首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
反硝化和厌氧氨氧化是湖泊的重要脱氮过程,对维持湖泊氮素平衡具有重要意义.为了解大型富营养化浅水湖泊——太湖反硝化和厌氧氨氧化速率的时空变化及其影响因素,于2020年春季和夏季选择太湖的梅梁湾、贡湖湾、竺山湾、大浦口、胥口湾和湖心区采集无扰动泥柱,利用15N同位素示踪技术,在恒温水浴条件下开展反硝化和厌氧氨氧化流动培养实验.结果表明,春季太湖不同湖区反硝化和厌氧氨氧化速率的空间分布差异较大,反硝化速率为(27.74±8.45)~(142.43±35.54)μmol·(m2·h)-1,厌氧氨氧化速率为(2.35±1.06)~(17.95±8.66)μmol·(m2·h)-1,厌氧氨氧化对脱氮的贡献率相对较低,为(7.82±1.71)%~(11.20±1.53)%.夏季竺山湾脱氮速率最高,反硝化和厌氧氨氧化速率分别高达(165.68±62.14)μmol·(m2·h)-1和(33.56±10.66)μmol·(m2·h)-1,厌氧氨氧化对脱氮贡献率达到了(16.85±1.78)%,其他湖区的脱氮速率相对较低,且没有十分显著的空间差异,反硝化和厌氧氨氧化速率分别为(25.47±10.46)~(42.50±16.46)和(2.65±0.94)~(5.95±2.65)μmol·(m2·h)-1,厌氧氨氧化对脱氮的贡献率为(13.62±1.95)%~(7.24±1.78)%.总体来说,夏季反硝化速率要普遍低于春季,而厌氧氨氧化速率相对于春季并无明显下降.统计分析表明,反硝化和厌氧氨氧化速率与底物氮浓度呈显著的相关性(P<0.01),说明氮浓度是不同湖区脱氮速率差异的主要控制因素.此外,厌氧氨氧化对脱氮的贡献率与叶绿素a的浓度呈现显著的正相关性(P<0.05),说明蓝藻水华对厌氧氨氧化脱氮贡献率的变化有很大的影响,具体的影响机制还有待进一步研究.  相似文献   

2.
采用改良A2/O-BAF双污泥系统处理低C/N比生活污水,为提高碳源利用率,研究了两段进水(预缺氧段和缺氧段)对反硝化除磷脱氮的影响,同时根据COD的物料衡算公式,分析评价了不同进水比下,碳源的利用情况.结果表明当分段进水比为7:3时,平均进水COD、NH4+-N、TN、TP浓度分别为174.99、58.19、59.10、5.15 mg·L-1,出水COD、NH4+-N、TN、TP浓度分别为29.48、4.07、14.10、0.44 mg·L-1,去除率分别为82.12%、92.76%、75.45%、91.20%;系统中反硝化聚磷菌占聚磷菌的比例(DPAOs/PAOs)为98.81%,此时系统反硝化除磷脱氮最佳,同时碳源的有效利用率达85.77%,平衡百分比为92.33%.通过优化分段进水,碳源被有效利用,提高了同步脱氮除磷效率,为改良A2/O-BAF双污泥系统处理低C/N比污水提供理论依据.  相似文献   

3.
杨娅男  李彦澄  李江  吴攀  杨钊  向福亮 《环境科学》2020,41(4):1787-1793
好氧甲烷耦合反硝化(AME-D)在城镇污水厂尾水深度脱氮方面具有巨大的应用潜力,研究采用改良型反硝化生物滤池,利用低浓度甲烷构建出AME-D极限脱氮系统.研究发现该系统在间歇式运行方式下,出水中总氮和氨氮的平均浓度能达到1.05 mg·L-1和0.54 mg·L-1,其平均去除率分别为94.77%和93.30%.拉曼光谱分析结果显示,由NO3-对称伸缩引起的峰明显消失,由醇COH面外弯曲或C—H面外弯曲振动吸收引起峰明显增强,甲烷被氧化形成的中间产物可能主要为醇类物质.16S rRNA基因测序结果表明,系统中的甲烷氧化菌主要为Methylocystis(0.27%)、Methylosarcina(0.10%)和Methyloparacoccus(0.12%),反硝化菌主要为Pseudomonas(56.92%)、Paenibacillus(3.52%)和Lysinibacillus(3.00%),硝化菌主要为Nitrospira(0.1%),说明AME-D极限脱氮系统的脱氮功能是由好氧甲烷氧化菌、反硝化菌和硝化菌协同实现.  相似文献   

4.
污泥龄及pH值对反硝化除磷工艺效能的影响   总被引:2,自引:1,他引:1  
以SBR成功富集后的反硝化聚磷菌(DPBs)为研究对象,分别考察了污泥龄(SRT,35、25、15 d)及pH值(7.5、8.0、8.5)对反硝化除磷过程的影响.结果表明,SRT从35d缩短至25d,使活性污泥浓度(MLVSS)从2821 mg·L-1降低为2301 mg·L-1,而污泥负荷(F/M,以COD/MLVSS计)从0.256kg·(kg·d)-1增加至0.312 kg·(kg·d)-1,虽然净释磷量及净吸磷量有所下降,但是由于污泥活性的增加,此阶段厌氧释磷、缺氧吸磷及比反硝化速率均达到最高,分别为25.07、15.92及9.45 mg·(g·h)-1,污泥含磷率从4.78%升为5.33%,出水PO43--P浓度保持在0.5 mg·L-1以下,即PO43--P去除率稳定在95%以上;当SRT进一步缩短为15d时,MLVSS低至1448 mg·L-1,污泥中DPBs占聚磷菌(PAOs)的比例从82.4%骤降为65.7%,表明过短的SRT使得DPBs逐渐从系统中流失,此阶段污泥含磷率降至3.43%,释磷、吸磷及比反硝化速率亦出现不同程度的降低.随着pH值的升高(7.5~8.0),厌氧释磷及缺氧吸磷速率也升高,pH值为8.0时分别达到25.86mg·(g·h)-1和16.62 mg·(g·h)-1;当pH超过8.0后,除磷效率快速下降,推测为磷化学沉淀导致.  相似文献   

5.
采用SBR-ASBR组合工艺处理实际生活污水,SBR中考察缺氧/好氧时间比及温度对部分亚硝化(partial nitritation,PN)的作用,ASBR中研究COD/NO2--N(C/N)对厌氧氨氧化(anaerobic ammonium oxidation,ANAMMOX)协同反硝化脱氮除碳的影响.①控制温度为25℃,在缺氧/好氧时间比为30 min:30 min,单周期交替3次时,NO2--N积累率(NiAR)于第22 d为98.06%,比亚硝态氮产生速率(SNiPR,以N/VSS计)为0.28g·(g·d)-1,同步硝化反硝化去除的TN和COD分别为12.29 mg·L-1和110.36mg·L-1.②在缺氧/好氧时间比为30 min:30 min下,温度为15℃时,丝状菌大量繁殖,污泥活性和沉降性变差;温度为30℃时,NH4+-N转化为NO2--N比例为86.83%,造成出水NH4+-N浓度过低,不能为厌氧氨氧化提供合适基质浓度;温度为25℃时,出水NH4+-N和NO2--N浓度分别为31.58 mg·L-1和35.04mg·L-1,匹配厌氧氨氧化基质比.③组合工艺脱氮性能良好,出水TN、NH4+-N和COD浓度分别稳定在13.13、4.83和69.96mg·L-1,去除率分别为83.10%、93.64%和75.11%.调节ASBR进水C/N为2.5、2.0和1.5时,C/N为2.0时厌氧氨氧化协同反硝化脱氮除碳性能最佳,出水NH4+-N、NO2--N、NO3--N和COD分别为0.09、0.25、1.04和32.73mg·L-1.  相似文献   

6.
为探究不同初始浓度诺氟沙星对地下水反硝化过程中NO3--N和NO2--N降解的影响,选取以乙酸钠为电子供体,硝酸盐为电子受体驯化的反硝化细菌进行厌氧反硝化批实验研究,从反硝化细菌生长特性和反硝化酶活性等方面揭示诺氟沙星对反硝化过程的影响机制.结果表明,浓度为10 μg·L-1和100 μg·L-1的诺氟沙星对反硝化细菌的生长及NO3--N降解均有抑制作用,100 μg·L-1诺氟沙星对NO3--N降解的抑制程度更大,抑制率为77.3%;且100 μg·L-1诺氟沙星减少了NO2--N积累,最大积累量降低了67.9%.诺氟沙星初始浓度大于10 μg·L-1时抑制了硝酸盐还原酶活性,在此过程中,亚硝酸盐还原酶活性在一定程度上有所增强.反硝化酶活性与NO3--N及NO2--N降解规律相符.因此,诺氟沙星对反硝化酶活性的控制作用是其影响反硝化过程的主要原因.  相似文献   

7.
异养硝化细菌Pseudomonas putida YH的脱氮特性及降解动力学   总被引:2,自引:0,他引:2  
汪旭晖  杨垒  任勇翔  陈宁  肖倩  崔坤  郦丹 《环境科学》2019,40(4):1892-1899
针对传统污水处理过程脱氮处理效率低、工艺流程复杂、抗高氨氮冲击负荷能力弱等问题,以具有高效脱氮能力的异养硝化细菌Pseudomonas putida YH为研究对象,开展其生理生化特性、脱氮性能、影响因子及动力学分析.结果表明,菌株YH具有高效的异养硝化能力,氨氮最大去除率达99.1%,约53%的去除总氮转化为胞内氮,反应过程仅有少量的硝化中间产物积累;菌株YH还能够在好氧条件利用亚硝酸盐和硝酸盐进行生长代谢,最大去除率分别为99.8%和99.5%.同时,结合反硝化功能基因napAnirK的PCR成功扩增,进一步证明菌株YH具有好氧反硝化特性;菌株YH生长特性与Logistic模型相匹配(R2>0.99),氮素降解过程则符合Compertz模型(R2>0.99),拟合所得氮素最大转化速率Rm为氨氮 > 硝氮 > 亚硝氮,迟滞时间t0为硝氮 > 亚硝氮 > 氨氮;异养硝化最佳的条件是碳源为琥珀酸钠、C/N=10、T=30℃、r为160~200 r·min-1以及pH=7,最优条件下平均氨氧化速率和Rm分别为8.35 mg·(L·h)-1和16.71 mg·(L·h)-1;菌株YH能够适应较宽范围的氨氮负荷,在高氨氮浓度下(1000 mg·L-1)仍具有较高的异养硝化能力,体现了菌株YH具有处理高氨氮废水的潜能.  相似文献   

8.
人工湿地在处理低C/N污水时存在碳源缺乏而严重限制反硝化进行的问题.为了补充反硝化需要的碳源,选择了玉米芯和稻草秸秆作为外加碳源引入湿地系统,对比两种碳源对湿地脱氮的强化效果.结果表明,通过11 d的纯水浸提释放实验发现,碳素累积释放量:稻草秸秆[(145.17±9.44) mg·g-1]>玉米芯[(57.41±5.04) mg·g-1];氮素累积释放量:稻草秸秆[(2.31±0.09) mg·g-1]>玉米芯[(0.66±0.08) mg·g-1].在观测的时间内,玉米芯和稻草秸秆累积释放碳氮比平均值分别为94.78和63.64.相比于稻草秸秆,玉米芯更适合作为外加碳源.在为期58 d的潜流人工湿地实验中,发现除了第8~12 d,添加玉米芯和稻草秸秆人工湿地出水中ρ(COD)超过50 mg·L-1外,其它时间都低于50 mg·L-1.在观测期间,添加玉米芯人工湿地的NO3--N去除率为93%~99%,具有良好的反硝化性能.而添加稻草秸秆人工湿地在运行后期NO3--N去除率最低只有76.8%,反硝化速率明显下降.对照组NO3--N去除率只有76.2%~77.7%,出现了明显碳源不足的现象.碳源不足还造成了NO2--N的蓄积.添加稻草秸秆和对照组人工湿地中NO2--N的出水质量浓度分别是玉米芯人工湿地的2.5~6倍和6~26倍.与添加稻草秸秆比,添加玉米芯可以使人工湿地中NO2--N出水质量浓度得到更显著地降低(P<0.05).玉米芯、稻草秸秆和对照组人工湿地TN去除率分别为83.75%~93.49%、76.59%~78.85%和67.85%~72.56%,三者之间存在显著性差异(P<0.01).最后,通过对玉米芯进行了稀碱加热预处理,使玉米芯的碳素累积释放量提高到(93.73±17.49) mg·g-1,累积释放的碳氮比提高至175.8,进一步提高了玉米芯的释碳性能,表现为更合适的外加碳源.  相似文献   

9.
基于硫自养反硝化作用,寻求一种经济、快速、高效地污水脱氮工艺,采用硫磺/硫铁矿组合进行自养反硝化脱氮试验,以低C/N市政污水为处理对象,分别考察温度,硫磺与硫铁矿体积比和HRT等理化因素对反应器脱氮性能的影响.结果表明,在进水TN质量浓度约40 mg·L-1条件下,1号反应器最佳HRT为2.5 h,TN去除率平均稳定在72.2%,出水TN约10.55 mg·L-1;2号反应器最佳HRT为3.5 h,TN平均去除率约67.8%,出水TN平均稳定至12.90 mg·L-1;3号反应器最佳HRT为3.5 h,TN平均去除率60.6%,出水TN稳定在15.00 mg·L-1左右.硫磺/硫铁矿自养反硝化系统比硫铁矿自养反硝化系统启动快;该系统脱氮效率随着硫磺与硫铁矿体积比减小而降低;该系统脱氮性能对温度的变化并不敏感,脱氮性能优于单独以硫铁矿为硫源的自养反硝化系统;系统中硫自养反硝化过程的主要功能菌属是SulfurimonasThiobacillus,在3个反应器所占比例为1号 > 2号 > 3号.  相似文献   

10.
微藻膜反应器处理海水养殖废水性能及膜污染特性   总被引:2,自引:2,他引:0  
马航  李之鹏  柳峰  徐仲  尤宏  王芳  陈其伟 《环境科学》2019,40(4):1865-1870
以海水养殖废水为研究对象,探究了微藻膜反应器的脱氮除磷效能及膜污染特性.采用青岛大扁藻(Platymonas helgolandica tsingtaoensis)作为生物源,经过60 d的运行,微藻膜反应器的TN和TP去除率分别为73.6%和77.9%,TN和TP去除速率达到15g·(m3·d)-1和2.8g·(m3·d)-1.反应器中的微藻能够较快富集,最大生长速率可达53.3mg·(L·d)-1,最大生物量可达1.4 g·L-1.第18d和38d分别对反应器中的微藻进行采收,未影响反应器的脱氮除磷效能,且可以在一定程度上缓解膜污染现象.微藻生物量的增加会显著提高膜污染物质的含量,三维荧光光谱结果表明,色氨酸类蛋白质和芳香类蛋白质是造成膜污染的重要因素.  相似文献   

11.
张雯  尹琳  周念清 《环境科学》2018,39(9):4150-4160
地下水流速及物质间反应均处于缓慢状态,因此向地下水环境中投加的修复材料应具有缓释性.本研究针对浅层地下水特性及氮赋存特征,以农业废弃物和零价铁(Fe0)为基料,耦合生物、化学反应,开展具有物化-生境协同作用的缓释碳源材料的研发和性能研究.所研发材料具有内核和外壳双层结构.内核为修复基质层,由农业废弃物与Fe0等原料组成.其中,农业废弃物提供微生物所需碳源,Fe0还原水体中硝酸盐氮及DO,快速脱氮并促进厌氧环境形成.外壳为溶质运移渗透层,由原生矿物等组成,可包覆内核材料,减缓内核碳源释放、吸附二次污染物.材料物理测试显示,其内核均匀交联,外壳呈明显均匀孔隙结构(SEM),颗粒强度高达每颗80~105 N,具有良好的机械抗压性;材料密度最低可达1.1 g·cm~(-3),无水中漂浮现象;缓释实验表明,该材料具有良好的碳源缓释性,其总有机碳(TOC)释放量[Max:21~25 mg·(g·L)~(-1)]和速率[Max:0.185 mg·(g·L·d)~(-1)]始终呈现平稳状态,而农业废弃物释碳量[Max:53~75 mg·(g·L)~(-1)]及速率[Max:0.455mg·(g·L·d)~(-1)]波动较大.进一步功能基因丰度分析,材料浸出液有利于反硝化细菌代谢活动.脱氮和捕氧实验初期,该材料体系以Fe0化学脱氮为主,并降低水体DO,有利于反硝化进行;随后,生物反硝化占主导地位,材料脱氮率与其Fe0含量相关性变小,体系形成物化-生境协同脱氮途径.  相似文献   

12.
同步脱氮除磷颗粒污泥硝化反硝化特性试验研究   总被引:4,自引:4,他引:0  
在厌氧/好氧交替运行的SBR反应器中,以成熟的脱氮除磷颗粒污泥为研究对象,对其硝化及反硝化特性进行研究.结果表明,静态试验中颗粒污泥的最大硝化速率为14.13 mg·(g·h)-1,最大反硝化速率为34.89 mg·(g·h)-1,最大缺氧吸磷反硝化速率为13.11 mg·(g·h)-1,污泥具有较好的硝化、反硝化性能;反应器中污泥最大硝化速率为4.60 mg·(g·h)-1,最大反硝化速率为1.43 mg·(g·h)-1;通过N的物料平衡得到,同步硝化反硝化反应去除N约为232.5 mg·d-1,占N去除总量的54.3%;另外,颗粒污泥对P和N的去除率分别在95%和90%左右,反应器具有较好的同步脱氮除磷效果.  相似文献   

13.
静置/好氧/缺氧序批式反应器(SBR)脱氮除磷效果研究   总被引:5,自引:1,他引:4  
以静置段代替传统厌氧段,采用后置缺氧方式,考察了静置/好氧/缺氧序批式反应器(SBR)(R1)的生物脱氮除磷(BNR)性能,并与传统厌氧/好氧/缺氧序批式反应器(SBR)(R2)进行对比.两反应器进水乙酸钠、氨氮(NH+4-N)及磷酸盐(PO3-4-P)浓度均分别为350 mg·L-1(以COD计)、40 mg·L-1及12 mg·L-1,水力停留时间(HRT)为12 h.研究结果表明,R1长期运行中磷的去除率与R2相当,分别为92.4%和92.1%,而总氮(TN)去除率则较R2高,分别为83.5%和77.0%.R1静置段省去搅拌但仍能起到厌氧段的作用,为好氧快速摄磷奠定了基础,同时R1缺氧段发生反硝化摄磷,使出水磷降至0.91 mg·L-1.好氧段内R1发生了同步硝化-反硝化(SND),贡献了18.0%的TN去除量,R2也存在SND,但脱氮贡献率较少,仅为9.8%.R1和R2后置缺氧反硝化均以糖原驱动,反硝化速率分别为0.98、0.84 mg·g-1·h-1(以每g VSS产生的N(mg)计),出水TN分别为6.62、9.21 mg·L-1.研究表明,静置段代替传统厌氧段后,可获得更好的脱氮效果,且工艺更为简化.  相似文献   

14.
为探究中国南方农田土壤氮迁移过程的反硝化与厌氧氨氧化(anaerobic ammonia oxidation,ANAMMOX)速率变化和脱氮贡献本研究采集宛山荡麦稻轮作区农田不同层深土壤及农田、沟道、河岸带和湖泊沉积物等不同土地利用类型土壤样品,分析其理化性质采用Illumina MiSeq测序和实时荧光定量PCR (quantitative real-time PCR,qPCR)技术探究土壤样品的微生物群落组成和功能基因丰度应用同位素培养实验测定各样品的潜在反硝化与厌氧氨氧化速率(以N_2计,下同).结果表明,土壤反硝化速率与TOC、NH_4~+-N和NO_3~--N含量均显著正相关(P0.05),与nirS、nirK及nosZ等功能基因丰度亦呈显著正相关(P 0.05).农田表层土壤反硝化速率为(11.51±1.04) nmol·(g·h)~(-1),显著高于农田其他土壤层以及其他土地利用类型(P 0.05),而农田土壤中厌氧氨氧化速率在20~30 cm层最高,达到(0.48±0.07) nmol·(g·h)~(-1).此外,反硝化作用是农田表层土壤氮损失的主要原因,占91.9%~99.7%,而厌氧氨氧化在深层土壤N_2的产生过程中占有重要地位.  相似文献   

15.
为探究碳源类型在反硝化过程中对氮素转化和微生物群落组成的影响,分别建立R1(以C6H12O6为碳源)和R2(以CH3COONa为碳源)反应器,通过分析R1和R2反应器中反硝化过程的氮素转化情况,评价C6H12O6和CH3COONa对脱氮效果的影响,并运用动力学模型对R1和R2反应器中反硝化能力进行评价;同时,采用高通量测序技术表征2种碳源对反应器中微生物群落结构和多样性的影响.结果表明:①运行后期的R1、R2反应器中单位生物量的反硝化速率(以NO3--N计,下同)分别为8.56、11.26 mg/(g·h),R1反应器中NO2--N累积平均值为11.34 mg/L,显著高于R2反应器(0.20 mg/L),且R1反应器中NH4+-N累积平均值为6.58 mg/L,是R2反应器(0.65 mg/L)的10.11倍.②反应器中NO3--N还原过程均符合Haldane模型,其中R1、R2反应器中单位生物量的rmax(最大降解速率)分别为35.61、47.79 mg/(g·h),表明R2反应器中的反硝化能力强于R1反应器.③微生物经过富集后,其细菌多样性和物种丰度下降,但发挥反硝化作用的微生物相对丰度逐渐增加.R1和R2反应器中共同的优势菌门有Proteobacterias、Bacteroidetes、Firmicutes和Gracilibacters,其在R1反应器中的相对丰度依次为96.14%、2.06%、0.66%和0.47%,在R2反应器中依次为79.75%、6.88%、9.47%和2.13%,优势菌门在不同运行时间的丰度表达上存在消长变化状态.研究显示,C6H12O6和CH3COONa在反硝化过程的氮素转化上存在明显差异,对各类优势菌群的相对丰度有明显影响.   相似文献   

16.
低碳源条件下改良双污泥系统脱氮除磷优化研究   总被引:3,自引:3,他引:0  
在低碳源废水条件下,通过对改良后的双污泥处理工艺与传统厌氧-好氧-缺氧工艺效果进行比较分析,探究解决城市生活污水碳源不足的方法.实验组反应器为改良型双污泥系统,即在原双污泥系统缺氧段增加两个阶段的微曝气(曝气量0.5 L·min~(-1)),对照组反应器为多级厌氧-好氧-缺氧SBR.结果表明,进水COD、氨氮、SOP浓度分别为200、35、10 mg·L-1时,实验组比对照组脱氮除磷效果好(去除率分别为:TN 94.8%与60.9%;TP 96.5%与75%),出水SOP浓度0.35 mg·L-1,NH+4-N浓度0.50 mg·L-1,TN浓度1.82 mg·L-1,完全满足《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准.采用优化后的工艺,单位碳源(以COD计)可实现的最大的氮、磷的去除量分别为0.17 g·g-1和0.048 g·g-1,可以最大程度地解决当前城市废水碳源浓度较低的问题.  相似文献   

17.
探究硫铁矿生物氧化过程的影响因素有利于揭示酸性矿山废水形成规律.本研究采用摇瓶试验,探究了氧化亚铁硫杆菌Acidithiobacillus ferrooxidans LX5(A.ferrooxidans LX5)密度对硫铁矿生物氧化的影响.同时,在菌密度为1.40×107cells·m L-1的环境中,研究了微生物营养(无铁改进型9K液体培养基)供给对硫铁矿生物氧化的影响.结果表明,A.ferrooxidans LX5及其营养成分的引入显著加速了硫铁矿生物氧化体系H+的释放,0.70×107~2.10×107cells·m L-1A.ferrooxidans LX5的引入,可使得H+释放量较无菌对照提高1.51~3.31倍.半量浓度和全量浓度无铁改进型9K液体培养基的加入,可使菌密度为1.40×107cells·m L-1硫铁矿氧化体系的H+释放量提高3.24与2.75倍.相对于A.ferrooxidans LX5密度为0.70×107cells·m L-1的体系,1.40×107cells·m L-1或2.10×107cells·m L-1A.ferrooxidans LX5的引入明显提高硫铁矿氧化体系总Fe离子与SO2-4的释放效率,且71.9%~88.3%的总Fe离子主要以Fe2+存在.微生物营养供给使得总Fe离子与SO2-4的释放效率加速显著,而总Fe离子几乎全部以Fe3+存在.当菌密度大于1.40×107cells·m L-1时,体系生物氧化后所得硫铁矿表面存在明显的侵蚀坑.相对于半量浓度改进型9K培养基养分供给,全量改进型9K液体培养基的引入由于体系次生铁矿物覆盖硫铁矿明显而抑制了总Fe离子与SO2-4的释放.硫铁矿氧化所得酸性废水经Ca O中和至pH约为7.00,总Fe近乎全部去除,而SO2-4去除率相对较低(26.7%~73.9%).本研究所得结果对明晰酸性矿山废水形成规律具有一定的指导意义.  相似文献   

18.
采用厌氧折流板反应器(ABR)为研究对象,以一定COD、NH+4-N和NO-2-N比例增加进水基质浓度,以明确基质负荷提高对ABR厌氧氨氧化和反硝化协同体系脱氮除碳的影响,并通过基质去除模型获得反应器对基质的耐受程度.研究表明,ABR反应器能够实现厌氧氨氧化反硝化耦合脱氮除碳,当进水基质COD、NO-2-N和NH+4-N浓度从220、168和60 mg·L~(-1)提高至420、270和110 mg·L~(-1)时,反应器脱氮效能下降,COD、NO-2-N、NH+4-N和TN去除率分别为97%、94%、30%和78%,厌氧氨氧化对TN去除的贡献率从43.08%骤降至16.49%,反硝化脱氮贡献率从53.81%增至82.07%.动力学模型拟合发现,Stover-Kincannon模型(R2=0.937,TN;R2=0.975,COD)较一级基质去除模型(R2=0.314,TN;R2=0.016,COD)更适合评价反应器对基质的承受力;Stover-Kincannon模型表明,反应器对TN和COD的最大基质利用率分别为1.43 g·L-1·d-1和3.33 g·L-1·d-1,饱和常数(KB)分别为1.2和3.79,研究认为ABR协同脱氮除碳体系理论上还有继续提升基质负荷的潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号