首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   5篇
综合类   9篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
2016年10~11月期间北京市大气颗粒物污染特征与传输规律   总被引:5,自引:5,他引:0  
本研究采用气溶胶化学组分在线监测仪(ACSM)对北京地区2016年10月15日~11月15日期间非难熔性PM1(NR-PM1)化学组分进行实时连续在线观测,探讨了NR-PM1化学组分的演变特征;运用潜在源贡献分析(PSCF)法和气象-空气质量模式(WRF-CAMx)识别了北京PM2.5潜在污染源区和传输路径,揭示了PM2.5净传输通量的垂直分布特征.结果表明,北京秋季NR-PM1和PM2.5质量浓度分别为(59.16±57.05)μg·m-3和(89.82±66.66)μg·m-3,其中NR-PM1平均占PM2.5的(70.31±22.28)%.整个观测期间,有机物(Org)、硝酸盐(NO3-)、硫酸盐(SO42-)、铵盐(NH4+)和氯化物(Chl)分别占NR-PM1总质量浓度的(42.75±11.35)%、(21.27±7.72)%、(19.11±7.08)%、(12.19±2.64)%和(4.68±3.24)%,不同化学组分的日变化特征存在明显差异.对北京秋季NR-PM1污染影响较大的潜在源区主要集中在河北南部、河南东北部及山东西部,重污染期间保定、北京南部及廊坊等城市对NR-PM1贡献较大.WRF-CAMx模拟结果表明,PM2.5总的净传输通量呈现出显著的垂直分布特征.整个观测期间,毗邻城市主要向北京输入PM2.5,净通量最大出现在海拔600~1000 m;而重污染前期外来源输送PM2.5主要位于高空,直到污染最严重的11月5日,PM2.5转为近地面传输,说明高空和近地面传输是影响北京秋季PM2.5重污染形成的重要因素.同时鉴别出了两种传输路径,即西南-东北方向(保定→北京→承德)和西北-东南方向(张家口→北京→廊坊北→天津).  相似文献   
2.
为揭示邯郸市空气污染过程及形成原因,以邯郸市环境监测中心为采样点,对采样滤膜进行离子和碳质组分测试,探讨PM2.5组分浓度变化特征,并利用WRF-CAMx空气质量模型模拟分析2017~2018年秋冬季3次重污染前后邯郸市各个地区各类污染源大气污染排放对PM2.5质量浓度的贡献.结果显示,重污染期间邯郸市水溶性粒子占PM2.5质量浓度的62.4%,二次离子中呈现NO3- > SO42- > NH4+变化趋势.受地面均压场和高压底部控制及500hPa高空纬向环流影响,污染物水平方向和垂直方向传输受到抑制,同时边界层高度的降低进一步加剧PM2.5污染浓度的升高,随着西伯利亚东部高压和欧亚大陆高压南下以及边界层高度的上升,3次重污染过程得以彻底清除.PSAT示踪模块结果表明复兴区,丛台区和永年区是邯郸市PM2.5浓度贡献的主要区县,3个区县重污染贡献总和为66.8%~72.2%,重污染时段冶金,交通源和居民散煤燃烧是3大主要污染源.  相似文献   
3.
邯郸市大气污染源排放清单建立及总量校验   总被引:1,自引:0,他引:1       下载免费PDF全文
邯郸作为"2+26"城市主要的重工业城市之一,位于京津冀南北传输通道的核心位置,在京津冀地区大气污染协同调控中处于重要地位.为改善当地空气质量,以邯郸市为研究对象,基于拉网式调查获取详细活动水平数据,结合相关排放因子,得到2016年邯郸市大气污染源排放清单;采用WRF-CMAQ(气象-空气质量)数值模型,模拟了2016年典型季节代表月(1月、4月、7月、10月)的空气质量,验证了数值模型的准确性;最后基于总量校验方法,反向估算了邯郸市典型污染物的排放总量,对初始大气污染源排放清单进行校验.结果表明:①2016年邯郸市SO2、NOx、TSP、PM10、PM2.5、CO、VOCs、NH3的总排放量分别为78 533、183 126、497 466、258 940、124 637、3 735 355、200 309、187 299 t.②工业源是SO2、NOx、PM2.5、CO和VOCs的主要排放源,分别占总排放量的74.5%、54.5%、30.6%、76.7%和28.1%;无组织扬尘源对TSP、PM10、PM2.5的贡献较大,分别占总排放量的58.5%、43.6%、30.3%;NH3的主要排放源为农畜氨及人体和其他氨,二者排放的NH3占总排放量的96.9%.③总量模型估算得到邯郸市PM2.5、SO2、NO2年排放量分别为152 739、79 405、206 549 t;对比分析校验前、后典型污染物排放发现,校验前的大气污染源排放清单可能低估了PM2.5和NOx的排放量.研究显示,邯郸市污染物排放量较大,工业源为主要排放源,建议相关部门加强对工业源的管控力度.   相似文献   
4.
重型柴油车PM2.5和碳氢化合物的排放特征   总被引:1,自引:0,他引:1  
采用车载排放试验对国Ⅱ、国Ⅲ、国Ⅳ重型柴油车尾气在实际道路排放的PM2.5和碳氢化合物进行样品采集,采用电感耦合等离子体质谱技术、离子色谱仪和碳质分析仪对PM2.5各组分进行测试分析,采用五气分析仪对HC进行在线分析.结果表明,重型柴油车PM2.5和HC的排放因子分别为(0.22±0.12) g/km和(0.57±0.45) g/km,且排放因子随机动车排放标准的提高呈明显下降趋势.EC和OC是机动车尾气PM2.5的主要组分,分别占总质量百分比的38.87%~42.87%和16.22%~19.96%;水溶性离子中含量较为丰富的组分主要是SO42-、NH4+和NO3-,分别占总PM2.5质量百分比的7.64%~8.85%、2.22%~3.97%、1.91%~2.73%;元素中含量较高的组分为S、Na、Ca、Fe、和Al;PM2.5和HC的排放因子随车速的增加均呈下降趋势.  相似文献   
5.
为探究郑州大气细颗粒物PM2.5中水溶性无机离子(WSIIs)的污染特征、季节变化和来源,有针对性地防治PM2.5的污染,2020年12月至2021年10月4个不同季节连续采集PM2.5样品,并结合气态污染物(SO2、 NO2和O3)和气象因素(温度和相对湿度)对9种WSIIs(NO-3、 NH+4、 SO42-、 Ca2+、 K+、 Na+、 Mg2+、 F-和Cl-)进行分析.结果表明,观测期ρ[总水溶性离子(TWSIIs)]年均值为(39.34±21.56)μg·m-3,呈现出冬季最高、夏季最低的季节变化特征.全年PM2.5均稍微偏碱性,NH  相似文献   
6.
华北地区典型重工业城市夏季近地面O3污染特征及敏感性   总被引:1,自引:1,他引:0  
基于邯郸市2018年5~8月近地面O_3及其前体物(NO_x和VOCs)小时浓度数据,结合温度、相对湿度和风向风速等气象资料,分析邯郸市夏季O_3污染水平以及气象因子、前体物对其的影响;采用VOCs/NO_x比值法和基于Model-3/CMAQ模式系统的强力关闭法探究O_3生成敏感性,并运用等效丙烯浓度法识别出VOCs关键活性组分.结果表明:①观测期间,邯郸市O_3日最大8 h平均浓度(MDA8 O_3)在38.0~238.0μg·m~(-3)之间,污染天(MDA8 O_3160μg·m~(-3))占比高达44.7%,说明邯郸市夏季O_3污染较严重;②O_3与温度呈正相关、与相对湿度呈负相关,且在污染天相关性更显著;当温度高于28℃、相对湿度低于60%时,容易出现高浓度O_3现象,说明高温、低湿有利于O_3生成,也突出了本地光化学反应对O_3的重要贡献;污染天中,风向为西南、东南、东和东北风,且风速大于2.25m·s~(-1)时,邯郸市更容易出现高浓度O_3,在风速低于1.00m·s~(-1)时,也出现高浓度O_3现象,说明本地光化学生成和传输叠加是导致邯郸市高浓度O_3的重要原因;③O_3与NO_x、VOCs浓度在污染天反相关关系更显著,突出了本地光化学反应对O_3的重要贡献;基于Model-3/CMAQ的模式研究显示,邯郸市O_3生成受VOCs控制,削减VOCs对降低MDA8 O_3有一定的积极作用,同时存在单独减排NO_x的不利效应,因此控制VOCs,并重点控制烯烃(尤其异戊二烯和反式-2-丁烯)和芳香烃(尤其间/对-二甲苯和甲苯)是降低邯郸市MDA8 O_3的有效途径.  相似文献   
7.
采用车载式尾气测量系统对国Ⅱ、国Ⅲ、国Ⅳ轻型汽油车在实际道路排放的尾气进行样品采集,并采用GC-MS、GC-FID对尾气中烷烃、烯烃、苯系物进行测试分析.结果表明轻型汽油车的VOCs排放因子随排放标准的提高显著降低,国Ⅱ、国Ⅲ、国Ⅳ3种车型的排放因子分别为49.62、21.65、6.72mg/km.苯系物占测定VOCs组分的比例最高,占到总VOCs的47.43%~60.52%.由排放的VOCs估算获得不同标准车型的臭氧生成潜势及二次有机气溶胶生成潜势分别为24.64~234.14mg/km和13.24~125.32mg/km.在对国Ⅲ车型进行的不同速度的实验结果显示,轻型汽油车尾气VOCs排放因子及相应的臭氧生成潜势和二次有机气溶胶生成潜势均随实验车速的升高而降低.  相似文献   
8.
以郑州市2019年12月大气PM2.5为对象,分析其中Ca、 Fe、 K、 Mg、 Sb、 Na、 As、 Cu、 Pb、 Zn、 V、 Co、 Cr和Ni含量,运用地累积指数(geo-accumulation index,Igeo)和正定矩阵因子模型(positive matrix factorization, PMF)分析元素污染程度和来源,采用美国EPA健康风险评价模型对重金属元素的健康风险进行评价.结果显示,采样期间日均ρ(PM2.5)为108μg·m-3,金属元素中ρ(Ca)最高(5.9μg·m-3).地累积指数结果表明,Sb污染程度最高,Sb、 As和Cu造成极重污染,PMF解析结果表明,采样期间研究区域金属元素来源有冶金工业源、交通移动源、固体废物焚烧源和燃煤与扬尘混合源.不同污染水平下儿童所受非致癌风险更高而成年人所受致癌风险更高,各金属元素对人体的非致癌风险总体上在人体可接受范围,而As造成的致癌风险超出可接受范围.各类源HQ值均小于1,非致癌风险可忽略不计,...  相似文献   
9.
2016年1月京津冀地区大气污染特征与多尺度传输量化评估   总被引:4,自引:4,他引:0  
基于大气环境监测数据和WRF-CAMx模式,分析了2016年1月京津冀城市的大气污染特征,开展了PM2.5跨界传输量化评估研究.结果表明,2016年1月京津冀地区PM2.5、PM10、SO2、NO2和CO的平均浓度分别为89.5μg·m-3、135.61μg·m-3、57.55μg·m-3、60.79μg·m-3和2.12mg·m-3,其中PM2.5污染较为严峻.研究期间,京津冀城市近地面PM2.5以本地排放为主,贡献率为45.4%~69.9%;区域传输贡献为辅,其中来自京津冀区域内和区域外的传输贡献率分别为4.8%~49.7%和4.9%~29.6%.高风速会促进本地PM2.5污染的扩散,同时位于其上风向污染较高的城市,在高风速和强下风向频率和的作用下,会进一步增强对下风向城市的区域传输贡献.北京(石家庄) PM2.5总流入、流出和净通量(t·d-1)分别为1582.96(2036.89)、-1171.09(-1879.12)和411.87(157.77),表明两城市接受外来输入影响均高于向外传输的影响.PM2.5净通量呈现显著的垂直分布特征,离地1782 m高度范围内北京和石家庄PM2.5总净通量强度范围分别是17.86~64.18 t·d-1和-2.95~134.81t·d-1,均在距地面817 m左右达到峰值,强度分别为64.18t·d-1和134.81t·d-1,而张家口和山西的净流入通量的显著增加是导致两城市PM2.5总净通量强度达到峰值的主要原因.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号