联系.此次污染发生时江淮地区正处于梅雨时节,南京及其周边地区处于江淮低空切变线上,切变线附近有辐合的流场,东部上游排放源的贡献和南京本地的静稳风场导致污染物在南京堆积.污染期间有比平时更强的气粒转化过程,23日PM_(2.5)浓度受到SO2减半的影响,浓度减少量为9.8%,受NOx减半影响的减少量为7.3%.污染发生期间南京地区上空温度垂直梯度较小,温度层结不利于污染物的垂直扩散,边界层高度较低,低层大气湍流活动较弱,垂直高度上的稳定层结也为污染物集聚提供了条件.  相似文献   

13.
泰安市冬季一次严重空气污染过程分析   总被引:1,自引:1,他引:0       下载免费PDF全文
为揭示泰安市空气污染形成原因,选取泰安市2016年12月一次严重空气污染过程,利用泰安市2016年12月地面和探空资料及NCEP/NCAR(美国国家环境预报中心/美国国家大气研究中心)提供的FNL资料,对泰安市严重污染期间大气环流形势、边界层条件、污染源及传输路径进行分析.结果表明:在泰安市霾污染期间,500 hPa大气环流形势呈"两槽一脊"的特征,850 hPa泰安市处于南支槽前,受西南暖湿气流影响,为ρ(PM2.5)的升高提供了有利条件;泰安市近地面处于高压控制下的弱风区(平均风速约为1.2 m/s)且边界层有逆温层存在,阻碍了PM2.5的垂直输送,造成近地面ρ(PM2.5)急剧升高.此外,泰安市及周边地区污染严重,聚类分析结果表明此次过程本地输送占比约为34%,其余均为外来传输,即污染物主要通过外来源传输,本地污染源贡献比率较小.污染物的高、低空传输路径不一致,低空污染物主要从安徽省水平输送至泰安市,高空污染物则先由河北省、河南省向南传输至安徽省、湖北省等地,再随南风气流向北输送至泰安市.研究显示,外来污染源传输作用配合本地静稳天气形势是造成此次泰安市空气污染的主要原因.   相似文献   

14.
济南市冬季一次典型重污染过程分析   总被引:3,自引:1,他引:2       下载免费PDF全文
为掌握济南市重污染天气发生规律,从而更好地为重污染天气预报预警和大气污染防治提供参考,采用空气质量监测数据、气象观测资料、雷达探测资料及轨迹模式模拟相结合的方法,对济南市2016年12月31日-2017年1月7日的持续性重污染过程,从污染演变过程、环流背景分析、气象要素特征和区域污染传输等多方面分析其形成原因及主要影响因素.结果表明:此次重污染过程期间首要污染物为颗粒物,ρ(PM10)平均值为318 μg/m3,ρ(PM2.5)平均值为200 μg/m3;地面风速在0.6~1.8 m/s范围内,风力均为1~2级,相对湿度为68%~95%,平均相对湿度为81%.在重污染过程中,从地面至800 m左右高度始终维持较强逆温层,逆温频次高达91.1%,污染边界层高度较低,大部分时间都在500 m以下.采用情景模拟分析方法计算得到,区域输送对济南市PM2.5的贡献率为20%~35%.研究显示:此次重污染过程是在区域性污染背景下由本地不利的扩散条件造成的,静稳大气形势提供有利的环流背景,平流雾、辐射雾交替产生,持续性的高湿加重了污染程度;近地面的静风、高湿,垂直方向的双逆温层甚至多逆温层的结构是影响此次重污染过程的重要气象要素;区域性污染传输对此次重污染天气的发展有显著贡献,污染初期主要来自河北省中南部的输送,随着污染加重,有来自偏南、偏东方向的局地气团输送.   相似文献   

15.
2014年10月北京市4次典型空气重污染过程成因分析   总被引:12,自引:0,他引:12       下载免费PDF全文
采用数值模拟与观测资料相结合的方式,对2014年10月北京市4次典型空气重污染过程的大气环境背景、气象条件和形成原因进行了分析. 结果表明,京津冀区域稳定的气象条件是形成空气重污染的主要原因,4次重污染过程大气条件均不利于污染物扩散,表现为大气层结稳定,近地层逆温(平均逆温强度为2.26 ℃/100 m)明显,风速(平均值为1.52 m/s)小,相对湿度(平均值为80.75%)大. 在4次重污染过程中8—11日污染最重,ρ(PM2.5)日均值平均为264 μg/m3,并且区域输送对北京贡献率最大,平均值为63.75%;24—25日污染程度次之,逆温最强,逆温强度达5.94 ℃/100 m;18—20日重污染中北京ρ(PM2.5)高值(>200 μg/m3)区主要集中在该市西北部地区;30—31日污染相对较轻,ρ(PM2.5)日均值最高只有154 μg/m3. 数值模拟表明,在4次典型重污染过程中,来自南方(包括河北、河南和山西西部等地)的外来污染物输送对北京PM2.5贡献较大,外来贡献率分别在42.36%~69.12%之间,同时北京本地也存在较强的二次无机盐及有机物转化过程.   相似文献   

16.
为了解2018年春节期间京津冀地区空气污染情况,利用近地面污染物浓度数据、激光雷达组网观测数据,结合WRF气象要素、颗粒物输送通量和HYSPLIT气团轨迹综合分析污染过程.结果表明,春节期间出现3次污染过程.春节前一次污染过程,各站点PM2.5浓度均未超过200μg/m3;除夕夜,廊坊站点PM2.5峰值浓度达到504μg/m3,是清洁天气的26倍;年初二~初五,各站点PM2.5始终高于120μg/m3,且污染主要聚集在500m高度以下,北京地区存在高空传输,800m处最大输送通量达939μg/(m3·s),此次重污染过程为一次典型的区域累积和传输过程.京津冀地区处于严格管控状态时,燃放烟花爆竹期间PM2.5峰值浓度可达无燃放时PM2.5峰值的3.2倍.为防止春节期间重污染现象的发生,需对静稳天气下燃放烟花炮竹采取预防对策.  相似文献   

17.
选取2017~2020南京地区冬季3个典型霾天气过程,综合分析了霾天气过程中污染物、气象要素以及边界层条件等影响机制与特征变化.结果表明,3次过程中,AQI指数峰值分别为304(严重污染)、227(重度污染)与176(中度污染),且与PM2.5、PM10浓度变化基本趋于一致,PM25与PM10比值基本都大于0.7;污染...  相似文献   

18.
为了解福州市大气颗粒物污染状况,利用中国环境监测总站发布的实时大气环境监测资料,结合气象资料和HYSPLIT4轨迹模式,分析了2015年福州市大气颗粒物污染特征和典型污染过程.结果表明:2015年福州市ρ(PM10)、ρ(PM2.5)年均值分别为55.8和29.2μg/m3,均低于GB 3095-2012《环境空气质量标准》二级标准限值.颗粒物浓度季节性变化特征明显,表现为冬春季高、夏秋季低的变化特征. ρ(PM2.5)/ρ(PM10)为52%,普遍低于我国东部其他大中城市;日际变化明显,受混合层高度日变化和机动车排放的影响,呈双峰形态. ρ(PM2.5)/ρ(PM10)日变化趋势与ρ(PM10)日变化特征相反,即ρ(PM10)高时ρ(PM2.5)所占比例低,ρ(PM10)低时ρ(PM2.5)所占比例高,表明早晚高峰机动车排放所造成的颗粒物污染以粗颗粒物贡献为主.福州市颗粒物污染天气成因主要有"积累型"和"输送型"污染. 2015年1月5-6日发生的污染过程,是在一次静稳、高湿天气形势下,本地排放的污染物在不利于扩散的气象条件下聚集、二次转化,导致颗粒物浓度升高、能见度降低. 2015年1月17-19日的污染过程主要是北方污染物随冷空气输送南下,导致本地颗粒物浓度迅速升高、能见度迅速降低.研究显示,福州市PM10和PM2.5优良率较高,颗粒物污染主要发生于冬季,污染成因包括局地累积和区域输送.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号