首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 115 毫秒
1.
餐厨垃圾产量大、危害大、回收价值高,合理利用其中磷的资源价值,可规避其污染风险。综合利用情景分析与物质流分析方法,基于情景分析和养分流动概念模型,对苏南地区餐厨垃圾厌氧消化副产物以3种情景进行处理[沼液进行水处理,沼渣焚烧(情景1,S1);沼液还田,沼渣制有机肥(情景2,S2);沼液进行水处理,沼渣制有机肥(情景3,S3)],以100 t的餐厨垃圾处理规模为参考,分析总磷(TP)的物质流。结果表明:S1的餐厨垃圾中有0.99 kg TP还田,最终有0.96 kg TP进入水稻;S2的餐厨垃圾中有64.05 kg TP还田,最终有62.10 kg TP进入水稻;S3的餐厨垃圾中有8.67 kg TP还田,最终有8.49 kg TP进入水稻。结合经济性能对3种情景进行综合评价,发现S2为餐厨垃圾资源化的最优模式,TP的资源化利用率为91.53%,远高于S1和S3。  相似文献   

2.
本研究探讨了餐厨垃圾废水用作发酵基质生产液态解磷巨大芽孢杆菌菌肥的可行性.结果表明,餐厨垃圾废水培养的巨大芽孢杆菌经过3~4d的调整期即进入对数生长期,第6~7d活菌数达到最大,而经过湿热预处理得到的II类废水较I类废水更适宜用作巨大芽孢杆菌的培养基质,其菌液活菌数是I类废水培养的活菌数的5倍(4.8×1015CFU/mL).废水中的盐分对巨大芽孢杆菌的生长代谢影响显著:活菌数随着NaCl含量的增加先升高后快速降低,最利于菌种培养的NaCl浓度为10g/L.pH值和温度极显著影响巨大芽孢杆菌的生长,而摇床转速和接种量对菌株培养影响不显著,正交试验确定的较优培养条件为pH=8、T=35℃、转速80r/min、接种量2%(V/V).餐厨垃圾废水制备的解磷菌肥可实现土壤中固化磷的有效磷化:施用0.025‰~2.5‰质量比例解磷菌剂的土壤生长的黄豆苗干重可达到按照5‰质量比例施加无机复合肥生长的黄豆苗的70.7%~84.5%,其中微生物菌肥的最佳施用量为0.25‰.  相似文献   

3.
针对我国贫瘠果园土壤结构和功能退化的问题,以餐厨垃圾制备的土壤调理剂为研究对象,从时间和空间两个层面,采用DR0.25(团粒结构体占比)、MWD(平均质量直径)、GMD(几何平均直径)和分形维数评价长期施用餐厨垃圾土壤调理剂对贫瘠果园土壤团聚体结构特征及其有机质赋存转化的影响.结果表明:施用餐厨垃圾土壤调理剂可增加0~20 cm土壤层中粒径 < 0.25 mm微团聚体的Wwi(水稳性团聚体占比),施用3 a后其Wwi最大值为23.04%,有利于提升土壤抗侵蚀性;随着施用餐厨垃圾土壤调理剂时间的延长,30~40 cm土壤层的DR0.25逐渐增加,施用5 a后各土壤层MWD和GMD均大于对照组;随着施用时间的延长,相同深度土壤层的分形维数逐渐减小,施用5 a后0~20 cm土壤层分形维数最小值为2.13,表明施用餐厨垃圾土壤调理剂有利于改善土壤团聚体粒径分布和土壤分维特征;施用餐厨垃圾土壤调理剂可提升0.5~5 mm粒级团聚体中的有机质含量.研究显示,长期施用餐厨垃圾土壤调理剂可改善土壤团聚体粒径和有机质的分布,有助于土壤团聚体中有机质的赋存转化,提高团聚体稳定性和土壤抗侵蚀力.   相似文献   

4.
鉴于蒸汽爆破(简称"汽爆")预处理对污泥和餐厨垃圾联合厌氧消化的影响还鲜有报道,为探讨汽爆预处理对污泥和餐厨垃圾联合中温厌氧消化的促进效果及经济可行性,利用小型发酵罐在35℃下开展了未预处理污泥和餐厨垃圾联合消化、汽爆污泥单独消化、汽爆污泥和餐厨垃圾联合消化的试验,并进行能耗分析.结果表明,未预处理污泥与餐厨垃圾联合消化阶段,VS(挥发性固体)去除率为33.9%,沼气产率为311.0 mL/g(以投料VS计);汽爆污泥单独消化阶段,VS去除率和沼气产率均略高于未预处理污泥与餐厨垃圾联合消化阶段,但反应器ρ(NH4+-N)过高,影响产气稳定性,沼气φ(CH4)较低.汽爆污泥与餐厨垃圾联合消化阶段,VS去除率和沼气产率分别达到49.5%和420.5 mL/g,显著优于未预处理联合消化阶段.能耗分析表明,预处理的升温过程使汽爆预处理整体能耗偏高,但若能有效回收70%的热量,则汽爆预处理可提高污泥-餐厨垃圾联合中温厌氧消化工艺3.34 kW·h/t(以污泥量计)的能量产率.研究显示,汽爆预处理可提高污泥和餐厨垃圾联合中温厌氧消化工艺35.2%的沼气产率,但由于预处理能耗较高,预处理过程中热能的有效回收是汽爆预处理应用于污泥和餐厨垃圾联合中温厌氧消化经济可行的关键.   相似文献   

5.
针对我国目前进行的餐厨废弃物资源化与无害化试点城市建设,以广泛采用的厌氧消化技术为研究对象,进行物质流分析,评价了其资源化利用情况。得出:我国餐厨废弃物厌氧处理技术资源化产品仅为输出物质的23.7%,废渣和废水占输出的76.3%;餐厨废弃物无害化处理率平均为73.5%,资源化利用率平均为24.4%。最后,针对餐厨废弃物厌氧消化废水废渣产量大、资源化利用率低等问题,提出将沼液沼渣合理利用,将垃圾分类就地处理以及改进厌氧消化技术等措施。  相似文献   

6.
以江苏滨海稻麦轮作田为对象,研究沼液施用0,3,5a对土壤和作物籽粒重金属(Cu、Zn、Pb、Cd)含量的影响,评价其污染风险并估算农田沼液承载力.结果表明:沼液施用3,5a后,土壤和作物籽粒中Cu、Zn、Pb、Cd均未超标,内梅罗指数与土壤和农产品综合质量指数显示农田重金属污染程度属于清洁.土壤Cu和Zn显著富集,沼液施用5a后,小麦季土壤Cu、Zn含量分别为22.59,63.08mg/kg,较未施用分别提高了19.52%和28.89%.水稻季土壤Cu、Zn含量分别为26.12,78.74mg/kg,较未施用分别提高了27.73%和31.80%.小麦和水稻籽粒Zn含量随沼液施用年限增加而增加(P<0.05),沼液施用5a分别达到25.07,30.98mg/kg,较未施用分别提高了23.50%和16.29%.小麦季和水稻季0~15cm土壤中Cu的累积速率分别为0.74,1.13mg/(kg·a),Zn的累积速率分别为2.83,3.80mg/(kg·a).基于土壤重金属累积速率,江苏滨海稻麦轮作田沼液安全施用年限为63a.  相似文献   

7.
为研究施用餐厨垃圾调理剂对土壤有机碳组分的影响,以果园土壤为研究对象,从时间、空间维度解析长期施用餐厨垃圾调理剂对土壤有机碳积累、组成及其分布规律的影响,结合CPMI(碳库管理指数)和相关性分析,揭示施用餐厨垃圾调理剂对土壤碳汇的影响机制.结果表明,施用餐厨垃圾调理剂可显著提高土壤中w(TOC)(TOC为总有机碳),并随施用时间的增加逐渐向深层土壤迁移,改善TOC分布状况.随着施用餐厨垃圾调理剂时间的增加,0~20 cm土壤层中w(NOC)(NOC为非活性有机碳)和30~40 cm土壤层中w(AOC)(AOC为活性有机碳)呈增加趋势,AOC分配比例低于NOC分配比例.随着施用时间的增长,0~30 cm土壤层中w(POC)(POC为颗粒有机碳)显著提高,最大值为42.94 mg/g,MOC(矿质结合态有机碳)分配比例与POC分配比例呈相反变化趋势,有利于提高土壤碳稳定性.各土壤层中CPMI均大于空白对照组,最大值为154.437,表明施用餐厨垃圾调理剂有利于提升土壤肥力.相关性分析表明,w(POC)与pH呈负相关,与含水率、EC(电导率)、w(OM)(OM为有机质)呈正相关,其中与含水率相关性最高(R=0.91).可见,长期施用餐厨垃圾调理剂对提高果园土壤碳汇、改善土壤肥力具有重要意义,研究结果有助于进一步提升土壤碳汇的新型土壤调理剂的研发与应用.   相似文献   

8.
黄宇钊  冼萍  李桃  刘琴  何顺 《环境工程》2018,36(9):119-124
以热碱处理后的污泥和餐厨垃圾为原料,采用中温两相厌氧消化工艺,研究不同配比的污泥与餐厨垃圾的基质转化规律、产甲烷性能及系统稳定性等特性。结果表明:溶解性多糖及蛋白质在产酸阶段被大量消耗,二者去除率最高分别可达97.2%和70.4%,而餐厨垃圾比例占优的实验组,固态蛋白质溶出速率大于溶解性蛋白质水解速率。热碱污泥与餐厨垃圾混合厌氧消化的产气性能及稳定性明显得到提升,其中混合比例为2∶3的混合组产甲烷性能最佳,甲烷产率达261.6 mL/gVS,比单独餐厨垃圾消化组提升了29.6%,产甲烷过程中8 d实现了80%的甲烷产量,VS去除率最高达45.7%,产甲烷阶段VFAs/碱度小于0.2,系统稳定未出现酸化现象。  相似文献   

9.
矿物材料对餐厨垃圾厌氧消化的影响研究   总被引:16,自引:0,他引:16  
在试验的基础上研究了3种矿物材料膨润土、斜发沸石、粉煤灰对富含钠离子的餐厨垃圾厌氧消化过程的影响.结果表明,在发酵温度为35℃、底物固含量(TS)为10%、添加物用量为1%(质量分数,以消化底物计)时,膨润土、沸石粉、粉煤灰对含盐餐厨垃圾的厌氧发酵消化液中的钠离子具有良好的吸附性能,吸附率分别为13.75%、10.11%、7.99%.在未使用无机矿物的情况下,当钠离子浓度为3000~4000mg·L-1时,含盐餐厨垃圾的的厌氧消化过程受到Na 离子的明显抑制.从产气量分析,3种矿物材料均能明显促进餐厨垃圾的厌氧消化过程,与空白对照试组相比,膨润土、斜发沸石、粉煤灰分别使产气量提高了131%、82%和45%.三者对甲烷气产量的促进影响强弱顺序是,膨润土>斜发沸石>粉煤灰.初步讨论了这3种矿物材料提高餐厨垃圾厌氧消化甲烷产量的作用机理.  相似文献   

10.
主要研究了椰子壳生物炭添加对餐厨垃圾厌氧消化的影响,选取污泥接种量、初始pH值和生物炭添加量为主要影响因素,运用最陡爬坡实验确定参数水平,然后运用响应面法,以甲烷产率作为厌氧消化过程响应指标,优化椰子壳生物炭促进餐厨垃圾厌氧消化的工艺条件。结果表明:根据实验数据建立的二次多项式数学模型具有高度显著性(P<0.0001),决定系数R~2=0.9844,说明实验值和预测值之间具有很好的拟合度。通过数值优化得到最优条件分别为污泥接种20.98%,初始pH=7.05,生物炭添加量为22.14 g/L。在该条件下,餐厨垃圾甲烷产率的预测值为331.66 L/kg,实验值为326.15 L/kg,二者相对偏差为1.69%。  相似文献   

11.
茶园滴灌沼液,不仅可以将沼液进行生态处理,避免其造成二次污染,而且可以充分利用沼液中营养成分,提高茶园效益。实验表明,适时滴灌沼液可以保持土壤中铵态氮含量,有利于提高茶叶产量;可以改善土壤结构,增强土壤微生物活性,使滴灌区土壤中有效磷含量升高,滴灌可以提高氮磷的利用率。与非滴灌区相比,滴灌系统水肥耦合较好,更利于茶树吸收利用养分。就产茶中氮磷含量作为茶树对氮磷的吸收量而言,与非滴灌区相比,滴灌区茶树对氮磷的吸收利用率分别提高了18.12%、8.33%。  相似文献   

12.
沼液经过充分发酵,其中富含多种作物所需的营养物质,因而宜作根外施肥,其效果优于化肥。在此基础上,筛选并复配PGPR根圈促生菌到沼液中,形成有机沼液生物肥。有机沼液生物肥是集营养、促生和生防为一体的多功能生物肥料。施用有机沼液生物肥辣椒果实维生素c含量达到了78.28mg/kg,比处理CK增加31%,可溶性糖含量提高32.4%。应用有机沼液生物肥番茄维生素c含量比对照增加46.6%,可溶性糖含量提高45%。施用有机沼液生物肥的黄瓜Vc含量比对照提高56.8%,可溶性糖含量提高84.2%。  相似文献   

13.
烟草种植过程中产生的废弃鲜烟叶同时含有有机质、钾及病原菌,田间就地堆肥可以低成本实现其无害化处理与资源化利用. 为明确废弃鲜烟叶堆肥产品中溶解性腐殖质的含量与功能,研发出废弃鲜烟叶野外强化堆肥模式进行高效返田,开展了废弃烟叶田间直接就地堆肥、废弃烟叶接种有机肥堆肥、废弃烟叶接种土壤堆肥以及废弃烟叶接种土壤和复合肥堆肥,将4种堆肥模式下获得的产品用于烟草盆栽试验,研究了其在添加与不添加化肥复合肥下对土壤肥力、土壤酶活、特征功能基因、病原菌及作物生长的影响. 结果表明:①施加烟叶有机肥能显著增加土壤中溶解性腐殖质的含量,抑制微生物的硝化和反硝化过程,促进全氮保存和碱解氮供给,同时有机肥中的溶解性腐殖质组分还可提升土壤速效钾和有效磷的含量. ②施用烟叶有机肥能增加土壤过氧化氢酶活性,抑制土壤青枯病. ③有机肥施用后,土壤中增加的溶解性腐殖质促进了碱解氮供给,引起了盆栽作物的株高、茎围、叶片数、最大叶长、最大叶宽增加. ④与不添加有机肥的对照组相比,施用废弃烟叶接种土壤和复合肥堆肥得到的产品,在盆栽过程的团棵期(37 d)时株高、茎围、叶片数、最大叶长、最大叶宽分别提高了78.7%、23.1%、26.8%、45.5%、49.6%;在旺长期(56 d)时最大叶长、最大叶宽分别提高了18.5%和16.5%,在成熟期(100 d)时分别提高了11.6%和19.7%. 研究显示,废弃鲜烟叶+土壤+化肥复合肥堆肥工艺制备的有机肥能显著增加土壤溶解性腐殖质,提升土壤固氮、释磷、促钾的能力,改善烟叶的农艺性状.   相似文献   

14.
稻秸沼渣矿化特征及对青菜生长和品质的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
以稻秸沼渣和商品有机肥为原料,采用室内培养和盆栽实验方法,研究了稻秸沼渣中碳、氮等养分释放特性以及对蔬菜产量和品质的影响.结果表明,稻秸沼渣施入土壤后可明显提高土壤有机碳矿化速率和微生物生物量碳,秸秆发酵半年的沼渣的矿化特性优于发酵一年的秸秆沼渣.秸秆沼渣有机氮的矿化特性主要表现为氮的固定,秸秆厌氧发酵越充分,沼渣矿化时有机氮越不容易被固定.相比商品有机肥,添加稻秸沼渣青菜的产量略低,但显著提高了青菜中维生素C和水溶性糖含量,降低了硝酸盐含量,提高了青菜品质.因此,秸秆沼渣农肥化对提高蔬菜产量和品质有很好的效果.  相似文献   

15.
We carried out a one year (2002) study of phosphorus (P) loss from soil to water in three nested grassland catchments with known P input in chemical fertilizer and animal liquid slurry applications. Chemical fertilizer was applied to the grasslands between March and September and animal slurry was applied over the twelve months. The annual chemical P fertilizer applications for the 17 and 211 ha catchments were 16.4 and 23.7 kg P/ha respectively and the annual slurry applications were 10.7 and 14.0 kg P/ha, respectively. The annual total phosphorus (TP) export in stream-flow was 2.61, 2.48 and 1.61 kg P/ha for the 17, 211 and 1524 ha catchments, respectively, compared with a maximum permissible (by regulation) annual export of ca. 0.35 kg P/ha. The export rate (ratio of P export to P in land applications) was 9.6% and 6.6% from the 17 and 211 ha catchments, respectively. On average, 70% of stream flow and 85% of the P export occurred during the five wet months (October to February) indicating that when precipitation is much greater than evaporation, the hydrological conditions are most favourable for P export. However the soil quality and land use history may vary the results. Particulate P made up 22%, 43% and 37% of the TP export at the 17, 211 and 1524 ha catchment areas, respectively. As the chemical fertilizer was spread during the grass growth months (March to September), it has less immediate impact on stream water quality than the slurry applications. We also show that as the catchment scale increases, the P concentrations and P export decrease, confirming dilution due to increasing rural catchment size. In the longer term, the excess P from fertilizer maintains high soil P levels, an antecedent condition favourable to P loss from soil to water. This study confirms the significant negative water quality impact of excess P applications, particularly liquid animal slurry applications in wet winter months. The findings suggest that restricted P application in wet months can largely reduce the P losses from soil to water.  相似文献   

16.
有机肥施用对田面水氮磷流失风险的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
为探明化肥配施有机肥对田面水氮、磷流失及水稻系统养分吸收的影响,采用田间小区试验,设置常规施肥处理(FN)、常规施肥减氮磷量20%处理(F0)、减氮磷20%+有机肥处理(F1~F4处理有机肥施用量分别为1 500、3 000、4 500和6 000 kg/hm2)共6个处理,探索化肥减量20%配施有机肥的最优组合.结果表明:不同施肥处理下,田面水中ρ(TN)、ρ(NH4+-N)均于施肥后第1天达到峰值,随后迅速下降,于第7天后逐渐趋于稳定,ρ(TN)和ρ(NH4+-N)分别维持在各自峰值的5.1%~10.9%与4.8%~9.6%,田面水中ρ(TP)的变化趋势与ρ(TN)相似;F0与F1处理均能有效降低田面水中ρ(TN)和ρ(TP).与FN处理相比,F1处理下ρ(TN)、ρ(NH4+-N)与ρ(TP)平均值分别降低了6.5%、9.1%和3.1%,该处理能够有效地降低氮、磷养分流失风险,且增施有机肥可使水稻增产0.2%~19.8%,地上部分氮、磷累积量随有机肥施用量的增加而显著增加(P < 0.05).综合水稻产量、养分吸收和田面水养分动态等指标发现,F1处理不仅能提高区域双季稻产量,还能有效控制田面水氮、磷养分浓度,降低氮、磷地表径流产生的农田面源污染风险,是针对南方双季稻田的一项"控源节流"优化施肥模式.   相似文献   

17.
秸秆还田配施化肥对土壤养分及冬小麦产量的影响   总被引:5,自引:2,他引:3  
为探究关中地区秸秆还田配施化肥对土壤养分和冬小麦产量的影响,研究采用裂区试验设计,主区为:秸秆不还田(S0)和秸秆还田(S);副区为:不施肥(WF)、氮肥(NF)和氮磷肥(NPF).应用生态化学计量的方法,探究秸秆还田配施化肥下土壤碳氮磷含量变化及其和产量的关系.结果表明,秸秆和施肥互作对表层(0~20 cm)土壤有机碳、全氮和全磷含量均产生显著影响(P<0.05).与S0WF处理相比,SNPF处理显著提高表层(0~20 cm)土壤有机碳和全氮含量(P<0.05).秸秆和年份互作对表层(0~20 cm)土壤全氮含量产生显著影响(P<0.05),随着秸秆还田时间的增加,在2021年SWF处理下表层(0~20 cm)土壤全氮含量显著高于S0WF (P<0.05).秸秆和施肥及其互作对20~40 cm土层有机碳和全氮含量无显著影响(P>0.05),但对20~40 cm土壤全磷含量产生显著影响(P<0.05),与SWF处理相比,SNPF处理显著增加了20~40 cm土层全磷含量(P<0.05).秸秆还田配施化肥对土壤化学计量特征也产生显著影响.与S0WF处理相比,S0NPF处理能够降低表层(0~20 cm)土壤C:N,提高表层(0~20 cm)土壤C:P和N:P.与SWF处理相比,SNF处理能够降低表层(0~20 cm)土壤C:N.秸秆还田配施化肥对冬小麦产量也产生显著影响,2020年和2021年SNPF处理与S0WF处理相比分别增产24.23%和28.9%.相关性分析表明,产量与C:N (P<0.05)和C:P (P<0.01)呈显著正相关关系.全氮和N:P与处理年份呈极显著正相关关系(P<0.001).综上所述,在关中地区秸秆还田配施氮磷肥处理(SNPF)会改善土壤养分,改变土壤化学计量特征,同时提高产量.因此,本研究结果表明秸秆还田配施氮磷肥(SNPF)是优化区域农田养分管理,提高粮食生产能力的有效途径.  相似文献   

18.
微生物有机肥对樱桃园土壤细菌群落的影响   总被引:4,自引:0,他引:4  
采用田间试验,探究微生物有机肥对樱桃园土壤细菌群落的影响.利用高通量测序和实时定量PCR技术,研究不施肥(CK)、常规施肥(CN)和施微生物有机肥(CB)处理土壤细菌数量、多样性和群落结构的变化.结果表明,施微生物有机肥显著提高了土壤有机质、全氮、碱解氮和速效磷含量.结合16S rRNA基因拷贝数和α-多样性指数结果,发现施微生物有机肥能提高细菌数量,且提高细菌多样性和丰富度.不同施肥处理显著改变了细菌群落结构.门水平上,变形菌门、酸杆菌门、厚壁菌门、芽单胞菌门、放线菌门为优势类群,共占细菌总量的74.3%~85.1%.目水平上,CB处理中Acidobacteria_Gp4和Gp6相对丰度显著低于CK处理,而Acidobacteria_Gp7较CK处理增加了75.4%.冗余分析结果表明,环境因子解释了细菌群落变化的92.3%,土壤有机质、全氮含量和pH值是造成樱桃园土壤细菌群落结构差异的主要原因.因此,施用微生物有机肥能显著提高土壤养分含量、土壤细菌数量及群落多样性,对于培肥地力极为重要.  相似文献   

19.
外源稀土微肥对土壤氮磷养分的影响   总被引:7,自引:1,他引:7  
通过小区试验和盆栽试验,研究了施加不同的浓度稀土微肥对土壤中有效氮、有效磷浓度以及土壤脲酶活性的影响。结果表明,施加高浓度稀土微肥将会影响土壤中有效氮和有效磷的浓度。在分析与之相关的土壤酶活性时发现,施加低浓度的稀土微肥(≤1mg/kg)促进土壤脲酶活性并增加土壤有效氮浓度,而施加高浓度稀土微肥(≥5mg/kg)则明显的抑制土壤脲酶活性并减少土壤有效氮浓度;施加稀土元素浓度与土壤有效磷浓度之间有较  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号