首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endocrine disrupting chemical(EDC) pollution in river-based artificial groundwater recharge using reclaimed municipal wastewater poses a potential threat to groundwater-based drinking water supplies in Beijing, China. Lab-scale leaching column experiments simulating recharge were conducted to study the adsorption, biodegradation, and transport characteristics of three selected EDCs: 17β-estradiol(E2), 17α-ethinylestradiol(EE2) and bisphenol A(BPA). The three recharge columns were operated under the conditions of continual sterilization recharge(CSR), continual recharge(CR), and wetting and drying alternative recharge(WDAR). The results showed that the attenuation effect of the EDCs was in the order of WDAR CR CSR system and E2 EE2 BPA, which followed first-order kinetics. The EDC attenuation rate constants were 0.0783, 0.0505, and 0.0479 m-1 for E2, EE2 and BPA in the CR system, respectively. The removal rates of E2, EE2, and BPA in the CR system were 98%, 96% and 92%, which mainly depended on biodegradation and were affected by water temperature.In the CR system, the concentrations of BPA, EE2, and E2 in soil were 4, 6 and 10 times higher than in the WDAR system, respectively. According to the DGGE fingerprints, the bacterial community in the bottom layer was more diverse than in the upper layer, which was related to the EDC concentrations in the water-soil system. The dominant group was found to be proteobacteria, including Betaproteobacteria and Alphaproteobacteria, suggesting that these microbes might play an important role in EDC degradation.  相似文献   

2.
Anthropogenic activities usually contaminate water environments, and have led to the eutrophication of many estuaries and shifts in microbial communities. In this study, the temporal and spatial changes of the microbial community in an industrial effluent receiving area in Hangzhou Bay were investigated by 454 pyrosequencing. The bacterial community showed higher richness and biodiversity than the archaeal community in all sediments. Proteobacteria dominated in the bacterial communities of all the samples; Marine_Group_Ⅰ and Methanomicrobia were the two dominant archaeal classes in the effluent receiving area. PCoA and AMOVA revealed strong seasonal but minor spatial changes in both bacterial and archaeal communities in the sediments. The seasonal changes of the bacterial community were less significant than those of the archaeal community, which mainly consisted of fluctuations in abundance of a large proportion of longstanding species rather than the appearance and disappearance of major archaeal species. Temperature was found to positively correlate with the dominant bacteria, Betaproteobacteria, and negatively correlate with the dominant archaea,Marine_Group_Ⅰ; and might be the primary driving force for the seasonal variation of the microbial community.  相似文献   

3.
The effects of Cd^2+ and Cu^2+ at 300 mg/L on anaerobic microbial communities that degrade 2-cholorophenol (2-CP) were examined. Based on the polymerase chain reaction (PCR) of 16S rDNA, bacterial community diversity and archaeal community structure were analyzed with denaturing gradient gel electrophoresis (DGGE) and cloning, respectively. Degradation capabilities of the anaerobic microbial community were drastically abated and the degradation efficiency of 2-CP was reduced to 60% after shock by Cu^2+ and Cd^2+, respectively. The bacterial community structure was disturbed and the biodiversity was reduced after shock by Cu^2+ and Cd^2+ for 3 d. Some new metal-resistant microbes which could cope with the new condition appeared. The sequence analysis showed that there existed common Archaea species in control sludge and systems when treated with Cu^2+ and Cd^2+, such as Methanothrix soehngenii, Methanosaeta concilii, uncultured euryarchaeote, and so on. Both the abundance and diversity of archaeal species were altered with addition of Cd^2+ and Cu^2+ at high concentration. Although the abundance of the predominant archaeal species decreased with Cd^2+ and Cu^2+ addition for 3 d, they recovered to some extent after 10 d. The diversity of archaeal species was remarkably reduced after recovery for 10 d and the shift in archaeal composition seemed to be irreversible. The 2-CP-degradation anaerobic system was more sensitive to Cu^2+ than Cd^2+.  相似文献   

4.
Biological risks of bioaerosols emitted from wastewater treatment processes have attracted wide attention in the recent years. However, the culture-based analysis method has been mostly adopted for detecting the bacterial community in bioaerosols, which may result in the underestimation of total microorganism concentration as not all microorganisms are cultivable. In this study, oligonucleotide fingerprinting of 16S rRNA genes was applied to reveal the composition and structure of the bacterial community in bioaerosols from an Orbal oxidation ditch in a Beijing wastewater treatment plant (WWTP). Bioaerosols were collected at different distances from the aerosol source, rotating brushes, and the sampling height was 1.5 m which is the common respiratory height of a human being. The bacterial communities of bioaerosols were diverse, and the lowest bacterial diversity was found at the sampling site just after the rotating brush rotating brush. A large proportion of bacteria in bioaerosols were affiliated with Proteobacteria and Bacteroidetes. Numerous bacteria present in the bioaerosols also emerged in water, indicating that the bacterial community in the bioaerosols was related to that of the aerosols’ sources. The forced aeration of rotating brushes brought about observably distinct bacterial communities between sampling sites situated before and after the rotating brush. Isolation sources of closest relatives in bioaerosols clone libraries were associated with the aqueous environment in the WWTP. Common potential pathogens in bioaerosols as well as those not reported in previous research were also analyzed in this study. Measures should be adopted to reduce the emission of bioaerosols and prevent their exposure to workers.  相似文献   

5.
Fungicides have been used extensively for controlling fungal pathogens of plants. However, little is known regarding the effects that fungicides upon the indigenous bacterial communities within the plant phyllosphere. The aims of this study were to assess the impact of fungicide enostroburin upon bacterial communities in wheat phyllosphere. Culture-independent methodologies of 16S rDNA clone library and 16S rDNA directed polymerase chain reaction with denaturing gradient gel electrophoresis (PCR-DGGE) were used for monitoring the change of bacterial community. The 16S rDNA clone library and PCR-DGGE analysis both confirmed the microbial community of wheat plant phyllosphere were predominantly of the γ-Proteobacteria phyla. Results from PCR-DGGE analysis indicated a significant change in bacterial community structure within the phyllosphere following fungicide enostroburin application. Bands sequenced within control cultures were predominantly of Pseudomonas genus, but those bands sequenced in the treated samples were predominantly strains of Pantoea genus and Pseudomonas genus. Of interest was the appearance of two DGGE bands following fungicide treatment, one of which had sequence similarities (98%) to Pantoea sp. which might be a competitor of plant pathogens. This study revealed the wheat phyllosphere bacterial community composition and a shift in the bacterial community following fungicide enostroburin application.  相似文献   

6.
Bacterial diversity in soils around a lead and zinc mine   总被引:1,自引:0,他引:1  
Five samples of soil collected from a lead and zinc mine were used to assess the effect of combined contamination of heavy metals on soil bacterial communities using a polyphasic approach including characterization of isolates by culture method, community level catabolic profiling in BIOLOG GN microplates, and genetic community fingerprinting by denaturing gradient gel electrophoresis of 16S rDNA fragments amplified by PCR from community DNA (PCR-DGGE). The structure of the bacterial community was affected to a certain extent by heavy metals. The PCR-DGGE analysis of 16S rRNA genes showed that there were significant differences in the structure of the microbial community among the soil samples, which were related to the contamination levels. The number of bacteria and the number of denaturing gradient gel electrophoresis (DGGE) bands in the soils increased with increasing distance from the lead and zinc mine tailing, whereas the concentration of lead (Pb) and cadmium (Cd) was decreased. Heavily polluted soils could be characterized by a community that differs from those of lightly polluted soils in richness and structure of dominating bacterial populations. The clustering analysis of the DGGE profiles showed that the bacteria in all the five samples of soil belonged to three clusters. The data from the BIOLOG analysis also showed the same result. This study showed that heavy metal contamination decreased both the biomass and diversity of the bacterial community in soil.  相似文献   

7.
In groundwater, deep soil layer, sediment, the widespread of xenobiotic organic contaminants (XOCs) have been leading to the concern of human health and eco-environment safety, which calls for a better understanding on the fate and remediation of XOCs in anoxic matrices. In the absence of oxygen, bacteria utilize various oxidized substances, e.g. nitrate, sulphate, metallic (hydr)oxides, humic substance, as terminal electron acceptors (TEAs) to fuel anaerobic XOCs degradation. Although there have been increasing anaerobic biodegradation studies focusing on species identification, degrading pathways, community dynamics, systematic reviews on the underlying mechanism of anaerobic contaminants removal from the perspective of electron flow are limited. In this review, we provide the insight on anaerobic biodegradation from electrons aspect — electron production, transport, and consumption. The mechanism of the coupling between TEAs reduction and pollutants degradation is deconstructed in the level of community, pure culture, and cellular biochemistry. Hereby, relevant strategies to promote anaerobic biodegradation are proposed for guiding to an efficient XOCs bioremediation.  相似文献   

8.
A sequencing batch reactor(SBR)-anaerobic ammonium oxidation(anammox) system was started up with the paddy soil as inoculated sludge. The key microbial community structure in the system along with the enrichment time was investigated by using molecular biology methods(e.g., high-throughput 16 S r RNA gene sequencing and quantitative PCR). Meanwhile,the influent and effluent water quality was continuously monitored during the whole start-up stage. The results showed that the microbial diversity decreased as the operation time initially and increased afterwards, and the microbial niches in the system were redistributed. The anammox bacterial community structure in the SBR-anammox system shifted during the enrichment, the most dominant anammox bacteria were Candidatus Jettenia. The maximum biomass of anammox bacteria achieved 1.68 × 10~9 copies/g dry sludge during the enrichment period, and the highest removal rate of TN achieved around 75%.  相似文献   

9.
The response of bacteria to various carbohydrates in the deep-sea sediments and the Antarctic soils was investigated using cellulose, chitin, and olive oil. It was found that the carbohydrates significantly increased the corresponding specific ectoenzyme activity (β- glucosidase, β-N-acetylglucosaminidase, lipase) in the samples from deep-sea sediments. In the case of Antarctic soil samples, the cellulose or olive oil amendments had minor or no effect on β-glucosidase or lipase activity, except the chitin which stimulated β- N-acetylglucosaminidase production. The responses of the bacteria in the deep-sea sediment sample WP02-3 and the Antarctic soil sample CC-TY2 towards the chitin amendment were further analyzed. Chitin amendments were shown to stimulate the ectoenzyme activity in all the tested sediments and the soils. The bacterial response before and after the carbohydrates amendments were compared by denaturing gradient gel electrophoresis and quantitative competitive polymerase chain reaction. Significant changes were found in the structure and density of the bacterial community in the deep sea sediments as compared to the Antarctic soil sample, where the effects were relatively lower. There was no change in the bacterial population in both studied samples in response to carbohydrates amendments. These data indicate that the bacterial communities in the oligotrophic deep-sea sediments are more dynamic than that in the Antarctic soils as they respond to the nutrient sources efficiently by regulation of ectoenzyme activity and/or changing community structure.  相似文献   

10.
With 110-d incubation experiment in laboratory,the responses of microbial quantity,soil enzymatic activity,and bacterial community structure to different amounts of diesel fuel amendments were studied to reveal whether certain biological and biochemical characteristics could serve as reliable indicators of petroleum hydrocarbon contamination in meadow-brown soil,and use these indicators to evaluate the actual ecological impacts of 50-year petroleum-refining wastewater irrigation on soil function in Sbenfu irrigation area.Results showed that amendments of≤1000 mg/kg diesel fuel stimulated the growth of aerobic beterotrophic bacteria,and increased the activity of soil dehydrogenase,hydrogenperoxidase,polypbenol oxidase and substrate-induced respiration.Soil bacterial diversity decreased slightly during the first 15 d of incubation and recovered to the control level on day 30.The significant decrease of the colony forming units of soil actinomyces and filamentous fungi can be taken as the sensitive biological indicators of petroleum contamination when soil was amended with≥5000 mg/kg diesel fuel.The sharp decrease in urease activity was recommended as the most sensitive biochemical indicator of heavy diesel fuel contamination.The shifts in community structure to a community documented by Sphingomonadaceae withinα-subgroup of Proteobacteria could be served as a sensitive and precise indicator of diesel fuel contamination.Based on the results described in this paper,the soil function in Shenfu irrigation area was disturbed to some extent.  相似文献   

11.
The dynamic change of microbial community during sludge acclimation from aerobic to anaerobic in a MBR for coking wastewater treatment was revealed by Illumina Miseq sequencing in this study. The diversity of both Bacteria and Archaea showed an increase–decrease trajectory during acclimation, and exhibited the highest at the domestication interim. Ignavibacteria changed from a tiny minority(less than 1%) to the dominant bacterial group(54.0%) along with acclimation. The relative abundance of Betaproteobacteria kept relatively steady, as in this class some species increased coupled with some other species decreased during acclimation. The dominant Archaea shifted from Halobacteria in initial aerobic sludge to Methanobacteria in the acclimated anaerobic sludge. The dominant bacterial and archaeal groups in different acclimation stages were indigenous microorganisms in the initial sludge, though some of them were very rare. This study supported that the species in"rare biosphere" might eventually become dominant in response to environmental change.  相似文献   

12.
The nirS-type denitrifying bacterial community is the main drivers of the nitrogen loss process in drinking water reservoir ecosystems.The temporal patterns in nirS gene abundance and nirS-type denitrifying bacterial community harbored in aerobic water layers of drinking water reservoirs have not been studied well.In this study,quantitative polymerase chain reaction (qPCR) and Illumina Miseq sequencing were employed to explore the nirS gene abundance and denitrifying bacterial community structur...  相似文献   

13.
Biofilm formation, one of the primary causes of biofouling, results in reduced membrane flux or increased transmembrane pressure and thus represents a major impediment to the wider implementation of membrane bioreactor(MBR) technologies for water purification. Most studies have focused on the role of bacteria in membrane fouling as they are the most dominant and best studied organisms present in the MBR. In contrast, there is limited information on the role of the archaeal community in biofilm formation in MBRs. This study investigated the composition of the archaeal community during the process of biofouling in an MBR. The archaeal community was observed to have lower richness and diversity in the biofilm than the sludge during the establishment of biofilms at low transmembrane pressure(TMP). Clustering of the communities based on the Bray–Curtis similarity matrix indicated that a subset of the sludge archaeal community formed the initial biofilms. The archaeal community in the biofilm was mainly composed of Thermoprotei, Thermoplasmata,Thermococci, Methanopyri, Methanomicrobia and Halobacteria. Among them, the Thermoprotei and Thermoplasmata were present at higher relative proportions in the biofilms than they were in the sludge. Additionally, the Thermoprotei, Thermoplasmata and Thermococci were the dominant organisms detected in the initial biofilms at low TMP, while as the TMP increased, the Methanopyri, Methanomicrobia, Aciduliprofundum and Halobacteria were present at higher abundances in the biofilms at high TMP.  相似文献   

14.
Characterization of the archaeal community fouling a membrane bioreactor   总被引:1,自引:0,他引:1  
Biofilmformation, one of the primary causes of biofouling, results in reducedmembrane flux or increased transmembrane pressure and thus represents a major impediment to the wider implementation of membrane bioreactor (MBR) technologies for water purification. Most studies have focused on the role of bacteria in membrane fouling as they are the most dominant and best studied organisms present in the MBR. In contrast, there is limited information on the role of the archaeal community in biofilm formation in MBRs. This study investigated the composition of the archaeal community during the process of biofouling in an MBR. The archaeal community was observed to have lower richness and diversity in the biofilmthan the sludge during the establishment of biofilms at low transmembrane pressure (TMP). Clustering of the communities based on the Bray-Curtis similarity matrix indicated that a subset of the sludge archaeal community formed the initial biofilms. The archaeal community in the biofilm was mainly composed of Thermoprotei, Thermoplasmata, Thermococci, Methanopyri, Methanomicrobia and Halobacteria. Among them, the Thermoprotei and Thermoplasmata were present at higher relative proportions in the biofilms than they were in the sludge. Additionally, the Thermoprotei, Thermoplasmata and Thermococci were the dominant organisms detected in the initial biofilms at low TMP, while as the TMP increased, the Methanopyri, Methanomicrobia, Aciduliprofundum and Halobacteria were present at higher abundances in the biofilms at high TMP.  相似文献   

15.
Microbial enzymes are crucial for material biotransformation during the composting process. In this study, we investigated the effects of adding bamboo charcoal (BC) (i.e., at 5%, 10%, and 20% corresponding to BC5, BC10, and BC20, respectively) on the enzyme activity levels during chicken manure composting. The results showed that BC10 could increase the cellulose and urease activities by 56% and 96%, respectively. The bacterial community structure in BC10 differed from those in the other treatments, and Luteivirga, Lactobacillus, Paenalcaligenes, Ulvibacter, Bacillus, Facklamia, Pelagibacterium, Sporosarcina, Cellvibrio, and Corynebacterium had the most important roles in composting. Compared with other treatments, BC10 significantly enhanced the average rates of degradation of carbohydrates (D-xylose (40%) and α-D-lactose (44%)) and amino acids (L-arginine (16%), L-asparagine (14%), and L-threonine (52%)). We also explored the associations among the bacterial community and their metabolic functions with the changes in the activities of enzymes. Network analysis demonstrated that BC10 altered the co-occurrence patterns of the bacterial communities, where Ulvibacter and class Bacilli were the keystone bacterial taxa with high capacities for degrading carbon source, and they were related to increases in the activities of cellulase and urease, respectively. The results obtained in this study may help to further enhance the efficiency of composting.  相似文献   

16.
Wastewater treatment plants(WWTPs) are deemed reservoirs of antibiotic resistance genes(ARGs). Bacterial phylogeny can shape the resistome in activated sludge. However, the co-occurrence and interaction of ARGs abundance and bacterial communities in different WWTPs located at continental scales are still not comprehensively understood. Here, we applied quantitative PCR and Miseq sequence approaches to unveil the changing profiles of ARGs(sul1, sul2, tet W, tet Q, tet X), int I1 gene, and bacterial communities in 18 geographically distributed WWTPs. The results showed that the average relative abundance of sul1 and sul2 genes were 2.08 × 10~(-1) and 1.32 × 10~(-1) copies/16 S rRNA copies, respectively. The abundance of tet W gene was positively correlated with the Shannon diversity index(H′), while both studied sul genes had significant positive relationship with the int I1 gene. The highest average relative abundances of sul1, sul2, tet X, and int I1 genes were found in south region and oxidation ditch system. Network analysis found that 16 bacterial genera co-occurred with tet W gene. Co-occurrence patterns were revealed distinct community interactions between aerobic/anoxic/aerobic and oxidation ditch systems. The redundancy analysis model plot of the bacterial community composition clearly demonstrated that the sludge samples were significant differences among those from the different geographical areas,and the shifts in bacterial community composition were correlated with ARGs. Together,these findings from the present study will highlight the potential risks of ARGs and bacterial populations carrying these ARGs, and enable the development of suitable technique to control the dissemination of ARGs from WWTPs into aquatic environments.  相似文献   

17.
Actinobacterial community is a conspicuous part of aquatic ecosystems and displays an important role in the case of biogeochemical cycle, but little is known about the seasonal variation of actinobacterial community in reservoir ecological environment. In this study,the high-throughput techniques were used to investigate the structure of the aquatic actinobacterial community and its inducing water quality parameters in different seasons. The results showed that the highest diversity and abundanc...  相似文献   

18.
The bacterial community structures in two sewage treatment plants with different processes and performance were investigated by denaturing gradient gel electrophoresis (DGGE) of nested polymerase chain reaction (nested PCR) amplified 16S rRNA gene fragments with group-specific primers. Samples of raw sewage and treated effluents were amplified using the whole-cell PCR method, and the activated sludge samples were amplified using the extracted genomic DNA before the PCR products were loaded on the same DGGE gel for bacterial community analysis. Ammonia-oxidizing bacterial and actinomycetic community analysis were also carried out to investigate the relationship between specific population structures and system or sludge performance. The two plants demonstrated a similarity in bacterial community structures of raw sewage and activated sludge, but they had different effluent populations. Many dominant bacterial populations of raw sewage did not appear in the activated sludge samples, suggesting that the dominant bacterial populations in raw sewage might not play an important role during wastewater treatment. Although the two plants had different sludge properties in terms of settleability and foam forming ability, they demonstrated similar actinomycetic community structures. For activated sludge with bad settling performance, the treated water presented a similar DGGE pattern with that of activated sludge, indicating the nonselective washout of bacteria from the system. The plant with better ammonium removal efficiency showed higher ammonia-oxidizing bacteria species richness. Analysis of sequencing results showed that the major populations in raw sewage were uncultured bacterium, while in activated sludge the predominant populations were beta proteobacteria.  相似文献   

19.
The recently discovered endosulfan-degrading bacterial strain Alcaligenesfaecalis JBW4 was isolated from activated sludge. This strain is able to use endosulfan as a carbon and energy source. The optimal conditions for the growth of strain JBW4 and for biodegradation by this strain were identified, and the metabolic products of endosulfan degradation were studied in detail. The maximum level of endosulfan biodegradation by strain JBW4 was obtained using broth at an initial pH of 7.0, an incubation temperature of 40℃ and an endosulfan concentration of I00 mg/L. The concentration of endosulfan was determined by gas chromatography. Strain JBW4 was able to degrade 87.5% of α-endosulfan and 83.9% of β-endosulfan within 5 days. These degradation rates are much higher than the previously reported bacterial strains. Endosulfan diol and endosulfan lactone were the major metabolites detected by gas chromatography-mass spectrometry; endosulfan sulfate, which is a persistent and toxic metabolite, was not detected. These results suggested that A. faecalis JBW4 degrades endosulfan via a non-oxidative pathway. The biodegradation of endosulfan by A. faecalis is reported for the first time. Additionally, the present study indicates that strain JBW4 may have potential for the biodegradation of endosulfan residues.  相似文献   

20.
Urban villages are unique residential neighborhoods in urban areas in China. Roof tanks are their main form of water supply, and water quality deterioration might occur in this system because of poor hygienic conditions and maintenance. In this study, water samples were seasonally collected from an urban village to investigate the influence of roof tanks as an additional water storage device on the variation in the microbial community structure and pathogenic gene markers. Water stagnation in th...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号