首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 656 毫秒
1.
研究了纳米氧化锌(ZnO NPs)对强化生物除磷(EBPR)系统的长期作用机制,系统分析了EBPR系统在ZnO NPs长期抑制下宏观运行性能与微观结构的变化.结果发现,当进水开始添加ZnO NPs后,系统沉降性能随之降低.厌氧释磷速率与好氧吸磷速率均出现显著降低并降至0 mg·g~(-1)·h~(-1)(以每g MLSS释(吸)P量(mg)计,下同),从而使得系统丧失除磷效果.同时,厌氧段COD开始积累.ZnO NPs浓度增加至10 mg·L~(-1)时,多糖与蛋白质含量在抑制条件下均开始减少.通过高通量技术对微观层面进行分析发现,ZnO NPs将会严重抑制聚磷菌的正常生长.ZnO NPs对系统内不同细菌有截然不同的作用,Proteobacteria门在试验过程中比例减小,而Bacteroidetes门却受到促进作用.恢复阶段,较低浓度(2 mg·L~(-1))抑制条件下,EBPR系统恢复速度与程度均优于高浓度(6、10 mg·L~(-1))抑制条件.然而,即使系统得到一定程度恢复也难以恢复到初始水平.  相似文献   

2.
为研究厌氧释磷过程中的影响因素,以连续流A 2N双污泥中试污泥为样品,考察了碳源种类、碳源浓度、pH值以及温度对反硝化除磷污泥厌氧释磷的影响。结果表明:乙酸为碳源时释磷效果最佳,其次是葡萄糖,甲醇为碳源时释磷效果较差。MLSS为1 200 mg/L左右时,投加200 mg/L的COD即可保证充分释磷。pH值为6.3~8.8,对厌氧释磷效果影响不大,适当提高pH值有利于提高释磷速率。温度为20~30℃,释磷效果较好。另外,实验同时研究了反硝化除磷污泥分别利用不同电子受体(硝氮、氧气)的吸磷特性。以硝氮为电子受体的反硝化吸磷过程中,前15min的反硝化吸磷脱氮速率最高,吸磷速率与反硝化速率分别为11.5、10.4 mgN/gVSS·h;以氧气为电子受体的好氧吸磷过程中,前15 min的好氧吸磷速率最高,达到20.4 mgP/gVSS·h,大约为反硝化吸磷的2倍。  相似文献   

3.
为进一步提高A-AAO工艺的厌氧释磷效率,本文以稳定运行A-AAO工艺的污泥为研究对象,考察碳源浓度和污泥回流液硝态氮浓度对厌氧释磷速率的影响。研究结果表明:污泥回流液硝氮浓度越高,厌氧释磷速率越缓慢,且最大释磷量也较低,硝氮浓度从0 mg/L增加到20 mg/L时,释磷速率从0.150 mg TP/(gMLVSS·min)降低到0.103 mgTP/(gMLVSS·min),最大释磷量也从23.95 mg/L减少到15.97 mg/L。碳源浓度显著影响了厌氧区最大释磷量,进水碳源浓度(以乙酸钠投加计算)分别为100,200和300 mg/L,最大释磷总量分别为10.59 mg/L,19.62 mg/L及25.48 mg/L。  相似文献   

4.
酸化液对厌氧释磷好氧吸磷速率的影响研究   总被引:3,自引:1,他引:2  
采用序批式试验研究了酸化液对聚磷菌厌氧释磷好氧吸磷速率的影响。同一活性污泥混合液中聚磷菌的释磷潜力相当,混合液中挥发性脂肪酸越多则越有利于激发聚磷菌的释磷潜能。酸化液投加量越大,对应的混合液中聚磷菌的平均释磷速率也越大。当酸化液投加量为30 mg/L(以TOC计)时,聚磷菌的平均释磷速率达0.137 mg/(mg.d),是未投加酸化液工况的3.26倍。聚磷菌厌氧释磷过程中,活性污泥的MLVSS值逐渐增大,而MLSS值却不断减小,这是由聚磷菌释磷反应过程中聚磷颗粒和糖原的消耗,以及PHB的生成而产生的。碳源充足与否,对聚磷菌的平均好氧吸磷速率影响不大,研究各工况中,聚磷菌的平均吸磷速率在0.129~0.160 mg/(mg.d)内。碳源越充足,则聚磷菌在好氧吸磷反应持续的时间越长,因此,具有更强的超量吸磷能力。酸化液投加量为20 mg/L时(以TOC计),聚磷菌在好氧吸磷结束时,出水的SP浓度能减少到0.5 mg/L以下。  相似文献   

5.
试验采用交替厌氧/好氧(An/O)SBR反应器,在温度为13~16℃的条件下启动并运行EBPR系统.研究表明,进水磷浓度20 mg·L-1,控制DO浓度为2 mg·L-1,低温条件下即可在短期内(6 d)实现EBPR系统的成功启动并获得高效稳定的除磷性能,出水磷浓度低于0.5 mg·L-1.降低DO浓度会影响EBPR系统的稳定运行效果,反应器好氧阶段DO浓度由2mg·L-1降为1 mg·L-1,系统仍可以稳定运行,磷的去除率均大于97.4%,但厌氧释磷量略有下降;DO浓度进一步降至0.5mg·L-1时,EBPR系统除磷性能迅速恶化且出水磷浓度超标.通过提高溶解氧浓度以恢复EBPR除磷性能的试验发现,低DO导致的系统失效在短期内不可逆.研究还发现,以NO-2及NO-3为电子受体的缺氧除磷小试对EBPR系统的稳定运行具有冲击作用,但由此产生的不利影响可在6个周期内得以恢复;此外,长期低温运行的EBPR系统内MLSS基本保持恒定且SVI略有降低,说明低温低DO条件有利于系统内污泥的沉降.  相似文献   

6.
相较于传统强化生物除磷工艺通过测流实现污泥磷酸盐的富集和回收,生物膜法可对废水中的磷酸盐进行高效同步去除和富集,具有应用潜力。针对生物膜法厌氧释磷需要高碳源刺激的问题,通过优化工艺条件强化生物膜好氧吸磷能力提高生物膜蓄磷量,进而减少厌氧释磷时的碳源消耗。采用生物膜法序批式反应器(BSBR),考察了在低碳源投加下,蓄磷量与磷富集罐磷浓度的响应关系,采用正交试验探究溶解氧、搅拌速度以及好氧时间对磷酸盐强化吸收的影响。结果表明:当温度为(25±2)℃、厌氧外加碳源为(180±20) mg/L时,富集罐磷浓度随着生物膜蓄磷量的增加而增加,最高可达到90.62 mg/L。相同蓄磷量下,溶解氧浓度从2 mg/L增加至8 mg/L,磷酸盐最大吸收速率可从2.60 mg/(L·h)上升到8.70 mg/(L·h)。正交实验结果表明:各因素对磷酸盐强化吸收的影响顺序为溶解氧>好氧时间>搅拌速度。当溶解氧浓度为6 mg/L,搅拌速度为200 r/min,好氧时间为5 h时,除磷效率最高可达99.98%。  相似文献   

7.
NO_3~-和NO_2~-作为电子受体时的反硝化除磷实时控制   总被引:1,自引:0,他引:1  
采用SBR厌氧/缺氧运行方式,研究了NO- 3和NO- 2作为电子受体时的反硝化除磷效能及ORP与pH作为反硝化除磷过程控制参数的可行性.结果表明,反硝化除磷过程中COD、磷酸盐、电子受体浓度与体系pH和ORP的变化具有较强的相关性.在厌氧阶段,当释磷结束时,pH值平台的出现指示了释磷的结束;在缺氧阶段,吸磷结束后,ORP出现拐点,标志着缺氧吸磷的完成.另外,考察了2种电子受体(NO- 3和NO- 2)反硝化除磷的效能.在以NO- 3为电子受体的反应中,在缺氧初期30 min反应中,平均摄磷速率为32.68 mg/(L·h),每吸收1 mg PO3- 4-P 约消耗1.14 mg NO- 3-N.在以NO- 2为电子受体的反应中,在缺氧初期30 min反应中,平均摄磷速率为17.66 mg/(L·h),每吸收1 mg PO3- 4-P 约消耗1.57 mg NO- 2-N.综上,提出pH和ORP可以作为2种电子受体(NO- 3和NO- 2)反硝化除磷的实时控制参数,并且,以NO- 3为电子受体系统在摄磷方面优于NO- 2电子受体系统.  相似文献   

8.
SBR中生物除磷颗粒污泥的反硝化聚磷研究   总被引:2,自引:1,他引:1  
反硝化聚磷菌(DNPAOs)可利用厌氧储存的聚.3.羟基丁酸(PHB)以硝酸盐和亚硝酸盐为电子受体进行过量吸磷和反硝化,从而达到在低碳源下脱氮除磷的双重目的.本试验在SBR反应器中,采用厌氧,缺氧/好氧(A/A/O)交替运行的方式.将富集聚磷菌(PAOs)的颗粒污泥成功地诱导为具有反硝化聚磷能力的颗粒污泥.诱导结束后P的去除率在90%以上,NOx-N的去除率在93%以上,厌氧段释磷量在25-33 mg/L,缺氧段每去除lg NOx-N吸收P约1.3 g;典型周期运行结果显示,厌氧段最大比释磷速率(SRPR)为18.39 mg/(g.h),缺氧段最大比吸磷速率(SUPR)为23.72 mg/(g·h),最大比反硝化速率(SDNR)为18.19mg/(g·h),好氧段最大SUPR为17.15 me,/(g·h):颗粒污泥中DNPAOs的数量由诱导前的14.9%增加到80.7%.与除磷颗粒污泥相比.反硝化聚磷颗粒污泥沉速提高0.16-0.7倍,比重提高0.003 1.  相似文献   

9.
采用两组A/A/O方式运行的SBR反应器,溶解氧分别控制在2~4mg/L(对照组)和6~8mg/L(过量曝气组),通过试验对比研究了过量曝气对聚磷菌厌氧释磷、缺氧吸磷、好氧吸磷性能的影响。结果表明:过量曝气初期,出水磷浓度低于对照组,一周后出水磷浓度开始上升,除磷率下降了18%;过量曝气时,厌氧释磷量是对照组的1.45倍,释磷速率不变,缺氧吸磷量增加,但反硝化聚磷菌的比例减少,好氧吸磷量和吸磷速率均降低,分别为对照组的75%和68%,而内源损耗引起的无效释磷和好氧吸磷能力降低是除磷效果变差的主要原因;过量曝气使污泥的SVI值升高,平均粒径减小,出水SS略优于对照组,污泥的含磷量降低,总磷去除效果变差,长期过量曝气,将会导致生物除磷过程的恶化。  相似文献   

10.
碳源类型、温度及电子受体对生物除磷的影响   总被引:1,自引:1,他引:0  
以中试氧化沟系统活性污泥为研究对象,开展了碳源类型、温度、电子受体和COD浓度对释磷、吸磷过程的影响研究.结果表明:25℃时,以生活污水、乙酸钠和葡萄糖为不同碳源,葡萄糖的释磷、吸磷速率最小,分别为5.12 mg·(g·h)-1和6.43 mg·(g·h)-1,生活污水和乙酸钠的释磷、吸磷速率数值相近.在12、16、20和25℃时,以乙酸钠为碳源,释磷、吸磷速率随温度的升高有不同程度的增加;且好氧吸磷速率随外加COD浓度的增大而减小.当以氧、硝酸盐和亚硝酸盐为电子受体时,吸磷速率的大小排序为:氧硝酸盐亚硝酸盐;缺氧吸磷过程的硝酸盐和亚硝酸盐的消耗量与吸磷量之间的化学计量关系(P吸收/N消耗,质量比)分别为0.96和0.65.  相似文献   

11.
NO-2作为电子受体对反硝化吸磷影响动力学研究   总被引:4,自引:0,他引:4  
在生物除磷系统中NO-2常被认为是反硝化吸收磷过程的抑制剂,而NO-2对反硝化吸磷抑制过程的抑制剂量的结果差别很大,缺乏动力学研究.本研究应用序批式反应器(SBR)在不同的NO-2浓度和pH梯度下进行了反硝化吸收磷试验,其接种活性污泥取自A2/O氧化沟中试反应器.SBR试验步骤为,取氧化沟好氧区活性污泥,先投加乙酸钠释放磷,然后投加NO-2吸收磷.大量试验发现NO-2和pH共同作用对反硝化吸磷产生了抑制.结果表明,[1]在恒定pH下,比反硝化速率和比吸磷速率与初始NO-2浓度均符合Andrews抑制动力学;[2]在6.5相似文献   

12.
亚硝酸盐对A2O系统脱氮除磷的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
在A2O系统中,通过分别向缺氧区和好氧区投加亚硝酸盐的方式,考察和分析了亚硝酸盐的存在对系统脱氮除磷性能的影响.结果表明,系统的硝化、反硝化及除磷性能均对亚硝酸盐的存在比较敏感.亚硝酸盐存在于好氧段时对硝化性能的影响较大,当好氧段亚硝酸盐浓度达到25mg/L时,系统硝化速率仅有5.26mg/(L·h).亚硝酸盐存在于缺氧段时对反硝化性能的抑制作用较大,且当亚硝酸盐长期存在于缺氧段时,系统的反硝化速率降低至11.83mg/(L·h),与正常情况相比下降了60%;亚硝酸盐存在于好氧段时会严重抑制聚磷菌的吸磷能力,系统磷去除率仅有22%.当亚硝酸盐存在于缺氧段时,会引发系统的污泥膨胀问题,导致聚磷菌流失,聚磷菌数量减少到2.02%左右,继而引发系统除磷效果严重恶化.  相似文献   

13.
为了解厌氧/好氧运行的序批式反应器(SBR)中,强化生物除磷(EBPR)与同步硝化反硝化(SND)的耦合脱氮除磷特性,以实际低C/N (约为3.5)生活污水为处理对象,先通过调控进水C/N考察其对EBPR启动和聚磷菌(PAOs)富集情况的影响,再通过调控好氧段DO浓度考察其对系统脱氮除磷性能、SND率及碳源转化特性的影响.结果表明,DO浓度为2.0mg/L,当进水C/N由3.2提高至7.5并降至3.8时,反应器出水PO43--P浓度由3.9mg/L逐渐降至0.5mg/L以下,且厌氧释磷量(PRA)由3.3mg/L逐渐升高至约30mg/L.此后,当DO浓度逐渐降至约1.0mg/L时,SND现象愈加明显,且其与EBPR耦合使得系统总氮(TN)和PO43--P去除率分别提高至85%和94%.但当DO浓度约为0.5mg/L时,硝化过程进行不完全,亚硝酸盐积累较为明显,耦合系统中存在同步短程硝化反硝化现象.DO浓度为约1.0mg/L时,系统具有最高的脱氮除磷性能.此外,当DO浓度由2.0mg/L降至0.5mg/L时,PAOs较聚糖菌(GAOs)在厌氧内碳源储存中的贡献逐渐减小(PPAO,An由30.3%逐渐降至20.2%),PRA降低约7mg/L.DO浓度为1.0~1.5mg/L最有利于系统厌氧段内碳源PHA的合成.  相似文献   

14.
A successful enhanced biological phosphorus removal(EBPR) was observed in both anaerobicaerobic sequencing batch reactor(An-Ox SBR) to induce growth of phosphorus accumulating organism(PAO) and anaerobic-anoxic(An-Ax) SBR to induce growth of denitrifying PAO(DPAO).Although the EBPR performance of An-Ox SBR was higher by 11.3% than that of An-Ax SBR,specific phosphorus release rates in the An-Ax SBR(22.8 ± 3.5 mg P/(g VSS·hr)) and the An-Ox SBR(22.4 ± 4.8 mg P/(g VSS·hr)) were similar. Specific phosphorus uptake rates under anoxic and aerobic conditions were 26.3 ± 4.8 mg P/(g VSS·hr)(An-Ax SBR) and 25.6 ± 2.8 mg P/(g VSS·hr)(An-Ox SBR), respectively, which were also similar. In addition, an analysis of relationship of poly-β-hydroxyalkanoates(PHA) synthesized under anaerobic conditions with phosphorous release(Preleased/PHAsynthesized) and of PHA utilized under anoxic and aerobic conditions with phosphorous uptake(Puptaked/PHAutilized) verified that biological activities of EBPR per unit biomass between DPAO and PAO were similar. An analysis of the specific denitrification rate of DPAO showed that NO-3-N can be denitrified at a rate that does not substantially differ from that of an ordinary denitrifier without additional consumption of organic carbon when the PHA stored inside the cell under anaerobic conditions is sufficiently secured.  相似文献   

15.
为探究游离氨(FA)影响强化生物除磷(EBPR)系统除磷效能的生物学机制,采用SBR反应器,以EBPR系统的活性污泥为研究对象,探究了FA浓度分别为0,0.2,1,4,10,15,25,50 mg/L对EBPR系统除磷效能及菌群结构的影响。结果显示,FA浓度为0.2 mg/L时,对EBPR系统除磷产生促进作用,当FA浓度为1~50 mg/L时,对EBPR系统除磷产生抑制作用;门水平下,变形杆菌门Proteobacteria的丰度随着FA浓度的升高而升高;纲水平下,γ-变形菌纲Gammaproteobacteria的丰度与FA浓度呈正相关;属水平下,聚磷菌Ca. Accumulibacter与 Tetrasphaera相比,Tetrasphaera的丰度变化趋势更符合FA对除磷性能的影响;LEfSe分析显示低、中、高浓度样品的微生物标记物分别为绿弯菌门Chloroflexi、拟杆菌门Bacteroidetes及β-变形菌纲Betaproteobacteriales。研究结果明确了FA对 EBPR 系统影响的过程,加深了对EBPR系统除磷过程菌群结构的认识,可为深入研究生物除磷的抑制机理提供借鉴。  相似文献   

16.
采用强化生物除磷系统(A2/O-MBBR)联合工艺,研究硝化液回流比(100%、150%、200%、300%)对该系统反硝化除磷效果的影响。研究结果表明:在进水ρ(COD)为400 mg/L、ρ(NH+4-N)为30 mg/L、ρ(SOP)为8 mg/L条件下,硝化液回流比对A2/O-MBBR工艺系统中COD、NH+4-N和TN的去除率影响不大,而对缺氧区的吸磷量影响明显,缺氧区吸磷量随着硝化液回流比的增大呈现先上升后下降的趋势。当回流比为200%时,缺氧区的NO-3-N浓度为4mg/L左右,吸磷量最大为20.2 mg/L,胞内聚合物PHB代谢活性最好,利用率最高为1.12 g/(g·L)。体现了A2/OMBBR联合工艺具有显著的反硝化除磷效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号