首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
京津冀大气污染传输通道城市燃煤大气污染减排潜力   总被引:1,自引:0,他引:1  
以京津冀大气污染传输通道城市为研究对象,建立了燃煤电厂、燃煤锅炉、农村散煤三大污染源主要大气污染物排放计算方法,以2015年为基准年,梳理现有燃煤污染减排政策措施,对2017年“2+26”城市燃煤污染源SO2、NOx、PM、PM10、PM2.5的减排潜力进行了分析.结果表明:实施燃煤电厂超低排放改造、燃煤锅炉淘汰或改造、散煤改电(气)等措施后,“2+26”城市2017年燃煤SO2、NOx、PM、PM10、PM2.5排放量分别达到87×104t、56×104t、64×104t、45×104t、32×104t,预计比2015年分别减少44%、48%、33%、32%、30%.燃煤电厂、燃煤锅炉、农村散煤替代各项污染物减排比例分别在55%~70%、31%~38%、18%~21%,未来农村散煤治理的减排潜力还较大.从各城市情况来看,多数城市燃煤SO2、NOx减排主要来自燃煤电厂超低排放改造;保定、廊坊等城市燃煤颗粒物减排量较大,得益于散煤治理工作的大力推进.  相似文献   

2.
为探究中国超低排放燃煤电厂汞及其他有害痕量元素未来标准制定的可行性及建议,综合比对了中国与欧盟、美国等发达国家燃煤电厂大气痕量元素排放标准限值,并基于燃煤电厂现场测试相关文献调研分析,系统地评估了中国燃煤电厂汞及其他9种典型痕量元素(砷、铅、硒、镉、铬、锑、钴、镍和锰)的排放现状.结果表明:与美国、欧盟、加拿大等发达国家相比,目前我国燃煤电厂大气污染物排放标准限定的痕量元素污染物种类较为单一(仅规定了烟气汞及其化合物排放限值,≤30μg/m3)且排放标准限值较为宽松;在全国燃煤电厂已普遍完成超低排放升级与改造的新形势下,现行的《火电厂大气污染物排放标准》(GB13223-2011)已难以起到对燃煤电厂大气汞及其他痕量元素排放控制的实际限制作用和对先进新技术的示范引领作用.作为世界上的最大燃煤消费国,中国燃煤电厂每年消耗煤炭占中国煤炭消费总量的一半左右,是国际社会和《关于汞的水俣公约》重点关注的排放源.因此,推动燃煤电厂大气汞排放标准限值的修订及其他有害痕量元素排放标准的制定,对于保护生态环境和公众健康及国际履约均具有较大的可行性及重要的现实意义.  相似文献   

3.
燃煤电厂脱硫技术及超低排放改造费效分析   总被引:1,自引:0,他引:1       下载免费PDF全文
基于燃煤电厂二氧化硫排放现状及超低排放的要求,构建石灰石-石膏法脱硫费效计算模型,分别分析机组容量、年运行小时数、不同SO_2排放限值及托盘塔改造对成本效益的影响,以"费用最小化、效益最大化"为原则,寻求节能减排新途径。结果表明:在煤炭含硫量和脱硫效率一定时,100 MW、200 MW、300 MW、600 MW和1 000 MW机组的减排量分别为3.47万,5.5万,8.2万,15.5万,25万t,呈逐渐增大趋势,同时,费效比逐渐减小,说明大容量机组环境、经济效益明显;同一机组容量,脱硫成本与年利用时间呈负相关;SO_2排放标准越严格,吨SO_2脱除成本和单位发电量运行成本越高;托盘塔超低排放改造技术经济可行,费效比<1,减排效益明显,可作为燃煤电厂脱硫设施改造的重点技术。  相似文献   

4.
通过分析国内外垃圾焚烧发电厂烟气净化系统的现状,基于燃煤电站和垃圾焚烧发电厂烟气物性之间的相似性及燃煤电站超低排放系统的先进性,提出了分别以循环流化床法脱硫和高效协同型湿法脱硫技术为核心的垃圾焚烧烟气超低排放改造可行技术路线,并分析了2种技术路线的初投资和运行成本.结果表明:2种技术路线的初投资相当,约为1.37万元/t,但以湿法脱硫为核心的技术运行费用较高,日运行成本约为16.46元/t;采用环保电价补贴政策时,2种烟气超低排放技术路线超过政策发电量部分的发电收入分别可以在3a和7a内弥补超低排放改造及运行带来的资金支出.  相似文献   

5.
辽宁省燃煤电厂超低排放工作全面推进,燃煤电厂经超低排放改造后,污染物指标控制限值要求为颗粒物10 mg/m~3。某燃煤电厂面临烟气超低排放要求,提标改造现有除尘器,每台炉配两台双室六电场干式低温静电除尘器,并在吸收塔喷淋层下方增设聚气环,在吸收塔净烟道处加装一级烟道除雾器。除尘器和吸收塔改造后,除尘效率由99.8%提高到99.94%,改造后总出口浓度6.80 mg/m~3,改造后排放量6.0 kg/h,削减量16 kg/h,各工况下烟气污染物折算浓度均符合标准要求。  相似文献   

6.
<正>日前,辽宁省政府印发《辽宁省"十三五"节能减排综合工作实施方案》。方案提出,开展大气、水污染物减排重点工程。其中大气污染物减排实施电力、钢铁等重点行业全面达标排放治理工程,推动燃煤电厂超低排放和节能改造工程,到2020年,各类工业污染源持续稳定达标排放。开展大气源清单摸底调查工作,为大气  相似文献   

7.
针对京津冀地区实施天然气和电能驱动空气源热泵(简称:热泵)替代燃煤(散烧煤和锅炉煤)供暖系统的一次能源效率、污染物减排量及经济性进行了对比计算.结果表明:对于京津冀地区,采用天然气和热泵替代燃煤供暖可使一次能源效率分别上升31%和44%;天然气和热泵供暖都可大幅降低污染物排放,天然气供暖可使烟尘、SO_2和NO_x分别减排7.46,33.26,8.06万t;热泵供暖则分别减排7.48,33.21,9.36万t;热泵供暖的初投资高于天然气供暖,但其年燃料费用远低于天然气供暖;此外,基于烟尘、SO_2、NO_x 3种污染物减排总量,计算得出天然气供暖改造的单位污染物减排成本较热泵供暖改造高14.2元/kg,综合对比发现,热泵供暖更具优势.  相似文献   

8.
燃煤电厂实施烟气超低排放后,使得污染物排放得到控制,排放浓度大幅下降。本文将依照现有理论,重点剖析超低排放基本技术,探讨技术路线。提出燃煤电厂落实超低排放工作后,可有效控制污染物排放总量,从而实现污染减排和环境质量改善的目标。  相似文献   

9.
为研究燃煤电厂在燃煤发电机组结构优化调整和不同末端控制措施条件下PM2.5的排放情况,以2012年为基准年,设计了分阶段、分地区不断优化的控制情景(基准、适中、加严和最严情景),并依据《大气细颗粒物一次源排放清单编制技术指南(试行)》建立的减排潜力模型对2017年、2020年和2030年我国燃煤电厂PM2.5减排潜力及空间分布进行预测分析. 结果表明:通过燃煤发电机组结构优化调整,2017年、2020年和2030年我国燃煤电厂PM2.5排放量与调整前相比可分别减少3.62×104、8.52×104和24.43×104 t,但相对于基准年而言,PM2.5排放量并未减少;进一步结合末端控制措施优化进行控制,PM2.5最大减排潜力(相对于基准年而言)可分别达到59.42×104±7.83×104、82.83×104±5.82×104和81.89×104±6.76×104 t,最高减排比例分别达到66.5%±8.8%、92.8%±6.5%和91.6%±7.6%. 我国各省(市/区)燃煤电厂PM2.5减排潜力与其煤耗量和采取的控制措施有关,燃煤量越大,控制措施越严格,则减排潜力越大. 京津冀、长三角和珠三角地区燃煤电厂在实现超低排放,即最严情景下2017年PM2.5减排潜力分别为5.93×104、12.04×104和4.70×104 t;2017年、2020年和2030年这3个区域PM2.5总减排潜力分别为22.68×104、22.36×104和22.07×104 t. 内蒙古、江苏、山东、广东、河北和山西等地在实施超低排放后,其PM2.5减排潜力均超过4×104 t,并且在全国范围内实施超低排放可显著降低我国燃煤电厂PM2.5排放量.   相似文献   

10.
超低排放改造后,电力和钢铁行业常规大气污染物排放量大幅削减,非常规污染物及有色烟羽问题逐步引起关注,视觉污染及“脱白”问题一时成为讨论的焦点。基于国内外相关标准方法,对3家燃煤电厂和2家钢铁厂烧结机机头烟气总排口处的SO3、NH3、可过滤颗粒物(FPM)和可凝结颗粒物(CPM)的排放水平进行测试,评估超低排放实施效果和有色烟羽治理的可行性。结果表明,3家燃煤电厂和2家钢铁厂烧结烟气SO3、NH3和FPM的排放浓度分别为0.11~1.61,0.02~1.66,0.81~5.76 mg/Nm3,均处于较低水平,其中FPM排放浓度均能够满足超低排放要求,实施烟气“脱白”改造后SO3和NH3排放浓度与同行业相比均有显著下降,但减排效果较为有限。3家燃煤电厂和2家钢铁厂烧结烟气中CPM排放浓度分别为3.39~4.82,26.6~29.1 mg/Nm3,其中钢铁厂CPM排放浓度处于较高水平,约为颗粒物超低排放限值的3倍,CP...  相似文献   

11.
环境技术验证评价是新环境技术评价的有效方法之一。烟气超低排放是重点行业大气污染控制的发展趋势。开展燃煤电厂超低排放技术验证评价研究是环境技术验证评价在行业精细化应用的创新。在分析燃煤电厂大气污染物超低排放技术特点的基础上,运用层次分析法、调查研究法等构建了燃煤电厂超低排放技术验证评价指标体系,提出验证评价指标获取方法、测试周期和样本量、采样频率、指标评价方法。以超低排放组合技术"SCR脱硝+干式电除尘+石灰石-石膏湿法脱硫+湿式电除尘"为例进行应用验证,该技术利益相关方认为验证结果能够客观、科学、公正、有效地反映该技术的技术、经济、环境影响、维护管理等指标的真实情况。  相似文献   

12.
燃煤电厂污染物排放实施超低排放是中国燃煤电站绿色火电的大方向,煤电进入超低排放阶段,实施超低排放标准对电厂的污染物治理提出了更为苛刻的要求。为了在环境影响评价中落实超低排放可行措施,使SO2和NOx 达到超低排放标准,本文根据山西省低热值燃煤电厂实际环境影响评价过程中遇到超低排放工艺技术路线的问题,针对煤粉锅炉燃用高灰分、高硫分、热值低的煤质情况,介绍了大气污染物脱硫和脱硝的超净排放工艺方案,指出采用“石灰石-石膏湿法”脱硫双循环技术;锅炉低氮燃烧技术+SCR脱硝工艺技术(3+1层),可以满足山西省超低排放限值要求。  相似文献   

13.
燃煤机组超低排放改造对汞的脱除效果研究   总被引:1,自引:0,他引:1  
燃煤烟气中汞污染的控制是目前重要的环保课题之一,燃煤电厂利用现有的脱硝、脱硫、除尘设备去除汞,文章分析燃煤电厂烟气净化设备超低排放改造后汞的排放水平,说明现有废气处理设施超低排放改造,既能有效降低烟尘、二氧化硫、氮氧化物排放浓度,也有利于汞的去除,燃煤机组超低排放改造后汞的排放浓度远低于现行0.03 mg/m3的限值;通过分析燃煤电厂现有烟气净化设备对汞的协同去除效果和脱除汞的原理,提出了未来燃煤烟气汞污染控制措施的建议.  相似文献   

14.
China has established the largest clean coal-fired power generation system in the world by accomplishing the technological transformation of coal-fired power plants(CFPPs) to achieve ultra-low emission. The potential for further particulate matter(PM) emission reduction to achieve near-zero emission for CFPPs has become a hotspot issue. In this study,PM emission from some ultra-low emission CFPPs adopting advanced air pollutant control technologies in China was reviewed. The results revealed tha...  相似文献   

15.
采用EPA Method 29方法、冷原子吸收光谱法和电感耦合等离子体质谱法采集和分析一台超低排放燃煤机组污泥掺烧前后的原燃料、烟气和副产物样品中各痕量元素浓度,研究污泥掺烧对燃煤电厂痕量元素排放特性的影响.结果表明:污泥中富含Zn、Cu元素,浓度分别是煤样中的18.81倍和17.64倍.污泥掺烧使掺配后入炉煤中痕量元素含量普遍升高.污泥掺烧前后整个系统、锅炉系统和全流程大气污染控制设施的痕量元素质量平衡率均在可接受范围内.污泥掺烧对痕量元素的分布特征无明显影响,随粉煤灰排放是痕量元素的主要排放去向.通过烟囱排放到大气环境的痕量元素排放量占比很小,不超过0.43%.污泥掺烧前后SCR入口烟气中痕量元素除Hg外主要以颗粒态形式存在.污泥掺烧后各痕量元素在粉煤灰和底渣中的相对富集系数未显著改变.经过全流程大气污染控制设施协同控制后,污泥掺烧前后烟囱总排口痕量元素排放浓度分别为0~12.76,0~14.97μg/m3.污泥掺烧后痕量元素排放浓度均满足美国燃煤发电机组有害大气污染物排放标准、上海市燃煤耦合污泥电厂大气污染排放标准和生态环境部生活垃圾焚烧污染控制标准的限值要求.现有的燃煤电厂大气污染控制系统对6%污泥掺烧比工况下痕量元素排放的控制具有较好的适应性.  相似文献   

16.
采用模糊综合评价法与层次分析法或专家判定法相结合,对我国燃煤电厂非常规污染物大气汞控制技术进行了综合评估,以筛选出最佳控制技术.建立了环境、经济和技术为一级指标的三层指标体系,共22个评价指标;初步筛选出洗选煤+烟气净化协同脱除技术、烟气净化协同脱除技术、烟气净化协同脱除技术+活性炭吸附技术等七项技术及技术组合并对其开展评估.结果表明:强调环境因素的层次分析法综合评估结果表明,超低排放协同脱除技术+活性炭吸附技术得分最高(0.797 0),为最佳控制技术.而专家判定法与强调经济因素的层次分析法的综合评估结果一致,洗选煤+烟气净化协同脱除技术最具经济优势,是专家认可的最佳可用技术(BAT)和最佳环境实践(BEP).研究显示,我国现阶段可采用洗选煤+超低排放协同脱除技术对燃煤电厂的大气汞污染进行控制,但为达到发达国家的严格排放标准,必须采用超低排放协同脱除技术+活性炭吸附技术.   相似文献   

17.
伴随着超低排放技术在中国火电行业的广泛应用,中国火电行业排放水平已发生了显著变化.故现有火电排放清单排放因子和排放量等无法反映当前火电污染物排放提标情况.基于全国火电在线监测(CEMS)、环境统计和排污许可等数据,提出一种自下而上逐企业建立中国火电行业排放清单的方法.与传统方法相比较,该方法的特点是更加全面的考虑了火电行业超低技术,实际排放浓度与活动水平等综合因素.作为实例,本文基于所提出的火电行业排放清单的方法计算了新的2015年中国火电行业排放清单(HPEC).结果表明2015年全国火电厂SO2、NOx和烟尘平均排放浓度范围分别为7.88~208.57、40.33~238.2和5.86~53.93mg/m3.北京、上海火电排放基本达到《煤电节能减排升级与改造行动计划(2014~2020年)》制定的超低改造目标;绝大部分的省份SO2、NOx在线监测均值小于排污许可执行标准均值.中国燃煤机组的SO2、NOx、烟尘排放因子平均值分别为0.67、0.76、0.16g/kg(以入炉煤计).全国火电CO、VOCs、NOx、SO2、PM10、PM2.5总排放量分别为403.87、10.73、122.94、146.68、28.72和22.80万t/a,平均排放绩效值分别为1.06、0.03、0.32、0.39、0.08、0.06g/(kW×h).  相似文献   

18.
针对神华集团典型“近零排放”燃煤机组,考察了大气污染物(烟尘、SO2、NOx、汞及其化合物)的排放特征,提出了更加契合绿色发展生态环保要求的燃煤电厂大气污染物排放限值,即烟尘、SO2、NOx和汞及其化合物排放限值分别为1、10、20和0.003 mg/m3(简称“‘1123’排放限值”).评估了新建“近零排放”燃煤机组的长期运行排放状态,并研究了“近零排放”机组汞污染协同减排效果.结果表明,2017年1—10月新建机组烟尘、SO2、NOx排放质量浓度平均值分别在0.69~0.77、6.04~6.63、16.56~16.79 mg/m3之间,排放绩效可低至0.0023、0.022、0.057 g/(kW·h),污染减排已达到国际领先水平;“1123”排放限值下烟尘、SO2和NOx的达标率分别超过92.06%、85.43%和77.46%,“近零排放”原则性技术路线可实现更好、更优的生态环保排放指标.燃煤机组通过“近零排放”技术改造,可提高烟气中Hg0的氧化效率和汞化合物的捕获效率,环保设施组合协同脱汞效率提升至75.3%~90.9%(平均值为82.8%±8.1%),汞排放水平降至0.51~1.45 μg/m3〔平均质量浓度为(0.94±0.47)μg/m3〕,基本达到国际先进煤电机组的协同控制水平.研究显示,清洁煤电大气污染物新排放限值总体上比GB 13223—2011《火电厂大气污染物排放标准》中燃煤电厂大气污染物排放限值小1个数量级,可为加快推进生态文明建设、制订先进的燃煤电厂大气污染物排放新标准提供科学依据.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号