首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 144 毫秒
1.
天津冬季雾霾天气下颗粒物质量浓度分布与光学特性   总被引:1,自引:0,他引:1  
年1—2月连续在线观测天津ρ(PM2.5)、ρ(PM10)、大气能见度、σsp(气溶胶散射系数)、σap(气溶胶吸收系数)和AOD(大气光学厚度),结合气象资料,分析天津城区雾霾天气下的颗粒物质量浓度分布与光学特性. 结果表明:在为期52d的观测期间,发生雾日8d、轻雾日1d、霾日29d,雾霾日占观测时长的73%;霾日ρ(PM2.5)/ρ(PM10)为0.65,SSA(单次散射反照率)为0.95,MSE(气溶胶质量散射系数)为3.30m2/g,均高于非雾霾日,表明雾霾日下细粒子的散射作用是大气消光的主要贡献者;雾霾日的σsp和σap均高于非雾霾日,随着霾等级增强,σsp和σap逐渐增大,重度霾天气的σsp和σap与中度霾天气相当,分析高RH可能是造成能见度进一步降低的主要因素;雾霾天气下AOD500nm和波长指数均显著高于非雾霾天气,表明雾霾天气下气溶胶浓度远高于非雾霾天气,并且细粒子占主导地位.   相似文献   

2.
利用2015年1月气溶胶散射和吸收系数、PM2.5质量浓度、大气能见度以及常规气象观测数据,分析了南京冬季大气气溶胶散射系数与吸收系数的变化特征,给出了散射系数与吸收系数对大气消光的贡献,以及能见度与PM2.5质量浓度和相对湿度的关系.结果表明,观测期间南京大气气溶胶的散射系数和吸收系数分别为(423.4±265.3) Mm-1和(24.5±14.3) Mm-1,对大气消光的贡献分别为89.2%和5.2%,表明大气消光主要贡献来自于气溶胶的散射.散射系数与PM2.5相关性较好(R2=0.91),能见度随PM2.5质量浓度呈指数下降,也与相对湿度保持一定负相关性.能见度均值为4.3km,且连续出现能见度不足2km的低能见度天气,霾天气下消光系数和PM2.5质量浓度大幅超过非霾天气,最高值分别达到1471.2Mm-1和358 μg/m3,霾天气下能见度的降低来自颗粒物与相对湿度的共同影响.  相似文献   

3.
气象因素对北京市大气颗粒物浓度影响的非参数分析   总被引:15,自引:4,他引:11  
利用2005年9月—2006年9月北京市大气颗粒物分级(不同粒径)监测资料和同期分时段气象观测数据,采用非参数分析(Spearman秩相关系数)法对北京市3种粒径大气颗粒物在不同季节的浓度水平与气象因素的影响进行了研究.结果表明:不同季节影响颗粒物质量浓度的气象因素各不相同;春季ρ(PM2.5),ρ(PM2.5~10)和ρ(PM10)都与气压呈显著负相关;夏季颗粒物质量浓度受降水影响很大;秋、冬季ρ(PM2.5)和ρ(PM10)均与日照时数呈显著负相关;冬季ρ(PM2.5),ρ(PM2.5~10)和ρ(PM10)均与平均风速呈显著负相关,与气温、相对湿度呈显著正相关. 细粒子和粗粒子质量浓度对气象因素变化的响应程度也有较大区别. 春、夏季地面平均风速对粗粒子质量浓度的影响比细粒子显著,ρ(PM2.5)/ρ(PM10)随风速增加而增大;秋季日照时数对细粒子质量浓度的影响比粗粒子更显著,ρ(PM2.5)/ρ(PM10)随日照时数增加而减小;冬季相对湿度对粗粒子质量浓度的影响比细粒子显著,ρ(PM2.5)/ρ(PM10)随相对湿度增加而减小.   相似文献   

4.
基于2017年1月4~7日成都地区一次重霾过程中,颗粒物粒径谱的垂直加密观测和激光雷达同步观测数据,利用Mie散射理论计算颗粒物消光系数并与激光雷达反演结果对比,计算了不同粒径谱颗粒物消光系数以及消光贡献率.分析表明:重霾期间,在不同边界层高度上颗粒物消光系数表现为PM1 > PM2.5~10 > PM1~2.5 > PM > 10,其中PM1的消光贡献率整体上维持在49.5%~69.4%,是本次重霾过程中影响颗粒物消光系数大小的主要因子.在大气边界层内,不同粒径谱颗粒物消光作用呈现出显著垂直变化和昼夜差异,白天在600m以下和700~1100m之间颗粒物消光系数出现高值区;夜间颗粒物消光系数整体上随高度呈现出明显递减趋势,在1100m处出现高值.此外,夜间在200m以下颗粒物消光系数明显大于白天,且PM>1的消光贡献率也明显大于白天.整体上,PM1消光贡献率随高度递增,而PM>1消光贡献率随高度递减.  相似文献   

5.
为探究雾-霾过程中雾对PM2.5质量浓度的影响机制,选取2021年1月24~27日一次典型雾-霾过程,采用常规自动气象站、环境小时浓度、微波辐射计、风廓线雷达、气溶胶激光雷达、255m气象塔上梯度观测的气象、环境和湍流等多源数据资料及WRF-Chem过程分析数值模拟方法对此次污染过程进行综合分析.结果表明,此次雾相对湿度增加是由于辐射冷却和平流引起的,雾类型是辐射平流雾,其特征是水汽自上而下输送,雾过程雾顶高度250m,逆温层底高度为80~120m,雾顶高度>逆温层底高度;雾发生前由于相对湿度、垂直平流和湍流混合影响,地面及垂直方向PM2.5质量浓度先增长再下降,总体有利于PM2.5质量浓度扩散;雾成熟期根据逆温层底的高度,辐射-平流雾对PM2.5影响分为两种,其中雾对高于逆温层底的PM2.5为湿清除作用,而对低于逆温层底的PM2.5为积聚作用;雾消散后霾阶段40m湍流动能增高至0.78m2/s2,并逐渐和...  相似文献   

6.
为探究雾-霾过程的边界层特征,选取天津市2019年12月7~10日一次严重的雾-霾典型过程,采用常规自动气象站资料、环境小时浓度资料、以及微波辐射计、风廓线雷达、气溶胶激光雷达等多种观测资料及WRF-Chem源追踪方法对此次污染过程进行综合分析. 结果表明,此次雾-霾过程可明显分为雾生成、雾与霾交替、霾、霾消散等4个阶段;雾-霾天气与大气温度层结密切相关,伴随着逆温生成,相对湿度和液态水含量最大增长速率分别达13.44%/h和0.013g/(m3·h),呈爆发性增长,相对湿度快速增至92%,微波辐射资料可较好预报雾的生成;雾与霾交替出现阶段雾天气改变了边界层结构,雾层内大气呈中性状态,相对有利于污染物在雾区内扩散,PM2.5高浓度主要出现在边界层400m以下,雾顶持续逆温抑制了污染物向上层大气扩散,造成雾区内污染物浓度加重,地面PM2.5质量浓度为135~223μg/m3,维持中度-重度污染;雾-霾天气与垂直风场有较好的对应关系,雾与霾交替出现阶段存在低风速和较大风速(西南风带来充沛水汽)两种有利于雾维持的情况,雾顶逆温层以上风速为6~12m/s,雾层内为1~2m/s,雾的存在不利于近地面空气质量的改善;此次雾-霾过程天津本地源排放贡献为36.1%,区域输送贡献为63.9%,整个过程表现出明显的区域输送特征.  相似文献   

7.
深圳冬季霾日的大气污染特征   总被引:4,自引:2,他引:2       下载免费PDF全文
2009年1月10日─2月16日,利用在线仪器获得深圳市冬季大气中气态污染物和PM1主要化学组分的高时间分辨率数据,结合气象条件,对非霾日、霾日的大气污染物和PM1主要化学组分浓度水平及其日变化特征进行了研究. 结果表明:深圳冬季霾日除O3外,其他气态污染物和PM1主要化学组分的平均质量浓度均明显高于非霾日,增幅均在40%以上;PM1中的有机物是深圳冬季霾的首要污染因子;PM1主要化学组分的日变化趋势不尽相同,但总体上表现出霾日高于非霾日的特征,尤其是午夜至清晨时段,这说明深圳冬季霾日的夜间大气扩散能力显著减弱.   相似文献   

8.
石家庄市采暖期大气细颗粒物中PAHs污染特征   总被引:4,自引:2,他引:2       下载免费PDF全文
采集2015年12月-2016年2月采暖期石家庄市文教区、交通密集区、居民区和商业交通混合区大气细颗粒物样品,依据HJ 646-2013《环境空气和废气气相和颗粒物中多环芳烃的测定气相色谱-质谱法》分析石家庄市大气细颗粒物中PAHs污染水平及分布特征、气象参数与PAHs相关性,并解析PAHs污染来源.结果表明:石家庄市冬季采暖期大气细颗粒物PM10、PM2.5和PM1.0中ρ(PAHs)的日均值分别为397.66、349.09和272.35 ng/m3,分别是采暖期前(11月1-15日)的6.16、4.62和4.82倍,并且呈交通密集区>居民区>文教区>商业交通混合区的空间分布特点.相对湿度与细颗粒物PM10、PM2.5和PM1.0中ρ(PAHs)均呈显著正相关,R2分别为0.30、0.37和0.33,而风速与三者呈显著负相关,R2分别为-0.39、-0.53和-0.26;PM1.0中具有显著相关的PAHs单体数量多于PM10和PM2.5.根据PAHs环数分布特征及特征化合物比值判断,石家庄市冬季采暖期PAHs污染为燃煤与机动车尾气复合型污染特征,同时餐饮油烟也有一定的贡献.   相似文献   

9.
利用Andersen空气微生物采样器采集青岛市不同空气质量下的可培养生物气溶胶,分析了其浓度和粒径分布特征,并利用Spearman’s相关性分析了可培养生物气溶胶浓度和空气质量指数中的颗粒物质量浓度〔ρ(PM10)、ρ(PM2.5)〕、气体污染物质量浓度〔ρ(O3)、ρ(SO2)、ρ(NO2)〕和气象参数(温度、相对湿度、风速)之间的关系.结果表明:可培养真菌和细菌气溶胶浓度范围分别为133~1 113和13~212 CFU/m3.真菌气溶胶浓度与ρ(SO2)、ρ(PM10)、ρ(PM2.5)均呈正相关,而与相对湿度呈显著负相关(P<0.05).细菌气溶胶浓度与ρ(NO2)、ρ(SO2)呈负相关,而与ρ(O3)、温度呈正相关.风速对可培养生物气溶胶浓度的影响较小.以AQI(空气质量指数)中ρ(PM10)为依据,将研究时间段空气质量划分为4个空气污染等级.在不同污染等级下,真菌气溶胶均呈对数正态分布,粒径主要分布于2.1~4.7 μm.低污染时细菌气溶胶呈偏态分布(粒径>4.7 μm),高污染时粒径分布发生改变.初步推断,随着空气污染等级的升高,可培养生物(真菌+细菌)气溶胶总浓度增加,但单位颗粒物上的浓度变化较稳定.ρ(PM10)是影响可培养生物气溶胶浓度及粒径分布的主要因素.   相似文献   

10.
北京市冬春季大气颗粒物的粒径分布及消光作用   总被引:7,自引:2,他引:5  
2004年1─5月,在北京市区连续监测了大气环境中ρ(PM10),ρ(PM2.5),ρ(PM1)和ρ(TSP),以及大气能见度、地面气象要素.结果表明:春节期间颗粒物中细粒子所占的比例较高,ρ(PM1)/ρ(PM2.5)为0.81,ρ(PM10)/ρ(TSP)为0.61;而沙尘期其值分别为0.55和0.28.不同粒径的颗粒物质量浓度均呈在明显日变化,其夜间浓度峰值高于早晨交通繁忙时段.根据经验公式,将大气能见度换算为大气消光系数,并导出颗粒物消光系数.结果表明:颗粒物消光系数与颗粒物质量浓度呈显著正相关.进一步定义了颗粒物质量浓度消光比(CEP),用来表征颗粒物的污染特征.统计分析结果表明:当CEP<103时,颗粒物质量浓度很低,PM2.5所占比例较高,代表了有利于污染扩散的气象条件;当CEP>167,颗粒物质量浓度高,但细粒子比(ρ(PM2.5)/ρ(PM10))稳定在0.5~0.7,湿度也稳定在20%~50%,代表了不利于污染扩散的气象条件.   相似文献   

11.
北京交通环境PM10分布特征及重金属形态分析   总被引:7,自引:1,他引:6  
以北京市西三环航天桥地区为对象,研究了城市交通环境大气可吸入颗粒物浓度及主要化学组成随时间和粒径的分布特征. 结果表明:该地区大气中ρ(PM10)冬季略高于春季,秋季次之,夏季最低;颗粒物中ρ(PM2.5)/ρ(PM10)和ρ(PM1.0)/ρ(PM10)平均值分别为82.6%和70.3%;ρ(PM10)与ρ(PM2.5)和ρ(PM10)与ρ(PM1.0)之间均有显著的相关性. PM10中金属元素浓度冬春季较高,夏秋季较低;Mg,Ca和Fe等地壳元素浓度随粒径的减小而降低,而Pb,Zn和Ni等重金属元素浓度总体上随粒径的减小而增加. 颗粒物中的Cr和Ni主要以有机物结合态存在,Cu,Zn和Cd主要以酸可提取态存在,Pb主要以酸可提取态和氧化物结合态存在;颗粒物中所含Cd和Zn元素的生物有效性最高. PM10中水溶性ρ(SO42-)在夏季和冬季最高,秋季最低,而水溶性ρ(NO3->/sup>)全年变化不大;[0.43~2.1 μm)粒径段颗粒物中的水溶性ρ(SO42-)及ρ(NO3->/sup>)较高,分别占PM10中水溶性ρ(SO42-)及ρ(NO3->/sup>)总量的68.3%及57.6%;ρ(NO3->/sup>)/ρ(SO42-)平均值为0.659.   相似文献   

12.
为了掌握湖南省株洲市空气颗粒物污染的变化特征,利用环境空气颗粒物手工监测方法对株洲市城区和郊区进行长时段监测,对株洲市空气中不同粒径的颗粒物质量浓度变化规律进行分析。结果表明,株洲市城区、郊区PM10、PM2.5在冬半年质量浓度高于夏半年,且冬半年超标率较高。在不同季节不同粒径占比有较大区别,当颗粒物污染较轻时10~100μm粒径占比较大;随着颗粒物污染增加,0~2.5μm粒径区间占比增加,并变成主要污染来源。根据Spearman秩相关系数分析以及相对关系曲线方程,可以看出城区冬半年PM10和PM2.5之间具有较高显著正相关,郊区不具有相关性。  相似文献   

13.
为研究南京主要大气复合污染物PM2.5、PM10和O3四季变化特征及其气象影响因子,利用2013年1月~2015年2月国控点环境监测数据对浓度特征进行统计分析,再利用WRF模式模拟的精细大气边界层气象场,分析气象要素与各污染物的相关性,并建立统计模型.结果表明:PM10、PM2.5冬高夏低,冬季日均值分别为160.6μg/m3和98.0μg/m3;日变化特征四季基本一致,但秋冬季最强,夏季最弱,且冬季上午峰值比其余三季延后1~2h.各季大气可吸入颗粒物中细粒子占主导,PM2.5/PM10年均值为0.59;首要污染物为PM2.5、PM10、O3的年频率分别为51.5%、26.6%和13.5%,PM2.5主导四季AQI的变化,尤其是在重污染的情况下,首要污染物为PM2.5占96%.O3浓度春末夏初高、秋末冬初低,日变化为单峰式;O3与边界层高度呈显著正相关,四季相关系数分别为0.500、0.572、0.326、0.323.四季PM10、PM2.5、O3_8h_max日值逐步回归方程拟合度为40%~65%.  相似文献   

14.
雾和霾对北京地区大气能见度影响对比分析   总被引:8,自引:3,他引:5  
年10月8日—12月7日,在北京城区对ρ(BC)(BC为黑碳)、ρ(PM2.5)、大气能见度和气象要素进行连续观测,利用该资料分析雾和霾对大气能见度下降的影响. 结果表明:观测期间大气能见度为0.6~26.7 km,其中40%以上的时间大气能见度不足5 km,ρ(PM2.5)和ρ(BC)小时平均值最高分别达416.0和17.87 μg/m3. 大气能见度小于5 km且持续时间超过24 h的过程出现5次,过程1~5持续的时间分别为84、79、70、35和66 h. 过程1和2主要由霾导致,大气RH(相对湿度)小,持续时间长;过程3和5则均由雾引起,大气能见度平均值分别仅为1.70和1.99 km. 尽管过程4持续时间最短,但是由于存在低层逆温的大气层结,并且地面风速<1 m/s,导致颗粒物在水平和垂直方向的扩散均受到抑制,加之大气平均RH达到90.8%,形成雾霾复合影响,造成颗粒物污染程度超过其余4个过程,ρ(PM2.5)和ρ(BC)平均值分别达到192.1和10.15 μg/m3.   相似文献   

15.
为深入了解渭南市街区道路环境颗粒物污染时空分布特征,利用车载颗粒物传感器于2019年3月1日—5月31日对渭南市道路环境空气中PM2.5和PM10浓度开展在线走航测量,分析了影响渭南市道路环境颗粒物污染时空分布的主要因素.研究表明:①渭南市区内所有道路PM2.5平均浓度范围为37.7~51.9 μg/m3,浓度较高路段位于高新区东部和主城区;PM2.5~10(粗颗粒物)平均浓度范围为65.8~119.1 μg/m3,浓度较高路段位于各功能区城郊.②工作日早高峰时段(07:00—09:00)主城区道路环境PM2.5、PM2.5~10污染较非工作日严重,3种类型道路工作日07:00 PM2.5~10平均浓度呈支路(103.5 μg/m3)>主干道(102.1 μg/m3)>次干道(96.9 μg/m3)的特征.③对于高新区和老城区路段,除早晚高峰时段出现PM2.5和PM2.5~10浓度峰值外,凌晨时段渣土车行驶路段、裸地或施工现场周边路段易出现PM2.5~10浓度峰值,其PM2.5~10平均浓度最高达230.9 μg/m3(乐天大街西段的路段Ⅳ).研究显示,工作日早晚高峰时段,特别是早高峰,机动车排放导致渭南市高新区东部和主城区路段的PM2.5污染加重,夜间渣土车行驶导致高新区和老城区靠近城郊路段的颗粒物(PM2.5和PM2.5~10)污染加重.   相似文献   

16.
苏州市气溶胶消光特性及其对灰霾特征的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究气溶胶消光特性对城市灰霾特征及形成的影响机制,采用2010年1月─2013年12月4 a的苏州市逐时散射系数、能见度、颗粒物质量浓度以及风速、风向、气温、气压、相对湿度等数据,对该市气溶胶散射系数、消光特性及影响因子进行了研究. 结果表明:苏州市气溶胶散射系数为(301.1±251.3)Mm-1,日变化呈双峰型,早高峰出现在07:00─08:00,晚高峰出现在20:00─21:00;其年内变化呈夏季低、冬季高. 气溶胶散射系数与ρ(PM2.5)的相关系数为0.77,高于与ρ(PM1)和ρ(PM10)的相关性,PM2.5散射效率为6.08 m2/g. 气溶胶散射系数受风速、风向等气象要素的影响:风速<4 m/s时,气溶胶散射系数下降迅速;风速在4~6 m/s时,气溶胶散射系数随风速下降缓慢. 苏州市气溶胶单次散射反照率平均值为0.84,散射消光比平均值为0.79,说明该地区气溶胶消光以散射性气溶胶为主. 气溶胶散射消光、气溶胶吸收消光、空气分子散射消光、NO2吸收消光分别占大气消光的82.33%、13.63%、2.72%和1.32%. 研究表明,对气溶胶散射消光贡献最大的非吸收性PM2.5是苏州市能见度下降、灰霾增加的最重要原因.   相似文献   

17.
采用荷电低压颗粒物撞击器(ELPI)对两段烧结工艺经除尘、脱硫后排放的颗粒物进行采样,分析颗粒物的粒数和质量浓度以及颗粒物中所含水溶性离子的粒径分布特征.结果表明,烧结工艺经除尘、脱硫后颗粒物的粒数浓度在105~107cm-3,粒径小于0.1μm的颗粒物占总粒数浓度的67%~77%.颗粒物质量浓度呈双峰分布,烧结1分别在0.61μm和1.62μm处出现峰值,烧结2分别在0.37μm和1.62μm处出现峰值;对不同粒径段颗粒物中的水溶性离子进行分析后表明,烧结1排放的PM1中含量最高的是NH4+和Ca2+,分别为15.26%和14.84%;PM>1中含量最高的是SO42-,为33.52%.烧结2排放的PM1中含量最高的是Cl-,为28.12%;PM>1中含量最高的是SO42-,为29.21%.SO42-在烧结1中主要集中在6.89~10.23μm这一粗粒径段中,占60%左右,而在烧结2中主要集中在粒径小于2.5μm的细粒径段颗粒物中,占81%左右.Cl-在烧结1不同粒径段颗粒物中含量较低且分布较均匀,而在烧结2中Cl-在0.13~0.24μm粒径段颗粒物中出现峰值且含量较高达45%左右.  相似文献   

18.
为了解北京市室外细菌气溶胶的分布特征,基于培养法分析了2020年9月—2021年5月不同季节细菌气溶胶浓度及粒径的分布特征,探讨气象因素(温度和相对湿度)和空气颗粒物(PM10和PM2.5)对细菌气溶胶分布特征的影响. 结果表明:①北京市室外细菌气溶胶平均浓度为447.10 CFU/m3 (每立方米空气中的菌落形成单位),呈春季〔(648.55±537.24)CFU/m3〕>冬季〔(324.50±181.99)CFU/m3〕>秋季〔(319.59±305.07)CFU/m3〕的特征,不同季节细菌气溶胶浓度差异不显著. ②北京市室外约80%的细菌气溶胶直径大于2.1 μm,细菌气溶胶浓度在第2级(粒径为4.7~7.0 μm)显著降低,峰值粒径出现在第1级(粒径>7.0 μm). 粒径大于7.0 μm的细菌气溶胶在春季与秋季以及春季与冬季之间均存在统计学差异 (p均小于0.05). 可进入人体下呼吸道的细菌气溶胶(≤4.7 μm)比例近50%(冬季、秋季、春季占比分别为61.0%、58.9%、41.6%),冬季空气中可进入人体下呼吸道的细菌气溶胶比例最高. ③Spearman相关性分析表明,室外环境细菌气溶胶浓度与相对湿度呈显著负相关(p<0.05),与PM10浓度呈显著正相关(p<0.05),表明细菌气溶胶浓度受气象因素和空气污染物的影响. 研究显示,北京市室外环境中可进入人体下呼吸道的细菌气溶胶比例近50%,冬季细菌气溶胶暴露风险最高.   相似文献   

19.
为了探讨京津冀地区冬季背景大气中气溶胶化学组分特征及其来源分布,使用GRIMM 180、单颗粒黑碳光度计(SP2)和高分辨率飞行时间气溶胶质谱仪(HR-TOF-AMS)观测了海坨山2020年12月28日至2021年2月3日PM和化学组分,结合气象数据和HYSPLIT模式,计算了潜在源贡献因子(PSCF)和浓度权重轨迹(CWT),分析了不同污染过程下PM和气溶胶化学组分的时间演变特征及其潜在来源.结果表明,海坨山冬季沙尘过程主要影响PM10和PM2.5,对PM1的影响较小;而霾污染正好相反,主要影响PM1.化学组分在干净天和霾污染中占PM1的比例分别为85.0%和73.4%,而在沙尘天仅占PM1的47.4%.霾污染过程中NO-3的质量浓度最大,占PM1的25.2%;在干净天和沙尘天黑碳(BC)的质量浓度最大,占PM1的24.1%和12.8%. BC气溶胶的中值直径在干净天...  相似文献   

20.
基于AGRI数据反演区域PM2.5浓度.利用6S辐射传输模式,分析气溶胶光学厚度AOD与能见度相关性,建立AOD、气溶胶标高和能见度模型;通过对大气柱AOD垂直订正,构建AOD与近地面PM2.5浓度关系的物理模型;同时引入了地面相对湿度数据.结果表明,FY-4A遥感的PM2.5浓度与地面空气质量监测站的PM2.5浓度变化趋势一致,算法计算效率较高.利用AGRI估算近地面PM2.5与地面观测网对比分析,其结果不亚于于MODIS以及VIIRS的对比结果,AGRI估算的均方根误差和相对误差较小.从季节分析,冬季近地面颗粒物浓度是影响整层大气柱AOD值的主要因素,AGRI反演结果精度较好,夏季相关系数相对于其他三个季节偏低.总体而言,采用FY-4A/AGRI反演颗粒物浓度精度可靠,有利于实现区域气溶胶全天候实时监测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号