首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
冬季是我国大气细颗粒物(PM2.5)污染较为严重的时段,武汉市PM2.5受到明显的区域传输影响.本研究基于小时分辨率PM2.5组分观测数据,采用受体模型,解析武汉冬季大气PM2.5各类源的实时贡献.结合轨迹聚类和浓度权重,识别影响各类源的传输路径和潜在源区.武汉冬季大气平均ρ(PM2.5)为(75.1±29.2)μg·m-3.观测期间共有两次污染过程,第一次污染过程主要受西北方向气团影响,水溶性离子升高是PM2.5呈现高值的主要原因,ρ(NH+4)、ρ(NO-3)和ρ(SO■)分别是清洁时段的1.6、 1.7和2.1倍;第二次污染过程则以正东方向气团为主,二次有机组分有明显的生成.对武汉冬季大气PM2.5贡献最大的是二次源(34.1%),其次是机动车尾气(23.7%)、燃煤(11.5%)、道路尘(10.9%)、钢铁冶炼(8.7...  相似文献   

2.
张志豪  陈楠  祝波  陶卉婷  成海容 《环境科学》2022,43(3):1151-1158
基于2019年12月~2020年11月期间武汉市城区大气PM2.5及其主要化学组分(碳质组分、水溶性离子和元素组分)的在线监测数据,分析武汉城区大气PM2.5的污染特征,并利用主成分分析方法和随机森林模型,对PM2.5进行来源解析.结果表明,武汉市大气ρ(PM2.5)冬季最高,为(61.33±35.32)μg·m-3,而夏季最低,为(17.87±10.06)μg·m-3.其中碳质组分以有机碳为主,年均值为(7.27±3.51)μg·m-3,离子组分中ρ(NO3-)、ρ(SO42-)和ρ(NH4+)最高,年均值分别为(11.55±3.86)、(7.55±1.53)和(7.34±1.99)μg·m-3,元素组分中ρ(K)、ρ(Fe)和ρ(Ca)最高,年均值分别为(752.80±183.9...  相似文献   

3.
为深入探究重污染地区气溶胶的消光特征和健康风险,于2019年冬季开展了太原市PM2.5主要化学成分和氧化潜势的分析.采样期间ρ(PM2.5)为(89.9±33.6)μg·m-3,其中水溶性离子和碳质气溶胶分别占到43.3%和33.8%,浓度较高的组分依次为:OC>SO42->NO-3>EC>NH+4>Cl->Ca2+.随着污染程度的增加,PM2.5中有机物(OM)和矿物尘的占比下降了5.8%和11.2%,而SNA(NO-3、 SO42-和NH+4)的质量分数由33.9%显著增加到56.0%.基于IMPROVE公式估算,太原市冬季大气颗粒物的平均消光系数为(453...  相似文献   

4.
孙友敏  范晶  徐标  李彦  韩红  张桂芹 《环境科学》2022,43(5):2304-2316
为探究城市不同功能区大气PM2.5污染水平、成分季节差异特征以及来源,采集了省会城市济南市2019年不同季节(春、秋、冬)3类典型功能区(城市市区、工业区、城乡结合区)和环境背景点植物园区的PM2.5样品,对其浓度[ρ(PM2.5)]、化学组分(水溶性离子、碳质组分、元素)和来源进行分析.结果表明采样期间3类功能区ρ(PM2.5)在空间上呈现:工业区[(89.88±49.25)μg·m-3]>城乡结合区[(86.73±57.24)μg·m-3]>城市市区[(70.70±44.89)μg·m-3],远大于植物园区[(44.36±21.54)μg·m-3].各功能区ρ(PM2.5)秋冬季明显高于春季,冬季最高值出现在城乡结合区,春季和秋季均为工业区最高.工业区各季PM2.5中的水溶性离子浓度较高,主要的水溶性离子NO-3  相似文献   

5.
关璐  丁铖  张毓秀  胡建林  于兴娜 《环境科学》2022,43(6):2888-2894
以南京江北新区2019年4、7、11和12月为代表分析了大气PM2.5中水溶性有机氮(WSON)的季节变化特征,探讨了WSON与水溶性无机氮(WSIN)的关系.结果表明,南京江北新区PM2.5中WSON的变化范围为0.446~4.200μg·m-3,平均值为2.04μg·m-3,略高于北京、上海和常州的观测结果.秋季PM2.5中的WSON平均值最高[(2.967±0.643)μg·m-3],约为其他3个季节的1.7倍.南京细粒子中WSON对水溶性总氮(WSTN)的平均贡献率占到25%,并表现出夏秋高、冬春低的特点,如冬季该占比仅为夏秋季的50%左右. WSON与WSIN中的NO-2-N相关性最高,与NO-3-N的相关性最低,可能与夏季高温导致NO-3-N的挥发有关.通过主成分分析(PCA)表明,南京江北新区细粒子中WSON主要...  相似文献   

6.
为探究邯郸市近5年冬季PM2.5污染特征及来源,于2016~2020年冬季采集PM2.5样品,对8种水溶性无机离子进行分析,利用主成分分析(PCA)模型解析污染源类型,选用后向轨迹和潜在源贡献因子(PSCF)模拟传输轨迹和污染来源.结果表明,2018年冬季PM2.5浓度最高,较2016、2017、2019和2020年升高60.44%、25.46%、91.43%和21.53%;2020年冬季水溶性无机离子(WSIIs)浓度较2016年下降18.86%,WSIIs/PM2.5降至26.69%.夜晚ρ(PM2.5)(110.20~209.65μg·m-3)高于白天(95.21~193.00μg·m-3),NO-3和NH+4浓度夜间涨幅更大,SO42-相反,Cl-浓度和占比逐年下降;2020...  相似文献   

7.
为了解《大气污染防治行动计划》(“大气十条”)实施结束后川南城市群大气PM2.5的污染状况,于2018年11月7~19日在内江、自贡、宜宾和泸州这4个城市同步采集PM2.5样品,结合天气形势分析了秋季PM2.5及主要水溶性离子的污染特征,并利用后向轨迹聚类分析探讨了区域输送对该地区大气污染的影响.结果表明,川南城市群秋季大气平均ρ(PM2.5)为(67.2±38.3)μg·m-3,泸州最高而内江最低;SNA(SO2-4、 NO-3和NH+4)在PM2.5中占比为33.3%,其中NO-3为首要离子组分;由“大气十条”实施中期(2015年)至实施结束(2018年),内江、宜宾和泸州秋季ρ(PM2.5)分别增加了13.8%、 47.2%和69.1%,自贡持平;由于大气...  相似文献   

8.
郭景宁  李小飞  余锋  张蕊  高月  杨雯 《环境科学》2023,44(12):6474-6485
基于2020年12月16日至2021年1月14日采集的渭南PM2.5样品,分析了PM2.5中碳质组分和无机离子的污染特征,并利用正矩阵因子分解法(PMF)、潜在源贡献因子(PSCF)和浓度权重轨迹(CWT)等方法对其来源与源地进行了解析.结果表明,渭南冬季夜间和白天ρ(PM2.5)、ρ(OC)、ρ(EC)、ρ(TWSIIs)的平均值分别为:119.08、 17.02、 6.20、 34.20μg·m-3和130.66、 18.09、 6.22、 50.65μg·m-3.采样期间水溶性离子浓度表现为:F->NO-3>Ca2+>SO42->Na+>Cl->NH+4>K+>Mg2+  相似文献   

9.
为探究郑州大气细颗粒物PM2.5中水溶性无机离子(WSIIs)的污染特征、季节变化和来源,有针对性地防治PM2.5的污染,2020年12月至2021年10月4个不同季节连续采集PM2.5样品,并结合气态污染物(SO2、 NO2和O3)和气象因素(温度和相对湿度)对9种WSIIs(NO-3、 NH+4、 SO42-、 Ca2+、 K+、 Na+、 Mg2+、 F-和Cl-)进行分析.结果表明,观测期ρ[总水溶性离子(TWSIIs)]年均值为(39.34±21.56)μg·m-3,呈现出冬季最高、夏季最低的季节变化特征.全年PM2.5均稍微偏碱性,NH  相似文献   

10.
为探究我国华中地区不同区域夏季大气PM2.5中水溶性离子污染特征及来源,选取武汉、随州和平顶山分别作为城市、郊区和农村监测站点进行大气PM2.5样品采集,分析了大气中PM2.5质量浓度以及8种水溶性无机离子含量.结果表明,采样期间3个站点ρ(水溶性离子)呈明显的空间分布特征,即:平顶山[(36.29±9.82)μg·m-3]>武汉[(32.55±10.05)μg·m-3]>随州[(26.10±6.23)μg·m-3],分别占PM2.5的质量分数为52.47%、 51.32%和48.61%,平顶山站点由于农村生物质燃烧活动,水溶性离子占比最大,其中,二次离子(SNA)是主要的离子成分,分别占总水溶性离子的95.65%、 96.12%和97.33%.武汉(0.64)和随州(0.63)站点硫氧化率均值高于平顶山站点(0.50),而武汉(0.18)和平顶山(0.19)站点氮氧化率高于随州站点(0.15),站点间硫氧化率和氮氧化率差...  相似文献   

11.
模拟研究了在添加过量无机氮造成海水的富营养化条件下,水体pH、无机碳体系、海-气CO2通量的变化过程,探讨了海水无机碳对过量无机氮输入引起的富营养化响应机制.结果表明, NO-3添加组中,当浓度≤37.60μmol·L-1,时, HCO-3、p(CO2)增加, pH、CO2-3下降;当浓度≥188μmol·L-1,时,则正好相反. NH 4添加组中,当浓度≤25.20μmol·L-1时能够明显促进水体HCO-3、p(CO2)减少, pH、CO2-3增加,水体表现为吸收大气CO2;当浓度≥126μmol·L-1时,水体表现为向大气释放CO2,且强度随浓度的增加而增强. N0-2添加组中,当N0-2浓度在7.90μmol·L-1时, HCO-3、p(CO2)呈明显的下降趋势, pH、CO2-3则随时间明显增加,水体表现为吸收大气CO2且强度随时间的增加而增强,而当N0-2高于和低于此浓度时,无机碳变化不明显.水体Chl-a较对照组的增加量(△Chl-a)与△p(CO2)具有很好的负相关关系(r=-0.87, p<0.0001, n=16),表明造成以上差异的原因与水体中浮游植物在不同形式不同浓度无机氮作用下对水体无机碳利用性不同有关.  相似文献   

12.
成都市西南郊区春季大气PM2.5的污染水平及来源解析   总被引:5,自引:2,他引:3  
为了解成都市西南郊区大气中PM_(2.5)污染特征,于2015年3月1~31日对成都西南郊区大气PM_(2.5)进行膜样品采集,并分析其中的化学组分.结果表明,3月成都市西南郊区大气PM_(2.5)的日均质量浓度为121.21μg·m~(-3),采集的31个有效PM_(2.5)样品中有24个样品日均浓度在75μg·m~(-3)以上,日超标率为77%,该地区3月PM_(2.5)污染严重.在与大气气象要素的关系研究中发现,大气颗粒物PM_(2.5)与大气能见度有着较好的指数关系,与温度、湿度有一定的正相关关系,但相关性并不明显.水溶性阴阳离子中NH~+_4(16.24%)、SO~(2-)_4(12.58%)、NO~-_3(9.91%)占PM_(2.5)的主导地位,NO~-_3/SO~(2-)_4的比值是0.77,表明成都西南郊区固定源的污染要大于移动源的污染,燃煤排放的污染相对于汽车尾气较多.有机碳(OC)/元素碳(EC)比值均大于2.0,表明有二次有机碳(SOC)产生.利用OC/EC比值法估算SOC的质量浓度发现,成都西南郊区3月PM_(2.5)中SOC的平均浓度水平为3.49μg·m~(-3),对OC的贡献率达20.6%,说明成都市西南郊区的OC主要来源于一次排放,且OC与EC的相关性分析显示,其相关系数达0.95,说明OC、EC来源相似且相对稳定,成都市西南郊区春季受局地源排放影响较大,一次排放占主导地位,二次有机碳对OC贡献相对较小,与估算所得的SOC性质一致.利用主成分分析(PCA)方法对成都西南郊区大气中PM_(2.5)进行来源解析,发现成都西南郊区PM_(2.5)的主要污染源为燃煤、生物质的燃烧、二次硝酸盐或硫酸盐、土壤和扬尘源、汽车尾气源、电子生产源以及机械加工源.  相似文献   

13.
兴隆大气气溶胶中水溶性无机离子分析   总被引:6,自引:6,他引:0  
2009年9月~2010年8月在兴隆大气背景站,利用Andersen分级采样器进行大气气溶胶样品的采集,并利用离子色谱分析了其中的水溶性无机离子的成分含量.结果表明,TSP、PM2.1和PM1.1中总水溶性无机盐的年平均浓度分别为(89.66±47.66)、(54.44±34.08)和(44.39±29.95)μg·m-3,其中SO42-、NO3-、Ca2+和NH4+为兴隆大气气溶胶中最主要的水溶性无机离子.PM2.1中总水溶性无机离子的年平均浓度占TSP的61%.PM1.1总水溶性无机离子的年平均浓度占TSP的50%,占PM2.1的82%.PM1.1、PM2.1和TSP中水溶性无机离子总浓度季节性变化趋势一致,夏季>秋季>春季>冬季.NH4+与SO42-的摩尔比>2,表明NH4+未被SO42-完全中和.在细粒子中NH4+和SO42-、NO3-均有较好的相关性,相关系数分别为0.96和0.87,表明NH4+可能以(NH4)2SO4和NH4NO3的形式存在.  相似文献   

14.
为了解春节期间烟花爆竹燃放对北京大气污染物和PM2.5中水溶性无机离子贡献的影响,采用浓度特征对比、相关性分析等方法,对2011年2月1日-3月1日期间的PM10、气态污染物、PM2.5中水溶性无机离子浓度等在线数据进行了分析.结果表明:烟花爆竹的燃放会在短时间内加重PM10颗粒物污染,集中燃放期(含除夕、春节、正月初五、元宵节)ρ(PM10)和φ(SO2)(分别为232μg/m3和40.2×10-9)是非集中燃放期(63μg/m3和16.0×10-9)的3.7和2.5倍,燃放烟花爆竹对ρ(PM10)和φ(SO2)的小时贡献率分别达到56.8%和35.6%;但对φ(CO)、φ(NO)、φ(NO2)无显著影响.而观测期间由其他因素导致的污染期ρ(PM10)和各气态污染物小时体积分数有所增加,分别是非集中燃放期的3.0~8.3倍.燃放烟花爆竹对PM2.5中ρ(Mg2+)、ρ(K+)、ρ(Cl-)的影响最大,分别为非集中燃放期的65.0、31.6、6.9倍,贡献率分别为88.6%、87.2%、65.8%. ρ(Mg2+)、ρ(K+)与ρ(Cl-)在集中燃放期表现出较高的相关性(R>0.9).污染期ρ(SO42-)、ρ(NO3-)、ρ(NH4+)明显升高,分别为非集中燃放期的3.8、16.4、8.3倍,同时高于集中燃放期(分别为2.7、2.5、2.1倍).集中燃放期PM2.5中主要以NH4HSO4、NH4NO3、KNO3、KCl、NH4Cl、MgCl2等形式存在.集中燃放期硫氧化物转化率(SOR)高于非集中燃放期和污染期,而氮氧化物转化率(NOR)则是污染期最高.研究显示,燃放烟花爆竹对ρ(PM10)及PM2.5中ρ(Mg2+)、ρ(K+)、ρ(Cl-)影响最大,污染期各离子浓度均有大幅升高,NOR在污染期的高值是导致ρ(NO3-)升高的重要原因.   相似文献   

15.
上海市冬季PM_(2.5)无机元素污染特征及来源分析   总被引:5,自引:2,他引:3  
为了解高污染季节上海市细颗粒物PM2.5及其无机元素的污染特征和来源,于2013年1月4日至2月1日在上海3个点位采集PM2.5样品,并采用电感耦合等离子光谱仪(ICP-OES)测定样品中19种元素含量.结果表明,采样期间PM2.5污染水平较高,均值达(90.5±41.2)μg·m-3,且郊区明显高于市区和背景参照点.所测无机元素的空间分布规律与PM2.5一致,但背景参照点元素Zn的浓度较高.采样期间Cd、As、Zn、Pb、S和Cu等人为污染元素的富集因子较高.因子分析结果表明冬季上海市PM2.5具有多源性,主要来源于燃煤、自然尘、燃油以及机动车.  相似文献   

16.
为了解天津市不同区域PM2.5中水溶性离子污染特征,于2015年7月、10月及2016年1月、4月,在天津市南开区(简称“市区”)及武清区采集PM2.5样品,结合气象因素、气态污染物研究,分析了样品中水溶性离子污染特征及来源.结果表明:①天津市市区及武清区PM2.5中水溶性离子组分主要为二次离子(SO42-、NO3-、NH4+);不同区域PM2.5中二次离子各季节占比略有不同,市区为夏季(54.0%)>秋季(42.5%)>春季(41.3%)>冬季(40.7%),武清区为夏季(53.0%)>春季(44.6%)>秋季(43.4%)>冬季(33.2%).②冬季市区、武清区PM2.5中水溶性离子组成差异较大,其他季节水溶性离子组成相似;夏季市区及武清区颗粒物呈酸性,其他季节均呈碱性,冬季武清区颗粒物碱性强于市区.③不同季节市区及武清区PM2.5中SO42-均以(NH42SO4形式存在,NO3-冬季以NH4NO3形式存在,其他季节NO3-主要以NH4NO3和HNO3形式共存;市区Cl-主要以NH4Cl、KCl和NaCl形式存在,武清区Cl-主要以NH4Cl、KCl形式存在.④对市区及武清区来说,均相反应和非均相反应是SO42-重要生成途径,均相反应是生成NO3-的主要途径.研究显示,代表一次排放的机动车源、燃煤源和二次无机粒子混合源对天津市PM2.5中水溶性离子贡献率最高,工业源和扬尘源对市区的影响较大,农业源对武清区的影响较大.   相似文献   

17.
本研究于2015年12月至2016年2月在徐州市城区采集大气细颗粒物PM_(2.5)样品共32套,使用离子色谱法分析了颗粒物中的F~-、Cl~-、NO_3~-、SO2-4、Na~+、Mg~(2+)、NH_4~+、K~+和Ca~(2+)的质量浓度.观测期间,徐州市冬季PM_(2.5)的平均质量浓度为(164.8±77.3)μg·m-3,9种水溶性离子总质量浓度为(67.5±36.1)μg·m~(-3),占PM_(2.5)的40.9%,各离子浓度高低顺序为NO_3~-SO_4~(2-)NH_4~+Cl~-Ca~(2+)K~+Na~+Mg~(2+)F~-,其中NH_4~+、NO_3~-和SO_4~(2-)是最主要的水溶性离子.清洁大气、轻度霾和重度霾时期PM_(2.5)中总水溶性无机离子(WSIIs)质量浓度分别为(12.8±8.8)、(59.0±22.8)、(86.3±36.0)μg·m~(-3),SNA分别占WSIIs的86.4%、82.8%和78.9%.NH_4~+、NO_3-和SO_4~(2-)三者之间相关性显著,在PM_(2.5)中的结合方式为(NH_4)_2SO_4和NH_4NO_3.徐州市PM_(2.5)中水溶性离子的主要来源为二次转化、生物质燃烧、化石燃料燃烧和矿物粉尘等.  相似文献   

18.
邯郸市PM_(2.5)中水溶性无机离子污染特征及来源解析   总被引:4,自引:1,他引:3  
本研究通过对邯郸市环境空气中PM2.5样本进行采集和成分检测,分析了该地区PM2.5中水溶性无机离子的污染特征,并结合气象要素(风速、温度)、气态污染物(O3、NO2、SO2、CO)、SOR(硫氧化率)、NOR(氮氧化率)对其主要来源进行了解析.研究结果表明:总水溶性无机离子(TWSII)浓度季节变化特征明显,秋、冬季高于春、夏季.SO2-4、NO-3、NH+4是PM2.5中主要的水溶性无机离子,在TWSII中所占的比例为夏(93.2%)冬(85.6%)秋(85.5%)春(84.0%).春、夏、秋三季PM2.5呈酸性,冬季显碱性.此外还分析得到,SO2-4在四季中均以(NH4)2SO4的形式存在.NO-3在冬季以NH4NO3的形式存在,其余季节中以NH4NO3、HNO3等共存.绝大部分Cl-在冬季以NH4Cl的形式存在,其它季节中以NH4Cl、KCl等的形式存在.均相反应是SO2-4的主要生成途径,夏、冬季也伴随有非均相反应.NO-3的生成以均相反应为主(春、夏、秋),在冬季均相反应与非均相反应同时存在.应用因子分析法解析出4个主因子,其中,工业、燃煤、交通、生物质燃烧等综合源是PM2.5中水溶性无机离子的主要来源.  相似文献   

19.
成都夏冬季PM2.5中水溶性无机离子污染特征   总被引:6,自引:5,他引:1  
利用大气细颗粒物水溶性组分及气态前体物在线监测设备(GAC-IC)对成都市2017年夏、冬两季大气PM_(2.5)中水溶性无机离子(WSIIs)及气态前体物进行了连续观测,对其污染特征及冬季一次典型污染过程进行了深入分析.结果表明,成都冬季PM_(2.5)质量浓度为100.2μg·m~(-3),显著高于夏季(34.0μg·m~(-3)).WSIIs是PM_(2.5)的重要组成,对夏、冬季PM_(2.5)的贡献分别可达52.9%和53.3%.夏、冬季的二次离子(SNA)占WSIIs的比例分别为73.2%和87.6%,其中,SO_4~(2-)和NO~-_3分别是夏、冬季SNA的主导组分,对SNA的贡献分别为37.7%和59.7%.冬季NO~-_3/SO_4~(2-)比值(2.7)显著高于夏季(0.8),体现了移动源(尤其是机动车源)对该季节PM_(2.5)的重要贡献.受来源及气象条件差异的影响,两季节SNA的日变化规律明显.在冬季,随着污染加重,各化学组分及主要气态前体物浓度均显著增加,NO~-_3是引发重污染的关键组分.后向轨迹分析表明,成都两季节气团来向差异明显,夏、冬季聚类对应的WSIIs分别以SO_4~(2-)和NO~-_3为主导,成都周边地区的近距离低空传输对该城市PM_(2.5)污染贡献重大.  相似文献   

20.
为探究聊城市冬季PM_(2.5)中水溶性物质的昼夜变化特征及其来源,于2017年1~2月进行PM_(2.5)样品采集,对其水溶性无机离子、乙二酸和左旋葡聚糖等水溶性化合物进行分析,并采用主成分分析-多元线性回归模型(PCA-MLR)对其来源进行解析.结果表明,采样期间聊城市PM_(2.5)平均质量浓度为(132. 6±65. 4)μg·m-3,是国家二级标准的1. 8倍,且夜晚PM_(2.5)的污染程度略高于白天. SNA(SO24-、NO3-和NH4+)是聊城市PM_(2.5)中最主要的水溶性离子,在白天与夜晚占总离子的质量分数为73. 4%和77. 1%,说明聊城市冬季二次污染较严重.白天与夜晚阴阳离子平衡当量比值(AE/CE)都小于1,说明PM_(2.5)呈碱性,且夜晚PM_(2.5)的酸性比白天强.无论在白天还是晚上,NH4+的主要存在形态均为NH4HSO4和NH4NO3.通过相关性分析,证实了乙二酸是在液相中经酸催化的二次氧化反应形成的,且受生物质燃烧的影响很强.通过PCA-MLR模型分析可知,聊城市冬季PM_(2.5)中的水溶性化合物主要来自机动车尾气及其二次氧化、生物质燃烧,而受矿物粉尘与煤炭燃烧的影响较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号