首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
在太原市7个点位采集采暖期PM10样品,用气相色谱-同位素质谱仪测定环境空气PM10和污染源(煤烟尘和机动车尾气)中9种多环芳烃(PAHs)的碳同位素组成(δ13C),并根据碳同位素质量平衡原理定量环境空气PAHs的源贡献率.结果表明:煤烟尘中PAHs随环数增加贫13C,机动车尾气中PAHs随环数增加富13C;各点位PAHs的δ13C值差别不大,变化趋势与煤烟尘基本一致,煤烟尘是城市PAHs的主要污染源;煤烟尘对各点位荧蒽和苯并[a]蒽的贡献率都大于机动车尾气,对的贡献率与机动车尾气相当,煤烟尘是各点位荧蒽和苯并[a]蒽的主要来源,是二者共同作用的结果;煤烟尘和机动车尾气对全市环境空气中荧蒽、苯并[ghi]荧蒽、苯并[a]蒽和苯并[b+k]荧蒽贡献率比都约为7:3,太原市环境空气PAHs污染属于煤烟尘和机动车尾气的复合污染.  相似文献   

2.
利用中流量大气综合采样仪采集太原市工业区和商业区PM10样品,使用GC/IRMS技术分析了PAHs的δ13C值(碳同位素组成),并根据碳同位素质量平衡计算了煤烟尘和机动车尾气对2类功能区的贡献率. 结果表明:工业区PM10中PAHs的δ13C值在-26.0‰~-24.5‰之间,随环数增加呈贫13C趋势,与煤烟尘δ13C值的变化趋势一致,表明煤烟尘是工业区的一个主要污染源;商业区PAHs的δ13C值在-26.6‰~-26.2‰之间,较工业区显著贫13C,商业区与工业区的污染源有明显差异;除机动车尾气和煤烟尘外,工业区和商业区还有其他污染源输入,其中工业区有生物质燃烧排放输入,商业区有机动车曲轴箱润滑油残渣输入;煤烟尘和生物质燃烧对工业区的贡献率分别为59.3%~70.8%和29.2%~40.7%,表明工业区煤烟污染严重;机动车对商业区PAHs的贡献率在86.1%~95.8%之间,是商业区PM10中PAHs的主要排放源,其中润滑油残渣的贡献率(在40.9%~85.3%之间)最大,机动车尾气的贡献率在8.3%~54.9%范围内,而煤烟尘的贡献率(在4.2%~13.9%之间)最小.   相似文献   

3.
郑州空气颗粒物中PAHs的碳同位素特征及来源   总被引:5,自引:1,他引:4       下载免费PDF全文
研究了郑州城区空气颗粒物中多环芳烃(PAHs)的稳定碳同位素组成特征并对其来源进行了解析.气相色谱/燃烧系统/同位素质谱(GC/C/IRMS)分析表明,PAHs 的δ13C 值在非采暖季为-29.4‰~-23.4‰,采暖季为-30.0‰~-24.2‰,随着分子量的增大,PAHs 中 13C 降低.统计表明不同采样点的样品中的 PAHs 的δ13C 区别不明显(0.1‰<σ<0.8‰).两个季节中,三环和四环多芳香烃化合物荧蒽、芘和苯并(a)蒽的δ13C没有明显的区别,其范围为-24.5‰~-23.4‰,但是,五环和六环芳烃的δ13C 值有明显差异.随着分子量的增大,采暖季环境空气颗粒物中 PAHs的碳同位素比值变小的程度比非采暖季的大.采暖季的苯并(a)芘、茚并(1,2,3-cd)芘、苯并(ghi)苝的δ13C 值分别为-26.6‰、-30.0‰和-28.1‰,而非采暖季为-24.5‰、-29.4‰和-26.3‰.利用二元复合同位素模型,估算了不同季节机动车尾气和煤的燃烧对郑州城区苯并(a)芘的贡献.在非采暖季机动车尾气排放的贡献率为 70%,在采暖季贡献率为 50%,煤的燃烧对六环化合物的贡献高于机动车排放的贡献.  相似文献   

4.
采集了厦门市冬春季(2008-12-04~2009-03-20)湖里工业区和大嶝岛旅游区大气PM10样品,用GC-MS定量了PM10负载的19种多环芳烃(PAHs),并结合采样期间气象资料对灰霾期和非灰霾期多环芳烃的差异特征进行对比分析.结果表明,冬春季采样期内,厦门市大气PM10中PAHs的浓度变化范围为12.93~79.27 ng.m-3,平均42.28 ng.m-3,比2004年冬季增长近3倍.灰霾期间PM10中PAHs总的质量浓度明显高于非灰霾期,并且灰霾期间低分子量组分菲、荧蒽和芘的质量分数显著下降,高分子量组分苯并[b]荧蒽、苯并[k]荧、苯并[a]芘、苝、茚并[1,2,3-cd]芘、苯并[ghi]苝和晕苯的质量分数相对升高.采用特征化合物比值、主成分分析与多元线性回归对来源与贡献率进行了分析和估算.灰霾期间识别出3类污染源:机动车尾气排放+天然气燃烧、煤燃烧和焦炉排放,其贡献率分别为62.7%、28.1%和9.2%;非灰霾期间同样识别出这3类污染源,其贡献率分别为48.6%、36.9%和14.5%.表明厦门市冬春季灰霾期间PM10中PAHs受本地源排放影响相对较多,非灰霾期间受北方燃煤长距离传输影响更显著.  相似文献   

5.
采集了乌鲁木齐市与郑州市非采暖季的环境空气颗粒物 ,用二氯甲烷做溶剂提取、硅胶柱层分离出多环芳烃样品 .用气相色谱 /燃烧系统 /同位素质谱测定了多环芳烃单化合物的稳定碳同位素组成 .结果表明 :这 2个城市的TSP与PM10 中多环芳烃单化合物稳定碳同位素组成相比较没有明显的区别 ;两城市的颗粒物样品中 ,分子量较小菲、蒽、荧蒽、芘和苯并 (e)芘的稳定碳同位素组成没有明显的区别 ,平均值范围为 - 2 3 4‰~ - 2 4 8‰ ,分子量较大的多环芳烃的δ13 C出现了明显差异 ,乌鲁木齐市环境空气颗粒物中多环芳烃单化合物的δ13 C随着其分子量的增大比郑州市更贫13 C ,乌鲁木齐市的环境空气颗粒物中的苯并 (a)芘、茚并 (1,2 ,3 cd)芘、苯并 (ghi)的δ13 C值分别为 - 2 8 3‰、- 31 8‰和 - 30 2‰ ,郑州市为 - 2 4 4‰、- 2 9 4‰和 - 2 6 3‰ .结合对两城市燃煤量和机动车拥有量的对比分析 ,本研究认为 :在非采暖季 ,这两个城市环境空气颗粒物中多环芳烃的污染主要是以煤的炭化、气化、燃烧以及机动车尾气为主的复合型污染 ,而机动车尾气...  相似文献   

6.
太原市空气颗粒物中正构烷烃分布特征及来源解析   总被引:6,自引:3,他引:3  
为明确城市空气颗粒物中正构烷烃分布特征及污染来源,采集采暖和非采暖季环境空气PM10样品和典型排放源(高等植物、燃煤和机动车)样品,利用GC-MS测定正构烷烃,选取诊断参数并结合污染源排放特征讨论PM10中正构烷烃分布和来源,采用主成分分析法定量解析源贡献率.结果表明,环境空气PM10中正构烷烃含量呈较强时空变化,采暖和非采暖季浓度分别为213.74~573.32 ng·m-3和22.69~150.82 ng·m-3,前者总浓度最高是后者的18倍;采暖季郊区点位(JY、JCP、XD和SL)浓度均高于市区,以JY最高(577.32 ng·m-3),非采暖季工业区(JS)总烷烃量(150.82 ng·m-3)明显高于其它点位,是SL总量的7倍.采暖季化石燃料来源烷烃(C n≤C24)与总烷烃量相关性优于植物来源烷烃(C n≥C25),非采暖季相反,表明前者化石燃料输入较后者高.CPI和%WNA指示非采暖季植物贡献率较采暖季高,且植物蜡烷烃随环境压力的增大总产率增加;C max和OEP表明非采暖季PM10中有机质成熟度低于采暖季;两季样品TIC图均存在UCM鼓包,机动车尾气是该城市的重要污染源.PCA解析结果表明太原市环境空气PM10中正构烷烃首要排放源为机动车尾气和高等植物,约占51.28%;其次为煤烟尘,贡献率为43.14%.煤烟尘污染控制协同机动车尾气净化措施的完善将成为降低城市空气颗粒物中正构烷烃浓度的有效途径.  相似文献   

7.
采集韶关市PM10和PM2.5样品,采用气相色谱-质谱法测定了16种PAHs的质量浓度,分析了16种PAHs在PM2.5中的时空分布特征,研究16种PAHs在PM10和PM2.5中分布的差异.结果显示:PAHs在PM2.5中的季节性分布具有冬、夏季高,春、秋季低的特点,且苯并[a]蒽、苯并[k]荧蒽、苯并[c]芘、苯并[a]芘、荧蒽等在一年四季含量均较高;在空间上的分布显示交通区>工业区>商业区>居民区>休闲区.PAHs在PM2.5中的分布明显高于在PM10中的分布,在人为活动较为频繁的季节和区域,PAHs的含量明显增加.  相似文献   

8.
珠江广州段沉积物中PAHs生态风险的蒙特卡洛模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
以珠江广州段24个采样站位表层沉积物的实测16种多环芳烃(PAHs)浓度为基础资料,采用基于Logistic混沌迭代序列改进的蒙特卡洛算法对珠江广州段沉积物中PAHs的生态风险发生概率进行了定量分析.研究结果表明:PAHs风险排序从大到小依次是:菲>芘>荧蒽> >苯并[a]蒽>苯并[a]芘>二苯并[a,h]蒽.菲、芘和荧蒽引发水生生态风险概率较大,应重点关注.除菲外,其余6种PAHs暴露浓度对生态风险发生概率的贡献率均超过90%,可见PAHs在本区域环境中的风险大小主要取决于其暴露量.  相似文献   

9.
太原市PM10及其污染源中碳的同位素组成   总被引:1,自引:0,他引:1       下载免费PDF全文
通过采集太原市PM10及其主要源(煤烟尘、机动车尾气尘、土壤风沙尘)样品,结合离线分步加热氧化法和同位素质谱仪测定了颗粒物中有机碳(OC),元素碳(EC)和总碳(TC)的同位素组成, 并探讨了太原市PM10中碳的来源.结果表明,太原市冬季、春季PM10中OC、EC和TC的碳同位素组成分别是-34.7‰、-23.5‰、-23.9‰和-30.5‰、-23.1‰、-23.9‰; 煤烟尘中OC、EC和TC的碳同位素组成分别是-26.5‰、-23.2‰、-23.6‰,土壤风沙尘分别为-24.6‰、-14.1‰、-17.3‰,汽油车和柴油车尾气尘分别为-27.7‰、-25.5‰、-27.0‰和-25.7‰、-24.3‰、-24.8‰. EC和TC的同位素组成是区分土壤风沙尘较好的标识指标,TC的同位素组成是汽油车尾气尘较好的标识指标;利用二元复合计算公式结果显示土壤风沙尘中OC、EC占TC的百分含量分别为30%、70%;煤烟尘中OC、EC占TC的百分含量分别为11%、89%;汽油车尾气尘中OC、EC占TC的百分含量分别为78%、22%,柴油车尾气尘中OC、EC占TC的百分含量分别为36%、64%;太原市PM10中的TC和EC主要来源于煤烟尘,OC少部分来源于机动车尾气排放,另外还有其他的重要贡献源.  相似文献   

10.
中国主要河流中多环芳烃生态风险的初步评价   总被引:18,自引:5,他引:13       下载免费PDF全文
以现有的中国主要河流中多环芳烃(PAHs)的浓度数据为基础,通过定义1个危害商,利用商值法筛选出菲、蒽、荧蒽、芘、苯并[a] 蒽、 和苯并[a]芘7种对水生生态具有潜在风险的PAHs.以河流水相中PAHs浓度数据为依据,结合毒性数据库中PAHs水相浓度对水生生物的毒性数据,用概率风险评价法分析了这7种PAHs对水生生物的生态风险.结果表明,7种筛选出的PAHs风险大小依次为:蒽>芘>苯并[a]蒽>荧蒽>苯并[a]芘>菲> .  相似文献   

11.
为了掌握滩涂红树林种植-养殖耦合系统中水产品中多环芳烃的污染情况,保证系统中水产品的品质和食用安全,采用高效液相色谱仪检测了系统中秋茄、桐花树和木榄等养殖塘罗非鱼、鲻鱼和牡蛎体内的13种多环芳烃(polycyclic aromatichydrocarbons,PAHs)[Fluorene(Flu)、Phenanthrene(Phe)、Anthracene(Ant)、Fluoranthene(Fla)、Pyrene(Pyr)、Benz[a]anthraces(BaA)、Chrysene(Chr)、Benzo[b]fluoranthene(BbF)、Benzo[k]fluoranthene(BkF)、Benzo[a]Pyrene(BaP)、Dibenzo[a,h]anthercene(DahA)、Benzo[g,h,i]perylene(BghiP)、Indeno[1,2,3-c,d]pyrene(InP)],分析研究其污染水平并进行食品安全评价.结果表明,牡蛎体内的TPAHs含量最高,干重浓度范围在89.79~98.49μg.kg-1之间;鲻鱼次之,干重浓度范围在25.97~34.64μg.kg-1之间;罗非鱼的TPAHs含量最低,干重浓度范围在12.31~14.41μg.kg-1之间.3环PAHs是主要组成成分,占TPAHs的41.58%~83.35%.脂肪含量是影响不同种类水产品间TPAHs浓度水平的因素.与国内其它地区相比,研究区域水产品内PAHs污染处于轻度的污染水平.3类水产品的湿重等效ΣBaP浓度值在0.068 9~1.037 3μg.kg-1之间,符合欧盟对苯并[a]芘的限值要求.研究区域水产品内PAHs在安全食用范围内.  相似文献   

12.
吴彦瑜  胡小英  洪鸿加  彭晓春 《环境科学》2013,34(10):4031-4035
研究分析了废旧汽车拆解区土壤剖面的美国EPA优控的16种多环芳烃的纵向分布.结果表明,表层土壤中16种多环芳烃总含量达到了17 323 ng·g-1,其中芘(Pyr)、苯并[a]蒽(BaA)、芴(Flu)含量最高,分别达到11 820、1 234和1 083 ng·g-1.汽车拆解区表面和土壤深度为10 cm的土壤均达到了重度污染级别;深度在50~350 cm之间的土壤为轻度至中度污染,当土壤深度超过400 cm,土壤基本未受到污染.但是,7种致癌性PAHs(Chr、BaA、BbF、BkF、BaP、DahA、IcdP)总量在土壤深度达到850 cm时仍有34.15 ng·g-1.随着土壤深度的增大,多环芳烃含量急剧降低,当土壤深度超过300 cm,三环的菲(Phe)、荧蒽(Fl)和二氢苊(Ace)成为优势组分.土壤剖面菲(Phe)/蒽(Ant)比值和荧蒽(Fla)/芘(Pyr)、Fluo/Pyr、BaA/(BaA+Chr)等参数表明,土壤表面的多环芳烃主要来源于石油污染.  相似文献   

13.
三种农作物秸秆燃烧颗粒态多环芳烃排放特征   总被引:3,自引:0,他引:3  
收集3种农作物秸秆玉米,水稻和小麦露天燃烧排放的颗粒物样品,并利用气相色谱-质谱(GC-MS)对样品中的34种多环芳烃(PAHs)进行分析,研究颗粒态PAHs的排放因子及可用于源解析的诊断参数.结果表明,3种秸秆燃烧总PAHs的排放因子为644.18~1798.13μg/kg;其中4环PAHs在秸秆燃烧样品中含量最高,约占38.8%~58.8%,6环PAHs所占比例相对较小,约占5.72%~15.17%.PAHs中部分单体具有相对较强致癌性,对环境和人体健康的影响不可忽视.首次检测分子量为300的高分子多环芳烃二苯并[a,e]荧蒽.在玉米、水稻和小麦秸秆燃烧排放颗粒物中的排放因子分别为6.70,2.77和2.92μg/kg.此外,研究发现BaP/BghiP, Phe/Phe+Ant和Flu/(Flu + Pyr)比值可以作为较好的区分秸秆燃烧与其他来源的诊断参数.  相似文献   

14.
武汉城区土壤剖面多环芳烃的分布特征及来源分析   总被引:1,自引:0,他引:1  
研究分析了位于武汉市城区附近的南望山土壤剖面样品.表层土壤检测到了美国EPA优控的16种多环芳烃,含量为991 ng/g.之外还检测到了联苯、苯并[e]芘、苝、二苯并呋喃、二苯并噻吩、惹烯以及一些多环芳烃的烷基取代物.多环芳烃含量随着深度的增加急剧降低.表层土壤以萤蒽、苯并萤蒽、芘、苯并[a]芘等为主,菲次之.与高环相...  相似文献   

15.
为探究港口地区污染大气中多环芳烃(PAHs)的污染特征和潜在来源,以青岛港为研究对象,于2018年8月至2019年5月期间采集了4个季节的PM2.5样品(n=59),分析了PM2.5中PAHs的季节变化和组成特征,使用相关性分析探索了气象因素对PAHs浓度的影响,并采用正定矩阵因子分解和潜在来源贡献函数模型对潜在来源进行解析.结果表明,ρ(PAHs)平均值为(8.11±12.31) ng·m-3,秋冬季节高于春夏季节.PAHs的季节性分子组成相似,以4~5环PAHs (75.43%)为主.荧蒽、苯并[e]芘、苯并[a]蒽、菲、芘和䓛是研究区域PAHs的优势物种,这与船舶尾气中主要化合物组成相似.相关性分析表明,PAHs浓度与温度和相对湿度呈极显著负相关,与大气压和风向呈极显著正相关,与风速的相关性较差.PMF分析提取出6个贡献因子,结果表明,青岛港地区受航运排放(28.83%)影响最大,其次是机动车排放(20.49%)以及原油挥发(13.47%)等,夏季受航运排放影响最大.PSCF结果表明,京津冀、环渤海和鲁北地区是远距离传输的主要来源区域.  相似文献   

16.
采用恒能量同步荧光法研究了龙岩市区不同功能区冬、春季大气飘尘中多环芳烃(PAHs)的污染状况和污染来源,并对不同功能区的PAHs进行了污染评价。结果表明,龙岩市区各功能区大气飘尘中PAHs总量在278.95~718.13ng/m3,且冬季高于春季。根据荧蒽与芘质量浓度比值,可判断冬春季市区内PAHs主要来源于汽车尾气和燃煤污染。采用苯并[a]芘(BaP)及苯并[a]芘等效致癌浓度(BaPE)来评价3个功能区大气飘尘中PAHs的污染状况,冬季3个功能区苯并[a]芘浓度均超过国家标准(BaP,10ng/m3),且PAHs基本上均严重超标。  相似文献   

17.
Polycyclic aromatic hydrocarbon in urban soil from Beijing, China   总被引:11,自引:2,他引:11  
Polycyclic aromatic hydrocarbons (EPA-PAHs) in the urban surface soils from Beijing were determined using gas chromatography and mass spectrometry (GC-MS). It is significantly complementary for understanding the PAHs pollution in soil of integrated Beijing city on the basis of the information known in the outskirts. The total concentration of 16 EPA-PAH was from 0.467 to 5.470 μg/g and was described by the contour map. Compound profiles presented that the 4-, 5- and 6-ring PAHs were major compositions. The correlation analysis showed that PAHs have the similar source in the most sampling sites and BaP might be considered as the indicator of PAHs. Characteristic ratios of anthracene (An)/(An+ phenanthrene (Phe)), fluoranthene (Flu)/(Flu/ pyrene (Pyr)) and benzo[a]pyrene (BaP)/laenzo[g,h,i]perylene (BghiP) indicated that the PAHs pollutants probably mainly originated from the coal combustion and it was not negligible from vehicular emission. The level of PAHs in our study area was compared with other studies.  相似文献   

18.
为探讨华北地区秋冬季重污染过程PM2.5(细颗粒物)中PAHs(多环芳烃)的污染水平、分布特征及来源,分别采集2018年11月17日—2019年1月19日德州市和北京市PM2.5样品,利用气相色谱-质谱法测量两个站点6次重污染过程中26种PAHs浓度水平,分析PAHs污染特征、分子组成分布及其来源,并利用毒性当量因子估算了PAHs毒性.结果表明:①6次重污染过程中,德州站点∑26PAHs浓度为62~191 ng/m3,北京站点为61~129 ng/m3.②单位质量PM2.5中PAHs的浓度北京站点更高.③两个站点PAHs分子组成分布较为一致,萘、蒽、芴等低分子量的PAHs浓度较低,高分子量PAHs浓度较高,浓度最高的分别为苯并[b]荧蒽、苯并[a]芘、苯并[a]蒽和甲基荧蒽等.④特征比值结果显示,PAHs来源包括柴油车尾气、燃煤和生物质燃烧,德州站点受生物质燃烧影响更为显著.⑤毒性当量计算结果表明,德州站点毒性当量浓度(TEQ)高于北京站点,6次重污染过程中两个站点PAHs的TEQ平均值在6.5~17.2 ng/m3之间,低于国内其他一些地区,但苯并[a]芘的浓度在5.2~13.1 ng/m3之间,超过了GB 3095—2012《环境空气质量标准》日均值的标准限值(2.5 ng/m3),对人体健康存在潜在危害.研究显示:秋冬季重污染过程中,北京站点单位质量PM2.5中PAHs的浓度较高,两个点位PAHs分子组成分布特征及来源较为相似,且均对人体健康存在潜在危害;应进一步加强对PAHs浓度水平的控制,这不仅有利于持续改善PM2.5污染,也有助于减轻人体潜在的健康风险.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号