首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
东部沿海地区是我国多环芳烃排放量最高的地区之一,了解我国东部沿海农村地区大气多环芳烃(PAHs)污染特征和健康风险是大气污染控制的重要基础之一.在本研究中,对青岛农村地区进行了春、夏、秋、冬季的大气PM2.5样品采集,并对其18种PAHs的季节变化、分子组成和与气象要素关系进行了分析,利用总致癌当量毒性(∑TEQ)模型对PAHs进行了健康风险评估.PM2.5浓度季节变化趋势与PAHs浓度季节变化趋势具有一致性,变化趋势为:冬季>秋季>春季>夏季,PM2.5年均浓度为(33.91 ± 28.96) μg·m-3,PAHs年均浓度为(11.66 ± 20.00) ng·m-3.PAHs(除BkF外)与相应期间内的PM2.5、PM10、SO2、NO2、CO和气压呈正相关性(p<0.01),但是与O3、气温呈负相关性(p<0.01).通过诊断比率计算,表明煤燃烧和机动车排放是农村地区PAHs的重要来源.冬季大气PM2.5中PAHs的总致癌当量毒性(∑TEQ)超过WHO限值(TEQ 1 ng·m-3),对人类具有明显危害,应对沿海农村地区冬季PAHs的污染给予重视.  相似文献   

2.
多环芳烃及其衍生物在北京纳污河流中的分布及健康风险   总被引:2,自引:1,他引:1  
付璐婧  李一兵  乔梦  赵旭 《环境科学》2019,40(1):256-262
为探明北京5座污水处理厂出水及受纳河流中多环芳烃(PAHs)及其衍生物(SPAHs)的污染水平及健康风险水平,采用固相萃取-气相色谱质谱联用仪测定水样中的PAHs及SPAHs的质量浓度,分析其分布特征,同时使用毒性当量因子评价河流中PAHs的健康风险.结果表明,5座污水处理厂出水及受纳河流中PAHs及SPAHs总质量浓度分别为75~584 ng·L~(-1)和91~1822 ng·L~(-1).水样中PAHs以2和3环为主,占PAHs总量的23%~48%.本研究中的SPAHs包括三类物质:氧化PAHs(OPAHs)、甲基PAHs (MPAHs)和氯代PAHs (Cl PAHs).其中,OPAHs占ΣSPAHs的质量分数为75%,MPAHs、Cl PAHs占比总体较低,分别为12%、13%.通过对5条河流中PAHs进行毒性当量浓度计算,表明应在采暖季(12月)对高环PAHs污染引起重视.  相似文献   

3.
大气中的多环芳烃(PAHs)及其衍生物是影响环境和威胁人类健康的全球性问题.为了研究淄博市PM2.5中PAHs及其衍生物的污染特征、来源和健康风险,于2020年11月5日至12月26日期间采集PM2.5样品,使用气相色谱-质谱联用仪(GC-MS)分析PM2.5中的16种常规PAHs、9种NPAHs和5种OPAHs的浓度,利用特征比值法和PMF模型对其主要来源进行解析,并使用基于源解析结果的终生致癌风险模型(ILCR)评估了供暖前后PAHs及其衍生物对成年男女的健康风险.结果表明,采样期间淄博市PM2.5中∑16pPAHs、∑9NPAHs和∑5OPAHs浓度均值分别为:(41.61 ± 13.40)、(6.38 ± 5.70)和(53.20 ± 53.47)ng·m-3,供暖后3类PAHs浓度明显增加,分别为供暖前的1.31、2.04和5.24倍.采样期间䓛(Chr)、苯并[a]芘(BaP)和苯并[a]蒽(BaA)为pPAHs的优势组分,9-硝基蒽(9N-Ant)和2-硝基荧蒽+3-硝基荧蒽(2N-Flt+3N-Flt)为NPAHs的优势组分,蒽醌(ATQ)和苯并蒽酮(BZO)为OPAHs的优势组分.煤和生物质燃烧混合源以及二次生成是采暖后PM2.5中PAHs及其衍生物增长的主要来源.采样期间BaP毒性当量浓度(TEQ)为14.5 ng·m-3,供暖后TEQ明显增加,约为供暖前的1.2倍.淄博市PM2.5中PAHs及其衍生物对成年男性(1.06 × 10-5)和女性(9.32 × 10-6)均存在一定的潜在致癌风险.其中,汽油车、柴油车和煤炭/生物质排放的PAHs造成的健康风险更高.  相似文献   

4.
多环芳烃(PAHs)是一类重要的持久性有毒有机污染物,而其衍生物SPAHs的毒性更高.通过对青岛市城阳污水处理厂采样,分析在其SBR/MBBR工艺中16种PAHs及硝基PAHs(NPAHs),甲基PAHs(MPAHs)以及氧基PAHs(OPAHs)的分布与去除.结果表明,16种PAHs及13种SPAHs均有检出,进水中,PAHs与SPAHs的总质量浓度分别为3 835. 14 ng·L~(-1)与6 889. 46 ng·L~(-1),其浓度远远高于其他地区的污水处理厂.在出水中,PAHs与SPAHs的总质量浓度为1 148. 18 ng·L~(-1)与1 724. 57 ng·L~(-1),去除率分别为70. 06%与74. 97%,可见SBR/MBBR工艺能有效去除PAHs与SPAHs.水相中PAHs的去除主要是针对低环多环芳烃(LMW-PAHs)的生物降解;而颗粒相中PAHs的去除主要依靠初沉池对LMW-PAHs的吸附沉淀以及生物单元对高环多环芳烃(HMW-PAHs)的生物吸附.对于SPAHs,MPAHs去除效果最好,去除率达89. 15%,颗粒吸附以及生物降解是其主要的去除机制;其次是OPAHs,去除率为63. 36%,在水相中主要依靠一级处理的颗粒吸附去除,在颗粒相中则主要在二级处理的生物吸附去除; NPAHs的去除率为48. 85%,主要在生物池中去除. SPAHs在SBR/MBBR工艺中的去除机制不尽相同,污水处理厂应根据不同处理工段PAHs与SPAHs的分布特征采取相应控制措施,而污泥中富集的PAHs与SPAHs远高于出水的排放量,因此,还应加强污泥中PAHs与SPAHs的管理.  相似文献   

5.
北京东南郊大气TSP中多环芳烃浓度特征与影响因素   总被引:10,自引:2,他引:8  
对2005-03~2006-01北京市东南郊3个采样点大气总悬浮颗粒物(TSP)样品进行分析,总结了研究区内TSP以及TSP中16种PAHs的浓度特征和季节变化规律.研究区内16种PAHs浓度总和的范围在0.29~1?184.48 ng/m3之间,均值为239.44 ng/m3;分别用气象参数(温度、风速、气压、相对湿度)和大气API指数(二氧化硫、二氧化氮、PM10)与PAHs浓度进行了偏相关分析,结果表明温度和SO2的API指数与PAHs浓度相关显著,应用逐步回归方法得到PAHs对气象参数和大气API指数的回归方程,分别为∑16PAHs=572.56-23.18t和∑16PAHs=5.99 SO2,可以利用温度和SO2的API指数对PAHs浓度进行估算.  相似文献   

6.
为研究嘉兴市城市河网区水体中多环芳烃的污染水平和来源并进行生态风险评价,采用气相色谱-质谱法(GC-MS)对环境优控多环芳烃(PAHs)进行分析检测.结果表明,枯水期和丰水期分别检测出10种和16种优控PAHs,质量浓度范围分别为77.32~283.76ng ·L-1和13.05~133.02ng ·L-1,平均质量浓度分别为143.83ng ·L-1和73.47ng ·L-1;枯水期低环(2环和3环)占比79.18%,丰水期低环占比73.60%;嘉兴市河网区水体多环芳烃污染情况与国内外其他地区相比处于较低水平;采用同分异构比值法和主成分分析法进行污染来源分析,结果表明嘉兴市枯水期和丰水期河网水体中多环芳烃污染主要来源为城市面源污染、燃烧源以及交通污染源;Kalf风险熵值法评价结果表明,枯水期:萘(Nap)、苊烯(Acy)、二氢苊(Ace)、芴(Flu)、菲(Phe)、蒽(Ant)、荧蒽(Fla)、芘(Pyr)和苯并[a]蒽(BaA)以及∑PAHs为中等生态风险水平,丰水期:萘(Nap)、苊烯(Acy)、芴(Flu)、菲(Phe)、荧蒽(Fla)、芘(Pyr)、苯并[a]蒽(BaA)、苯并[b]荧蒽(BbF)、苯并[k]荧蒽(BkF)、苯并[a]芘(BaP)、茚苯[1,2,3-cd]芘(InP)和苯并[ghi]苝(BghiP)属于中等生态风险水平,∑PAHs为低生态风险水平;总体而言,嘉兴市河网水体中PAHs生态风险呈中等水平,有关部门需采取措施降低河网水体中PAHs的生态风险.  相似文献   

7.
北京海淀区夏季交警对多环芳烃的暴露   总被引:2,自引:1,他引:1  
用个人采样装置测定了北京海淀区交警夏季多环芳烃(PAHs)暴露.以16种PAHs之和计,气态和颗粒物吸附态的平均暴露浓度分别为(1 520±759)ng/m3和(148±118)ng/m3,显著高于定点对照测定结果[气态(588±228)ng/m3,颗粒物吸附态(52±50)ng/m3].交警和对照点具有致癌作用的高环化合物总暴露浓度分别是(14.9±5.9)ng/m3和(6.7±3.6)ng/m3,主要来自颗粒物吸附态暴露.暴露量具有显著的日波动特征,主要受温度和湿度影响.气态浓度与湿度正相关,与温度负相关,颗粒物吸附态浓度则与温度和湿度看不到显著相关关系.  相似文献   

8.
辽东湾大气中多环芳烃的含量组成及气粒分配   总被引:3,自引:3,他引:0  
2016年5月和8月对辽东湾大气环境中气相和颗粒相样品进行了走航和定点采集,并对24种PAHs在气相和颗粒相中的含量和组成进行探讨,对15种PAHs的气粒分配过程进行了分析.结果表明:5月和8月辽东湾大气气相和颗粒相中∑24PAHs总平均含量分别为28.8 ng·m-3和24.0 ng·m-3,气相中∑24PAHs含量5月小于8月,颗粒态∑24PAHs含量5月大于8月,低分子量PAHs主要分布在气相中,高分子量PAHs组分主要分布在颗粒相,中等分子量PAHs的气粒分配更容易受到气温等环境条件影响;气粒分配系数Kp随着PAHs分子量增加而增加;lgKp-lgPL模型和lgKp-lgKOA模型的斜率m分别为-0.35和0.37,偏离平衡态m为-1或+1,辽东湾气粒分配未达到平衡;假设达到平衡态时的lgKp-lgKOA模型、lgKp-lgPL模型和碳黑-空气模型均表明,5环PAHs的模型预测结果与实际测定结果之间的吻合程度较好,15种PAHs的碳黑-空气模型能够更好地接近野外实际测定值,低分子量和中等分子量PAHs的气粒分配受到碳黑影响较大.  相似文献   

9.
利用大流量颗粒物采样器分昼夜采集了2007年春节前后大气气溶胶中PM10和PM2.5样品,并采用气相色谱-质谱技术对PM2.5样品中的多环芳烃进行了检测.春节期间大气颗粒物中PM10和PM2.5夜间平均质量浓度为232 μg·m-3和132 μg·m-3,分别高于白天的PM10(194 μg·m-3)和PM2.5(107 μg·m-3);除夕后颗粒物日平均质量浓度为252.3 μg·m-3 (PM10)和123.8 μg·m-3 (PM2.5),分别高于除夕前的166.7 μg·m-3(PM10)和106.8 μg·m-3(PM2.5);同时夜间PM2.5中多17种多环芳烃(PAHs)的总浓度都高于相应白天的总浓度,且除夕前多环芳烃日均总浓度为95.9 ng·m-3,高于除夕后的58.9 ng·m-3.结果表明,除了受一定的气象条件的影响外,大量燃放烟花爆竹会对大气颗粒物浓度有影响,但对大气中的多环芳烃影响不大,而春节期间工业及交通污染排放的减少削减了排放到大气中的PAHs.根据荧蒽/芘等比值指标判别北京PAHs主要以燃煤为主、交通为次的混合局地源污染.  相似文献   

10.
大气是挥发性和半挥发性污染物迁移扩散的重要介质,也是污染物进入人体的主要途径,因此,大气中污染物的环境行为的研究具有重要的意义.本研究通过采集雪样和降雪后连续24 h内的大气样品,对16种多环芳烃(PAHs)进行了分析,对降雪后大气中PAHs的变化规律进行了深入研究.结果表明,16种PAHs在降雪中的检出率为100%,菲的浓度最高(538.3 ng·L-1),其次是萘(509.1 ng·L-1)和荧蒽(429.9 ng·L-1),说明降雪能够对大气中的PAHs进行去除.降雪后大气中PAHs的浓度呈现下降-上升-下降的变化规律,高浓度出现在汽车尾气排放量最大的上下班期间,低浓度则出现在人类活动少的时间段,说明人类活动是大气中PAHs浓度变化的主要影响因素.降雪后24 h内大气中PAHs在气相和颗粒相间的比值变化较小,其组成主要受PAHs的物理化学性质的影响.特征分子比值法表明,降雪后24 h内大气中PAHs主要来源于固体燃料燃烧源和液体燃料的燃烧源.  相似文献   

11.
乔梦  齐维晓  赵旭  刘会娟  曲久辉 《环境科学》2016,37(4):1451-1459
多环芳烃衍生物(SPAH)除可以通过燃料不完全燃烧直接排放到环境中,也可通过光化学或微生物作用由母体多环芳烃(PAH)转化生成.部分SPAH毒性强于其相应母体PAH.通过采集北京地区污水处理厂进出水样品,分析氧化PAH(OPAH)、甲基PAH(MPAH)、硝基PAH(NPAH)三类SPAH和16种PAH的质量浓度,研究此类目标物在污水生物处理过程中的存在和行为.结果表明,MPAH、OPAH和PAH存在于污水处理厂进出水中,但NPAH未检出.进水水相和颗粒相中总质量浓度PAH为1.94~4.34μg·L~(-1),SPAH为1.16~2.20μg·L~(-1),出水水相和颗粒相中总质量浓度PAH为0.77~0.98μg·L~(-1)和0.39~0.45μg·L~(-1).MPAH的质量浓度一般低于其相应母体PAH,而OPAH质量浓度一般高于其相应母体PAH.目标物在污水处理厂中的去除率为53%~83%.活性污泥法对于PAH和SPAH类物质的去除途径主要为吸附及生物降解,部分OPAH可能在污水生物处理过程中由母体PAH转化生成,并有积累.PAH主要来源于木柴和煤的不完全燃烧,部分来自于石油燃烧,只有小部分来源于石油排放.秋季进出水中PAH和SPAH质量浓度高于冬季高于夏季.大部分SPAH和PAH随河水灌溉排入天津农田区,可能会对人体健康造成潜在危害.因此,需要通过对污水处理厂处理工艺的升级改造以提升对PAH和SPAH类物质去除效果.  相似文献   

12.
PAHs降解菌的分离、鉴定及降解能力测定   总被引:20,自引:1,他引:20  
以芴、菲、蒽、芘为碳源和能源筛选、分离PAHs降解菌。14株能降解利用PAHs的菌株被分离。通过HPLC分析,在含芴、菲、蒽、芘的混合培养基质中10号菌的降解能力最强。研究它的降解性能和生长情况,表明该菌在混合反应体系中培养30d后对芴、菲、蒽、芘的降解率分别为95.27、90.46、28和80%;在只含一种PAH的单反应体系中该菌对芴、菲、蒽的降解能力提高,降解率分别可达98.91、94.32和52.17%,而对芘的降解能力则降低,降解率仅为62.47%。与混合PAHs培养体系相比,在单一PAH培养体系中,细菌的对数生长期缩短1/3。经生理生化鉴定和16SrDNA序列对比分析,确定10号菌株属于假单胞菌,命名为PseudomonasspFAP10。  相似文献   

13.
沉积物中多环芳烃和有机氯农药赋存状态   总被引:20,自引:3,他引:17       下载免费PDF全文
对珠江广州河段高污染沉积物进行粒度分级,对不同粒径的样品重液分离,收集轻组分(有机质)和重组分(主要为无机矿物及无定型有机质).用显微镜对沉积物中不同粒径轻重组分的吸附剂进行鉴定,测定其中的多环芳烃(PAHs)和有机氯农药(OCPs).结果表明,沉积物样品中有机质占总重量9.1%,富集了81.5%的多环芳烃,77.2%的有机氯农药;无机矿物和无定型有机质占90.9%,富集了18.5%的多环芳烃,22.8%的有机氯农药;轻组分中的有机吸附剂对PAHs和OCPs的富集能力比重组分无机矿物和无定型有机质高1~2个数量级.  相似文献   

14.
蒽降解菌与铜绿假单胞菌融合子的特性研究   总被引:3,自引:1,他引:3  
将蒽降解菌An815和绿色荧光蛋白标记铜绿假单胞菌(Pseudomonas aeruginosa/EGFP)P原生质体融合,得到了既能高效降解蒽,又能产生生物表面活性剂的融合子F。研究了它的形态特征、生理生化特性、产表面活性剂的能力、对蒽的降解性能及生长繁殖情况。结果表明,融合子菌落和菌体形态,产脓青素,荧光色素的特性类似于铜绿假单胞菌亲本,但其大多生理生化特性酷似An815亲本而不同于铜绿假单胞菌亲本;融合子有较好产表面活性剂的能力,72 h内将表面张力由70.2 mN/m降至36.5mN/m;在蒽的反应体系中,32h内融合子和亲本An815对蒽的降解转化率分别为86.7%,59.4%,融合子对蒽的降解速率比An815提高了27.3%;在蒽的反应体系中融合子和亲本生长曲线相似。  相似文献   

15.
南京大气中多环芳烃的相分布   总被引:3,自引:0,他引:3  
采用玻璃纤维滤膜(GF)和聚氨基甲酸乙酯泡膜(PUF)同时采集南京大气中颗粒态和气态上的多环芳烃(PAHs),用气质联用仪分析了16种优先控制的PAHs,研究了PAHs在南京大气中的相分布,研究结果表明,颗粒态和气态样品中16种PAHs的平均浓度值分别为20.49ng/m3和182.45ng/m3,2~3环的PAHs主要分布在气态中,而>4环的PAHs主要分布在颗粒态中。  相似文献   

16.
为了研究空气低质量数多环芳烃污染对儿童内暴露负荷的影响,选取华南地区某石化企业为污染区,上风向15km处为对照区,在污染区和对照区各自选取一所小学中的80名儿童为内暴露采样对象,连续采集3d的尿样.研究石化企业多环芳烃污染对儿童内暴露负荷的影响以及多环芳烃内暴露的时间变异性.结果表明:3d中,污染区儿童羟基多环芳烃(OHPAHs)浓度的几何平均值为0.06~5.09μg/g;对照区儿童OHPAHs浓度几何均值为0.04~4.00μg/g.污染区儿童OHPAHs浓度略高于对照区,并且存在显著影响(P<0.05);除对照区2d以外,污染区与对照区儿童尿液中OHPAHs组成特征均表现出羟基萘 > 羟基菲 > 羟基芴 > 羟基芘的规律;OHPAHs之间的相关性分析表明,只有污染区3d的OHPAHs之间存在显著相关(P<0.01,R2=0.74~0.97),污染区OHPAHs之间的相关性好于对照区;仅在污染区3d的1-羟基芘与其它OHPAHs单体之间均为显著性相关(P<0.01,R2=0.82~0.95).  相似文献   

17.
多环芳烃的微生物降解与生物修复   总被引:63,自引:5,他引:63  
生物修复在治理多环芳烃污染环境中的作用日益突出,其应用越来越受到重视。文中概述了生物修复技术发展的基础-多环芳烃微生物降解,论述了降解微生物分离、驯化、咱类、降解机制等,探讨了提高多环芳烃降解速率的途径及其存在的一些问题,并对今后的发展进行了展望。  相似文献   

18.
多环芳烃对海洋硅藻中肋骨条藻的光毒性效应   总被引:4,自引:0,他引:4  
许多生态毒理学研究尤其是对水生生物的毒性研究表明,阳光中的紫外辐射(UV)能够促进多环芳烃的生物毒性. 以长江口浮游植物群落中的常年主要优势种之一——中肋骨条藻(Skeletonema costatum)为实验材料,选择2个环的萘,3个环的菲和蒽,4个环的荧蒽和芘5种寡环多环芳烃,在实验室内比较了它们在没有UV辐射和有UV辐射下对中肋骨条藻的毒性效应. 结果表明:在没有UV照射下,萘、菲、蒽、荧蒽和芘对中肋骨条藻的72 h EC50值分别比有UV照射下时高约1.9,8.4,13.0,6.5和5.7倍,其中蒽相差的倍数最大.在没有UV照射情况下,5种多环芳烃对中肋骨条藻种群生长的抑制作用强度表现为荧蒽>芘>蒽>菲>萘;而当系统中加入UV照射后,毒性强度变为荧蒽≈蒽>芘>菲>萘,表明UV照射不仅能够促进多环芳烃对中肋骨条藻的毒性,也能够改变它们对中肋骨条藻的相对毒性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号