首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
土壤中的PAHs对人体健康具有潜在的危害 .在天津采样数据的基础上 ,应用多元地统计学中的因子克立格方法 ,探讨了天津地区表层土壤中PAHs含量和一些土壤性质之间的空间相关性 .在天津地区共采集 188个表层土壤样品 ,测定了 16种PAHs的总含量、土壤 pH值、总有机碳含量和土壤粘粒含量 .研究结果表明 ,天津地区表层土壤中PAHs含量和pH、TOC、粘粒含量之间的空间相关性在不同尺度上有很大差异 .  相似文献   

2.
沈北新区土壤中多环芳烃污染特征及源解析   总被引:10,自引:6,他引:4  
采用均匀网格布点法采集沈阳市沈北新区不同土地利用类型101个表层(0~20 cm)土壤样品,开展土壤中美国环保署优先控制的16种多环芳烃(PAHs)的含量空间分布特征、成分谱分析和污染物来源解析研究.结果表明,沈北新区土壤中16种PAHs(ΣPAHs)总含量为123.7~932.5μg·kg~(-1);PAHs组分以3~4环的中、低环组分为主,其中3环PAHs比例最高;ΣPAHs的空间分布特征明显,呈现出由南向北、自东向西逐渐递减的趋势.在研究区域所涉及的5种土地利用类型土壤中,土壤ΣPAHs含量的高值主要集中在城区绿地和人工绿化林地,其次为设施菜地,水稻田和玉米田中ΣPAHs含量相对较低且无明显空间分布差异.利用特征比值分析和因子分析/多元线性回归分析进行土壤中PAHs的污染源解析,初步确定沈北新区表土中PAHs的主要污染源为燃烧源和石油源的混合源,其中,工业燃煤和机动车尾气是PAHs的主要污染源,其贡献率达79.6%,石油泄漏和焦炉排放贡献率约为16.2%,生物质燃料的燃烧贡献率占4.2%.  相似文献   

3.
通过对北京和天津地区18条土壤剖面样品中PAHs的分析检测及PAHs的土柱淋滤实验模拟研究,得出了部分反映PAHs污染源的分子标志物参数在土壤剖面(或淋滤土柱)上的纵向变化特征,分析了PAHs化合物的纵向迁移作用对这些参数的影响,讨论了部分用于识别土壤中PAHs污染源的分子标志物参数的有效性。结果表明:在土壤剖面0~50 cm范围内,An/Ph,MPI1,MP/P值均有随深度增加而逐渐降低的趋势,在深层(>50 cm)不同剖面之间这些参数值差别不大;Fl/Py随深度增大呈现一定的波动性,但总体波动范围较小,且在0~40 cm变化不大;C0/(C0+C1)P/A和C0/(C0+C1)F/P值变化较为复杂。土柱淋滤实验表明,在0~50 cm范围内,部分PAHs污染源识别参数(An/178、MPI1、MP/P、C0/(C0+C1)F/P和C0/(C0+C1)P/A等)随深度的变化趋势与自然土壤剖面中的变化趋势基本一致,在深层50~100 cm范围内,这些参数值的大小逐渐与原土中的接近。表明淋滤作用(迁移过程)对表层土及土壤剖面浅部(50 cm范围内)部分PAHs污染源参数值的大小有不同程度的影响,运用PAHs污染源识别参数时,这些参数的有效性应引起足够的注意;而剖面深部(>50 cm)PAHs参数值受表层污染物组成的影响较小,其大小主要反映原土中化合物组成及成因。不同剖面受淋滤作用影响的范围存在一定的差别,这主要取决于土壤中TOC的分布特征。  相似文献   

4.
松花江流域冰封期水体中多环芳烃的污染特征研究   总被引:7,自引:4,他引:3  
在松花江流域的3个主要江段:嫩江、第二松花江和松花江干流,于2010年冰封期采集了21个水体样品,分析了多环芳烃的污染特征.结果表明,15种PAHs的浓度范围为23.4~85.1 ng·L-1,平均浓度为(50.3±17)ng·L-1,与我国其它地区地表水中PAHs的污染程度相当.松花江流域水体中PAHs具有明显的空间分布特征,城市下游浓度高于上游,说明沿岸城市的污水排放可能是松花江水体中PAHs的主要污染源,主成分分析表明,PAHs的主要来源是化石燃料的燃烧源.商值法生态风险评价结果显示,相对分子质量高的PAHs造成的生态风险可以忽略,相对分子质量低的PAHs对松花江水体会造成一定的危害.  相似文献   

5.
在天津地区表层土壤多环芳烃(PAHs)采样数据基础上,应用协同克立格方法(CK)对PAHs 进行多元空间估计,并探讨了普通克立格方法(OK)与CK 在空间估计方面的精度问题.结果表明, PAHs 各组分在空间分布上存在着很大的差异,绝大多数组分在市区都有高值区,其次分布在塘沽和汉沽区以及西青区.而低值区域主要分布在北部山区,以及南部的大港区、静海县.通过估计误差的比较发现, CK方法的估计误差平均为4.22%,而OK 方法的估计误差平均为8.56%.协同克立格法能够很好地对PAHs 进行多元空间估计,相对于普通克立格法来说,估计精度有了较大的提高.  相似文献   

6.
大港地区大气颗粒物中多环芳烃分布及污染源识别的研究   总被引:29,自引:0,他引:29  
多环芳烃(PAHs)是一类对人体危害较大的有机污染物。目前对大气环境中PAHs来源识别技术还处于探索与发展阶段。为了解天津大港油田地区大气环境中PAHs污染状况与来源,对天津市大港地区大气颗粒物中10种PAHs分布及污染源开展了调查。结果表明:大港地区10种PAHs总浓度平均为169ng/m3,比市区对照点的465ng/m3低63.7%,其中苯并(a)芘(BaP)平均浓度为13.6ng/m3,比市区对照点的41.1ng/m3低66.9%。实验结果经统计处理发现BaP浓度与其它9种PAHs浓度存在一定的相关性,相关系数均在0.60以上。利用比值法进行源识别得出:大港石化区PAHs主要来源为燃煤污染;而大港油田区PAHs主要来源为燃油污染。  相似文献   

7.
淮河中下游沉积物PAHs的稳定碳同位素源解析   总被引:1,自引:0,他引:1  
对淮河中下游水相、悬浮物、沉积物中的PAHs(多环芳烃)进行定量分析,在探讨其分布特征的基础上,利用单体烃稳定碳同位素技术揭示研究区沉积物中PAHs的来源. 结果表明:水相中正阳关的ρ(PAHs)最高,达5.01 ng/mL;悬浮物和沉积物中以蚌埠闸的w(PAHs)最高,分别为9.85和1 175.02 ng/g. 沉积物中PAHs的δ13C在-39.4‰~-17.6‰之间.正阳关、平圩、洛河和蚌埠闸等采样点的高环PAHs的δ13C比低环PAHs的小,表明高环PAHs富集12C(轻碳同位素),显示燃煤源为主要污染源;但这4个采样点PAHs的δ13C与燃煤烟尘相比存在一定差异,表明除燃煤源外可能还存在着少量其他污染源. 双沟镇高环PAHs的δ13C比低环PAHs的大,表明高环PAHs富集13C(重碳同位素),可能是微生物作用所致.   相似文献   

8.
为实现土壤PAHs (多环芳烃)来源致癌风险的定量化,选取太原市城乡土壤为研究对象,分析PAHs污染水平并建立含量成分谱,利用PMF (正定矩阵因子分解)模型识别污染源,采用蒙特卡罗模拟进行健康风险评估,并联合PMF模型和健康风险模型量化PAHs污染源的健康风险,比较不同污染源对土壤PAHs含量和对致癌风险贡献的差异. 结果表明:①太原市土壤PAHs污染严重,城市地区人群暴露于土壤PAHs的致癌风险超过了可接受风险水平(10?6),农村地区人群超过可接受阈值的概率在10%~50%之间. ②城市土壤中PAHs主要来自燃煤交通混合源(41.5%)、燃煤源(26.0%)、石油源(16.2%)、焦炉排放源(8.2%)和交通排放源(8.1%),农村土壤PAHs主要来自燃煤源(43.3%)、生物质燃烧源(22.3%)、交通排放源(22.7%)和焦炉排放源(11.7%). ③燃煤交通混合源是城市地区致癌风险的最大来源,贡献率为53.7%;交通排放源和燃煤源是农村地区致癌风险的主要来源,贡献率分别为46.3%和45.6%. ④不同污染源对PAHs含量的贡献与其对致癌风险的贡献存在差异,对于城市地区,燃煤交通混合源、交通排放源对PAHs含量的贡献率分别为41.5%、8.1%,而其对致癌风险的贡献率分别为53.7%、13.0%;对于农村地区,交通排放源对PAHs含量的贡献率为22.7%,但其对致癌风险的贡献率为46.3%. 研究显示,规避交通排放源是降低PAHs致癌风险的关键,建议将基于健康风险的定量源解析技术应用到土壤风险管控中,以期更为有效地降低健康风险,保护人体健康.   相似文献   

9.
天津地区一些降尘中多环芳烃的含量与分布   总被引:13,自引:0,他引:13  
采集并分析了天津地区2002~2003年16区县23个样点采暖与非采暖期降尘样品中16种优控多环芳烃(PAHs)含量.非采暖期样品16种PAHs含量总和(ΣPAH16)在1 00~48 18μg·g-1间,采暖期样品ΣPAH16在2 54~85 47μg·g-1间.采暖期降尘高含量PAHs主要为萘、菲、荧蒽、和芘,非采暖期降尘PAHs的优势成份包括萘、芴、菲、荧蒽和.除东部工业区外,同一样点采暖期降尘中高环PAHs含量普遍高于非采暖期.采暖期样品各PAHs彼此之间相关性较非采暖期显著.无论是采暖期还是非采暖期,降尘中PAHs主要都是来源于燃煤,交通污染源也占一定比例.  相似文献   

10.
对河北省南部地区28座典型变电站场地土壤中16种优先控制的PAHs含量进行了检测和分析.结果表明,变电站场地土壤中PAHs总量为223.48~1681.17μg/kg,平均值为443.94mg/kg.变电站整体PAHs处于轻微污染水平.利用特征组分比值法和正定矩阵因子分解模型(PMF)分析了污染源类型及贡献率,结果表明,变电站土壤中PAHs主要是石油及其衍生产物污染源,其中生物质和煤炭燃烧等化石燃料燃烧占42.1%,石油及其衍生产物污染源(变压器油、柴油和汽油等混合源)占57.9%.健康风险评价结果表明变电站土壤中PAHs致癌风险较高,非致癌风险相对较低,被测变电站中有潜在致癌风险站点占比为11%,经口摄入和皮肤接触是致癌风险的主要暴露途径,变电站场地内PAHs的生态风险整体处于较低水平.  相似文献   

11.
京津冀地区城市空气颗粒物中多环芳烃的污染特征及来源   总被引:5,自引:0,他引:5  
在2013年4个季节,同步采集了京津冀地区3个典型城市(北京市、天津市和石家庄市)空气PM2.5和PM10样品,采用乙腈超声提取-超高压液相色谱法分析了16种多环芳烃(PAHs).结果表明,京津冀地区城市空气PM2.5和PM10中总PAHs的浓度分别为6.3~251.4ng/m3和7.0~285.5ng/m3,呈现冬季>春季>秋季>夏季的季节变化特点和石家庄>北京>天津的空间分布特点.PAHs环数分布以4、5和6环为主,比例分别为25.0%~45.1%、31.7%~40.1%、15.1%~28.2%,2和3环比例之和小于10.3%;与非采暖季相比,采暖季中4环PAHs比例显著增加,5和6环PAHs比例明显下降.PAHs比值法显示,京津冀地区城市空气颗粒物PAHs的来源呈现明显季节性变化特点,燃煤和机动车排放是2个重要的PAHs排放源,在采暖季燃煤来源的比例较大,在非采暖季以机动车排放的来源为主.  相似文献   

12.
雷州近海、流沙湾和深圳湾沉积物PAHs污染特征分析   总被引:1,自引:0,他引:1  
赵利容  孙省利  柯盛 《环境科学》2012,33(4):1198-1203
雷州近海、流沙湾和深圳湾分别代表近海开阔海域和海湾,探讨它们在PAHs浓度水平、成份组成、空间分布和来源方面的特征差异.研究表明,15种PAHs单体在雷州近海、流沙湾和深圳湾的检出率均达100%,组份构成以3环和4环为主,其中Phe、Fla、Pry和Bbf是主要成份;由于水体交换等因素影响,海湾PAHs浓度水平明显高于近海,ΣPAHs的浓度变化趋势为流沙湾>深圳湾>雷州近海.雷州近海ΣPAHs空间分布特征表现为东部<南部<西部,3环百分含量依次减少,4~6环相反;与氮、磷等水质指标研究相同,深圳湾和流沙湾ΣPAHs浓度水平养殖区>非养殖区,湾内>湾外,其中养殖区站点以4环为主,非养殖区以3环为主.PAHs特征比值显示石化燃烧和生物燃烧,以及石油源等是雷州近海、流沙湾和深圳湾PAHs的主要来源.  相似文献   

13.
为调查和研究湛江湾PAHs污染的陆源输入特征,本文分析研究了湛江湾11个陆源入海排污口(包括入海河流、人工渠和排污管道)沉积物中15种PAHs化合物的含量、空间分布及可能的排放源。结果表明,11个站位沉积物的∑PAHs含量范围为(28.1~1533.7)×10-9,区域分布特征明显;中心城区陆源输入是湛江湾PAHs污染的主要来源;PAHs的成分组成和异构体比值显示11个站位的PAHs排放源具有相似性,即主要源自煤、生物质和石化燃料燃烧,以及石油污染排放。本研究中,湛江湾陆源入海排污口PAHs来源及污染水平反映了该地区能源消耗结构特征及农业经济现状,对湛江市的发展规划、海洋环境管理和POPs污染控制具有一定的科学意义。  相似文献   

14.
Atmospheric particulate and polycyclic aromatic hydrocarbons (PAHs) size distribution were measured at Jhu-Shan (a rural site) and Sin-Gang (a town site) in central Taiwan during the rice straw burning and non-burning periods. The concentrations of total PAHs accounting for a roughly 58% (34%) increment in the concentrations of total PAHs due to rice-straw burning. Combustion-related PAHs during burning periods were 1.54–2.57 times higher than those during non-burning periods. The mass median diameter (MMD) of 0.88–1.21 m in the particulate phase suggested that rice-straw burning generated the increase in coarse particle number. Chemical mass balance (CMB) receptor model analyses showed that the primary pollution sources at the two sites were similar. However, ricestraw burning emission was specifically identified as a significant source of PAH during burning periods at the two sites. Open burning of rice straws was estimated to contribute approximately 6.3%–24.6% to total atmospheric PAHs at the two sites.  相似文献   

15.
北运河水系主要污染物通量特征研究   总被引:12,自引:3,他引:9  
通过对北运河水系的水质进行季节性监测,采用聚类分析和主成分分析法将北运河29个采样监测点分为3种不同污染类别,对各类别分别进行污染源解析,并进一步估算了年径流量和主要污染物的年负荷通量.研究结果表明:北运河水质污染严重,主要污染物为氮、磷和耗氧有机物;按污染轻重,在空间上分可划分为3种类别:轻污染区位于天津地区,主要污染源为农业非点源污染,其次来自生活废水排放和上游工业废水排放;中污染区位于北运河北京段下游区域,污染物主要来自工业废水排放,其次为生活废水排放和农业非点源污染;重污染区为北京段上游区域,污染源主要为生活污水、工业污水排放.TN、NH+4-N、COD的负荷主要来源于重污染区的情况和中污染区的凉水河,两条河流TN、NH+4-N、COD输入量分别占总负荷输入量的30.22%和27.32%,32.02%和26.27%,34.17%和21.22%.TP负荷主要来自于清河、小中河,分别占总输入量的31.00%、26.36%.北运河中超过50%的TN、NH+4-N、COD污染负荷由轻污染区-天津地区农业灌溉输出.加强对北运河支流附近污水处理的管理力度,可作为治理北运河污染问题的首要措施,同时天津地区的污水灌溉所带来的环境风险应该予以重视.  相似文献   

16.
辽河口湿地表层土壤中PAHs的源解析研究   总被引:2,自引:0,他引:2       下载免费PDF全文
分别于2008年10月,2009年5月和8月采集31个辽河口湿地表层土壤样品,利用GC-FID技术定量分析其中多环芳烃(PAH)含量.结果表明, PAHs呈现出一定的时间分布特征,10月份的PAHs平均含量为1001.9ng/g,高于5月(877.1ng/g)和8月(675.4ng/g).应用比值法识别土壤PAHs主要来源,结果显示,2008年10月主要源于燃烧源,并表现出油类、生物质和煤的燃烧为主要来源的特征;2009年5月和8月均表现出石油源和燃烧源的混合源.正定矩阵因子模型解析结果表明,燃煤、交通燃油和生物质燃烧在2008年10月的贡献率最高,分别为26%、21%和20%.石油与交通污染、石油污染和生物质燃烧是2009年5月最重要的3种污染源,贡献率依次为33%、24%和17%.2009年8月以石油污染和交通污染与生物质燃烧混合源的贡献率最高, 贡献率分别为37%和19%.  相似文献   

17.
低山丘陵区焦化厂土壤中PAHs空间分布特征   总被引:1,自引:0,他引:1  
为了解低山丘陵区焦化厂多环芳烃类污染物空间分布特征,对山西省低山丘陵区某106667m2焦化厂土壤中的16种多环芳烃浓度进行分析,分别从平面和垂向研究污染物迁移扩散规律,结果表明:首先,表层土壤的16种多环芳烃多分布于化产车间,在表层0~0.5m深度范围内土壤中污染物ΣPAHs浓度由高到低顺序为蒸氨洗苯区(991.33mg/kg) > 冷鼓脱硫区(406.50mg/kg) > 污水处理区(97.69mg/kg);为说明PAHs来源,用高低环比例法进行多环芳烃单体分类计算统计,结果显示该场地的PAHs以M202,M228和M252的组合占优势,但M178仍占一定比例,因此污染源并非单一源,而是以油料燃烧释放的生成物即焦油的跑冒滴漏为主的石油源和燃烧源的混合源;其次,PAHs在不同车间的垂向分布存在差异.其中冷鼓脱硫区污染主要集中于3.0~4.0m,蒸氨洗苯区PAHs集中于地表0~0.5m,污水处理区PAHs集中于地表及深度1.0~2.0m处,这与污染区原工程工艺以及地层结构特点密切相关.  相似文献   

18.
利用中流量大气综合采样仪采集太原市工业区和商业区PM10样品,使用GC/IRMS技术分析了PAHs的δ13C值(碳同位素组成),并根据碳同位素质量平衡计算了煤烟尘和机动车尾气对2类功能区的贡献率. 结果表明:工业区PM10中PAHs的δ13C值在-26.0‰~-24.5‰之间,随环数增加呈贫13C趋势,与煤烟尘δ13C值的变化趋势一致,表明煤烟尘是工业区的一个主要污染源;商业区PAHs的δ13C值在-26.6‰~-26.2‰之间,较工业区显著贫13C,商业区与工业区的污染源有明显差异;除机动车尾气和煤烟尘外,工业区和商业区还有其他污染源输入,其中工业区有生物质燃烧排放输入,商业区有机动车曲轴箱润滑油残渣输入;煤烟尘和生物质燃烧对工业区的贡献率分别为59.3%~70.8%和29.2%~40.7%,表明工业区煤烟污染严重;机动车对商业区PAHs的贡献率在86.1%~95.8%之间,是商业区PM10中PAHs的主要排放源,其中润滑油残渣的贡献率(在40.9%~85.3%之间)最大,机动车尾气的贡献率在8.3%~54.9%范围内,而煤烟尘的贡献率(在4.2%~13.9%之间)最小.   相似文献   

19.
通过2008年采集西安不同功能区表层土壤样品,运用GC/MS质谱联用仪对美国EPA优控的16种多环芳烃(PAHs)进行定性、定量分析,来探讨西安表层土壤种多环芳烃的污染特征及其来源。结果表明,16种PAHs均被检出,西安表土中ΣPAHs浓度范围为125~9 057 ng/g,平均值为2 727 ng/g,主要以4~6环PAHs为主,共占总量的69%。PAHs的空间分布规律为:工业区>文教区>绿化区>郊区>农村。应用特征比值判断法可知,西安表土中PAHs主要是煤的不完全燃烧和机动车尾气排放所产生的混合源污染。借鉴国外土壤污染标准可知西安城区表土污染较为严重。  相似文献   

20.
天津表层土壤中多环芳烃的主要来源   总被引:25,自引:7,他引:18  
用主成分分析和多元线性回归分析方法研究了天津3个不同空间区域表土中PAHs的来源及其相对贡献.结果表明:燃煤和炼焦是各区最重要的PAHs释放源.塘沽汉沽高值区尤其如此,其燃煤和炼焦二者合计占总排放贡献的79%,交通源仅占21%.市中心及近郊区交通来源上升到与燃煤来源相当的水平(约各占35%),此外,焚烧产生的PAHs也占很高比例(21%).农村低值区则呈现出更多多源特点;秸秆燃烧是本区独有的,约占总贡献的11%.根据源解析得到的结果与根据燃料用量和排放因子计算的排放结果有一定可比性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号