首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 156 毫秒
1.
微生物还原针铁矿胶体的动力学特征及其影响因素   总被引:4,自引:0,他引:4       下载免费PDF全文
基于典型的希瓦氏金属还原菌(Shewanella decolorationis S12)和针铁矿相互作用的现象,探讨了电子供体、针铁矿浓度及氧化还原中介体2-磺酸钠蒽醌(AQS)对其相互作用的影响.结果表明, AQS加入使针铁矿的微生物还原程度得到加强,在添加AQS的0.5mmol/L针铁矿体系中,厌氧培养38天后,被还原解离出的Fe(ΙΙ)浓度是未添加AQS的394%.针铁矿的归一化还原速率表明,当电子供体浓度一定时,随着针铁矿浓度增加,针铁矿的还原酶促反应显著减弱.米氏拟合方程表明,以不同浓度的针铁矿为底物时, S12菌-针铁矿相互作用过程的拟合相关系数R2分别为0.843(添加AQS)和0.998(未添加AQS),电子转移载体的存在以及底物类型的不同均对Vmax和Km值均有一定程度的影响.在微生物在还原针铁矿过程中,其还原速率越大,用于ATP合成所需能量 值也随之升高,S12菌和针铁矿的还原反应达到平衡时, Gibbs自由能变化(DGr)达最大值.  相似文献   

2.
纤铁矿微生物异化还原过程的动力学特征及其影响因素   总被引:1,自引:1,他引:0  
基于脱色希瓦氏菌(Shewanella decolorationis S12)和纤铁矿相互作用的现象,探讨了电子供体、纤铁矿浓度及氧化还原中介体2-磺酸钠蒽醌(AQS)对其相互作用的影响.结果表明,AQS的加入使纤铁矿的微生物还原程度得到加强.反应末期,乳酸钠浓度为20mmol.L-1时,在添加AQS的10.0mmol.L-1的纤铁矿体系中,被还原解离出的Fe(Ⅱ)浓度是无AQS体系中的180.2%.纤铁矿的归一化还原速率表明,当电子供体浓度一定时,随着纤铁矿浓度的增加,纤铁矿的还原酶促反应显著减弱.米氏拟合方程表明,以不同浓度的纤铁矿为底物时,S12菌-纤铁矿相互作用过程的拟合校正R2系数分别为0.8285(添加AQS)和0.9348(未添加AQS),电子转移载体的存在及底物类型的不同均对底物饱和时的反应速度(Vmax)和米氏常数(Km)值均有一定程度的影响.在微生物还原纤铁矿过程中,氧化还原中介体AQS使得其还原程度加剧,用于ATP合成所需能量ΔE值也随之升高,S12菌和纤铁矿的还原反应达到平衡时,Gibbs自由能变化(ΔGr)达最大值.  相似文献   

3.
以水铁矿为实验对象,采用计时电流法研究了"电极-AQS-水铁矿"反应体系中蒽醌介导下的电化学还原动力学过程,阐明了"电极-AQS-水铁矿"三者之间相互作用的动力学特征与机制.结果表明:在超声波的协助下,同市售玻碳电极相比,发生在碳毡电极表面的电化学还原反应的灵敏性得到显著提升,且当体系施加电压为-0.7V时,AQS可以被完全还原.在最佳工作电极和实验条件下,AQS可以作为氧化还原中介体参与水铁矿的电化学还原过程.当AQS浓度从0.005mmol/L升至0.035mmol/L时,单位绝对量水铁矿的还原率从10.4%增至35%.AQS介导水铁矿电化学还原过程中的中间产物AQSoxi浓度随时间的变化趋势符合由连串反应动力学推导出的函数模型曲线特征:随着时间t的增加,CAQSoxi在初始某一范围内迅速增长;当时间到达某限度后,CAQSoxi又出现了不同程度的快速下降,模型拟合的校正决定系数高达0.9990.  相似文献   

4.
以硝基类有机污染物为研究对象,探讨了在多相界面(矿物相/生物相)反应体系及纯生物相反应体系中4-硝基苯乙酮微生物还原动力学特征,同时对"针铁矿-微生物-4-硝基苯乙酮"相互作用机制进行了初步阐明.结果表明,2-磺酸钠蒽醌(AQS)对4-硝基苯乙酮微生物还原降解速率有显著的促进作用;不同反应体系中还原降解产物4-氨基苯乙酮含量(μmol·L-1)的对数值和反应时间(h)之间均呈典型的动力学一级增长模式(ExpGro1 Mode),ExpGro1模型拟合的校正R2系数(R2adj)在0.9699~0.9894之间.针铁矿介导下的多相界面反应体系中,4-硝基苯乙酮微生物还原过程可分为耦合的两个子过程,即针铁矿的微生物还原解离过程和吸附态Fe(Ⅱ)调控下的非生物还原过程.不同浓度的AQS以及反应体系中针铁矿的介入,导致4-硝基苯乙酮微生物还原反应所需"活化时间"存在一定程度的差异.研究进一步证实,针铁矿还原解离过程生成的吸附态活性Fe("Ι)在4-硝基苯乙酮微生物还原过程中起到了至关重要的作用.  相似文献   

5.
基于希瓦氏金属还原菌(Shewanella decolorationis S12)和针铁矿相互作用,讨论了蒽醌类有机质(AQS)对该针铁矿异化还原过程的调控机制.结果表明:AQS作为电子运移载体,使得还原解离态铁总量(Fetot)和可溶态铁含量(Fedis)均快速增加;不同含量的AQS加入前后,针铁矿还原平均速率得到显著上升,速率比在2.4~4.0之间,且该比值和AQS含量呈显著的线性关系,可决系数为0.9947.Fedis/Fetot比值随AQS含量升高而降低,当AQS含量由0.05 mmol·L-1增加至0.3 mmol·L-1时,Fedis/Fetot比值由0.935减小至0.705.Feads含量随AQS含量增加而增加,当体系中无AQS时,Feads含量维持在较低的水平(0.05 mmol·L-1).AQS参与下的铁异化还原过程实际上是由两个独立的子过程组成,即微生物呼吸作用驱动了AQS和还原态蒽二酚(AH2QS)的循环转变过程以及AH2QS进一步还原解离针铁矿的非生物过程.  相似文献   

6.
基于典型的希瓦氏金属还原菌(Shewanella decolorationis S12)和石英砂负载铁砷(As-IOCS)的相互作用,探讨了不同来源及组分溶解有机质和生物/非生物条件下对上述作用过程的影响.结果表明,不同类型及组分溶解有机质(DOM)均能使石英砂上负载的铁砷微生物还原解离/解吸程度得到一定程度的加强.而非生物反应体系中,只有含氧化还原敏感官能团结构的蒽醌类物质(0.1 mmol·L-1AQS)对铁砷的解离/解吸作用产生明显影响.在0.1 mmol·L-AQS和有机络合物(2 mmol·L-1 EDTA)的影响下,使得石英砂上负载铁的微生物异化还原程度加强,导致As(Ⅴ)从石英砂负载铁上的解吸程度也随之得到加强;在未加菌体系中,AQS和EDTA和不同组分的DOM类似,对As(Ⅴ)从IOCS上解吸程度影响微弱.对于As(Ⅲ)来说,只有在AQS的影响下,其含量得到显著增加,这可能是作为氧化还原中介体的AQS,在厌氧的生物/非生物条件下,能促进电子在As不同形态之间的转移,使得高价态As(Ⅴ)向还原态As(Ⅲ)的还原转变更易进行.当S12菌液接种含量增加时,在污泥不同组分DOM的影响下,As(Ⅴ)的解吸程度在反应300h前得到明显加强,而As(Ⅲ)的含量在整个反应期间,均快速上升,表明菌液含量高的体系,微生物铁异化还原过程得以持续进行,同时也促进了As(Ⅴ)向As(Ⅲ)的还原转变.  相似文献   

7.
奥奈达希瓦氏菌MR-1还原U(VI)的特性及影响因素   总被引:3,自引:0,他引:3  
探讨了在腐殖质模式物蒽醌?2?磺酸钠(AQS)存在条件下,奥奈达希瓦氏菌MR-1的还原U(VI)特性.结果表明,在厌氧环境下奥奈达希瓦氏菌以AQS为电子穿梭载体,利用电子供体高效还原U(VI).当菌体投加量为1.2×109 个时,其还原铀的效率达95.09%; AQS的浓度低于0.5mmol/L时有利于MR-1菌厌氧还原U(VI),AQS浓度的升高U(VI)的还原明显受到抑制.当U(VI)初始浓度为30.0mg/L时,分别以甲酸盐、乙酸盐和乳酸盐为电子供体,经过7d后其还原率分别达到95.37%、92.41%和95.65%.金属离子(Cu2+、Mn2+、Ca2+)、有毒有机物等对U(VI)还原产生影响.当Ca2+的浓度为2.0mmol/L时,对U(VI)的还原有微弱的促进作用,而当Cu2+和Mn2+浓度为2.0mmol/L时,则存在较强的抑制作用.奥奈达希瓦氏菌也能利用环境中甲苯、三氯乙酸、顺丁烯二酸等有毒物质高效还原U(VI),同时使有毒物质得到降解.扫描电子显微镜(SEM)和电子能谱(EDS)分析结果表明,奥奈达希瓦氏菌菌体中沉积了铀元素.  相似文献   

8.
乙醇透性处理1株普通脱硫弧菌Desulfovibrio vulgaris Hildenborough(DvH)强化硫酸盐生物还原活性,研究不同基质条件下透性处理程度对其硫酸盐还原活性影响.当以H2为电子供体时,10%乙醇处理的DvH硫酸盐还原活性最强,其次为15%;当乙醇浓度>15%时,DvH硫酸盐还原活性显著降低.当以乳酸为电子供体时,最佳乙醇浓度为20%,其次为15%和10%,乙醇浓度达到25%时,DvH仍保持一定的还原活性.不同供体条件下DvH对透性处理程度的响应不同,是因为H2与乳酸在细胞内发生氧化的位置不同,从而胞内电子传递途径不同.确保供体与受体之间电子传递链的完整性是合理确定透性处理程度及透性技术应用的关键.  相似文献   

9.
马晨  杨贵芹  陆琴  周顺桂 《环境科学》2014,35(9):3522-3529
腐殖质和Fe(Ⅲ)呼吸是重要的微生物胞外呼吸形式,电子传递途径是胞外呼吸研究的核心科学问题.为全面理解1株铁还原新菌的电子转移特性和环境功能,以该菌株Fontibacter sp.SgZ-2为研究对象,考察其厌氧腐殖质和Fe(Ⅲ)还原特性,并探寻不同电子受体条件下的电子传递链组成差异.采用厌氧恒温培养法研究了菌株厌氧还原特性.结果表明,菌株SgZ-2具有还原腐殖质模式物[9,10-蒽醌-2,6-二磺酸(9,10-anthraquinone-2,6-disulfonic acid,AQDS)和9,10-蒽醌-2-磺酸(9,10-anthraquinone-2-sulfonic acid,AQS)]、腐殖酸(humic acids,HA)和可溶性Fe(Ⅲ)(Fe-EDTA和柠檬酸铁)以及铁氧化物[水铁矿(hydrous ferric oxide,HFO)]的能力.发酵性糖类(葡萄糖和蔗糖)是菌株SgZ-2还原腐殖质和Fe(Ⅲ)的最佳电子供体.另外,通过呼吸抑制剂法比较了菌株4种电子受体条件下(O2、AQS、Fe-EDTA和HFO)参与电子传递的电子载体差异.结果表明,O2和Fe-EDTA还原条件下,菌株SgZ-2的电子传递链组分基本相似,均包括脱氢酶、醌泵和细胞色素b-c.AQS和HFO还原条件下,电子传递链组分只包含脱氢酶.因而,菌株SgZ-2可溶性和不溶性Fe(Ⅲ)之间的电子传递链组分存在明显差异,并且可溶性受体之间(O2、Fe-EDTA和AQS)的电子传递链组成也不同.本研究建立了1株铁还原新菌Fontibacter sp.SgZ-2不同电子受体条件下的电子传递链模型,并将电子传递机制的研究拓展到了Fontibacter菌属.此研究将为理解该属的电子转移特性及其环境行为提供理论基础.  相似文献   

10.
曾桃  易筱筠  杨琛  党志 《环境工程》2017,35(5):177-182
考察了一种典型的溶解性腐殖质蒽醌-2-磺酸钠(disodium anthraquinone-2-sulfonate,AQS)存在时,典型异化铁还原菌Shewanella oneidensis MR-1在厌氧条件下还原含镉聚铁絮体的过程。结果表明:AQS的存在促进了含Cd絮体中Fe(Ⅲ)的还原,也促进了Cd~(2+)的释放。相比无AQS体系,存在AQS的体系中,Fe~(2+)和Cd~(2+)达到最高浓度的时间均有所缩短,最高浓度也更高;且低浓度AQS的促进效果明显高于高浓度AQS;AQS的存在没有改变二次矿物的种类,仍是针铁矿和磁铁矿,但降低了矿物的结晶度,且AQS浓度越高,改变越明显。存在AQS的体系中,菌体结合的Cd~(2+)更多,且镉的直接释放和间接释放风险均增大,低浓度AQS体系中镉的直接释放风险更大。  相似文献   

11.
阴极氧还原反应(ORR)是影响微生物燃料电池(microbial fuel cell,MFC)性能的重要因素.采用双室MFC以Fe(Ⅲ)-EDTA为阴极液进行持续产电试验.结果表明,添加Fe(Ⅲ)-EDTA作为阴极液可显著加速氧还原反应速率,降低内阻,提高输出电压与功率.当阴极液中存在20.0 mmol/L的Fe(Ⅲ)-EDTA时,电池内阻仅为300 Ω,比对照降低了900 Ω,其输出电压(1 000 Ω下)与功率密度可维持在200.1 mV、 16.0 mW/m2左右,比不加的对照分别提高73.2%、 70.1%. Fe(Ⅲ)-EDTA氧化再生与持续产电试验表明,Fe(Ⅲ)-EDTA可通过曝气氧化再生、循环利用,即Fe(Ⅲ)-EDTA可作为阴极电子穿梭体加速电子至氧气的传递.Fe(Ⅲ)-EDTA首先接受阴极电子被还原成Fe(Ⅱ)-EDTA,在阴极室充分曝气条件下,Fe(Ⅱ)-EDTA将电子传递给O2同时被氧化再生成Fe(Ⅲ)-EDTA,从而完成电子从电极传递到氧气的穿梭过程,MFC得以长期稳定运行.进一步优化试验显示,Fe(Ⅲ)-EDTA作为阴极电子穿梭体强化MFC产电的适宜条件为:浓度20.0 mmol/L、pH=5.0左右.在此条件下MFC的最大功率密度达100.9 mW/m2.  相似文献   

12.
刘洪艳  覃海华  王珊 《海洋环境科学》2019,38(4):508-512, 520
取渤海沉积物进行厌氧培养,富集异化铁还原细菌。采用三层平板法筛选出一株高效异化铁还原细菌ZQ21。经鉴定,该菌株为Enterococcus sp.ZQ21(GenBank号MF192756)。设置不同电子供体、电子受体和电子传递体浓度,分析菌株ZQ21异化还原Fe(Ⅲ)性质。结果表明,在乙二胺四乙酸二钠、柠檬酸钠、葡萄糖、丙酮酸钠、乙酸钠和甲酸钠为电子供体时,菌株ZQ21利用丙酮酸钠还原Fe(Ⅲ)效率最高,累积Fe(Ⅱ)浓度达到113.14 ±3.46 mg/L。菌株ZQ21以柠檬酸铁和氢氧化铁为电子受体时,累积Fe(Ⅱ)浓度分别为91.75 ±1.45 mg/L和58.39 ±4.34 mg/L,Fe(Ⅲ)还原效率存在显著差异。在电子受体为氢氧化铁时,添加不同浓度电子传递体蒽醌-2-磺酸钠(AQS),旨在提高菌株ZQ21的Fe(Ⅲ)还原效率。当AQS浓度为1.50 mmol/L时,菌株ZQ21还原Fe(Ⅲ)效率最高,累积Fe(Ⅱ)浓度达到80.28 ±3.95 mg/L,比对照组提高27%。铁还原细菌ZQ21能够有效利用可溶性以及不溶性电子受体进行异化铁还原,可进一步应用于海洋污染环境中微生物介导的异化Fe(Ⅲ)还原过程。  相似文献   

13.
The oxidation of exposed pyrite causes acid mine drainage, soil acidification, and the release of toxic metal ions. As the important abiotic oxidants in supergene environments, oxygen and manganese oxides participate in the oxidation of pyrite. In this work, the oxidation processes of natural pyrite by oxygen and birnessite were studied in simulated systems, and the influence of pH, Fe(II) and Cr(III) on the intermediates and redox rate was investigated. SO42 − and elemental S were formed as the major and minor products, respectively, during the oxidation processes. Ferric (hydr) oxides including Fe(OH)3 and goethite were formed with low degree of crystallinity. Low pH and long-term reaction facilitated the formation of goethite and ferric hydroxide, respectively. The rate of pyrite oxidation by birnessite was enhanced in the presence of air (oxygen), and Fe(II) ions played a key role in the redox process. The addition of Fe(II) ions to the reaction system significantly enhanced the oxidation rate of pyrite; however, the presence of Cr(III) ions remarkably decreased the pyrite oxidation rate in aqueous systems. The introduction of Fe(II) ions to form a Fe(III)/Fe(II) redox couple facilitated the electron transfer and accelerated the oxidation rate of pyrite. The present work suggests that isolation from air and decreasing the concentration of Fe(II) ions in aqueous solutions might be effective strategies to reduce the oxidation rate of pyrite in mining soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号