首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
砷是地下水中最常见的污染物之一,过量摄入会严重危害人体健康。含铁矿物可以高效去除水中的As。以天然磁黄铁矿为As(Ⅲ)吸附剂,研究了吸附过程中的动力学、等温线和热力学,以及pH、无机阴离子对As(Ⅲ)吸附去除的影响。结果表明:磁黄铁矿对As(Ⅲ)的吸附在48 h可达到平衡;吸附过程符合Langmuir等温模型,在As(Ⅲ)初始浓度为1~200 mg/L,23~33 ℃下,天然磁黄铁矿对As(Ⅲ)的饱和吸附量(以As计)为3.5~4.5 mg/g;吸附量随着温度升高而增大,吸附过程表现为自发吸热熵增反应;在pH为7时,吸附效果达到最佳去除率(95.51±0.30)%;PO43-对吸附有明显的抑制作用。X射线电子能谱分析表明,吸附过程包括物理吸附和化学吸附,即包括矿物自身缺陷结构导致的位点吸引、As和S配位离子交换及氧化还原产物羟基氧化铁的配位沉淀。表明利用磁黄铁矿吸附As(Ⅲ),简化了传统材料和方法上将As(Ⅲ)氧化为As(Ⅴ)的烦琐步骤,有较好应用前景。  相似文献   

2.
铝改性粉煤灰漂珠吸附水溶液中砷的性能研究   总被引:3,自引:1,他引:2       下载免费PDF全文
采用湿法与干法相结合的方法合成铝改性粉煤灰漂珠环境材料,借助静态吸附实验研究吸附剂量、pH值、离子强度、共存离子、反应时间和温度对其吸附水溶液中砷性能的影响,并进行吸附等温线和动力学拟合.结果表明:铝改性粉煤灰漂珠吸附水中As(V)的最佳pH值范围为中性偏酸;混合离子和H2PO4-对As(V)的吸附影响较大,CO32-次之;离子强度对As(V)吸附的影响不明显;在温度298K、吸附剂量2.5g/L和反应时间24h的条件下,最大吸附容量约5000μg/g;吸附等温线符合Langmuir单层吸附模型;动力学过程符合准二级动力学模型.  相似文献   

3.
基于自组装原理混合了氧化石墨烯、壳聚糖和FeCl_3·6H_2O,并使用NaOH溶液固定,戊二醛-甲醇溶液交联后得到了不同载铁量的载铁氧化石墨烯壳聚糖(Fe@GOCS)球形材料,采用静态吸附实验研究其对水溶液中As(Ⅲ)的吸附去除及机制.结果表明,吸附剂负载的铁以α-FeO(OH)形态为主,对As(Ⅲ)的吸附容量随pH的降低呈上升趋势,实验最佳pH值为3.在温度298.15、 308.15和318.15 K且pH值为3条件下,As(Ⅲ)的吸附反应在45 h左右达到平衡,吸附剂最佳投加量为1.0 g·L~(-1),最大吸附容量可达289.4mg·g~(-1). 5次吸附-解吸附后,吸附容量未下降,反而呈上升趋势.热力学结果显示:ΔG~θ0、ΔS~θ0和ΔH~θ0,表明Fe@GOCS对As(Ⅲ)的吸附过程是吸热和熵增的自发反应,升温利于吸附;吸附过程符合伪二级动力学方程,Freundlich和Sips等温吸附模型能更好地描述对As(Ⅲ)的吸附行为.结合材料表征测试结果,认为离子交换和表面络合是Fe@GOCS去除As(Ⅲ)的主要机制.  相似文献   

4.
利用粉煤灰合成Linde type F(K)沸石吸附重金属Zn2+,考察吸附剂量、pH值、反应温度对Zn 2+吸附效果影响,研究沸石吸附Zn2+的等温线与动力学,得到了相应的模型。结果表明:吸附剂量、pH值、反应温度均对Zn2+去除效果影响显著。随着吸附剂量增大,Zn 2+去除效果不断提高,饱和吸附量逐渐减小。初始pH值为3~7时,沸石对Zn2+去除率随pH值升高迅速提高。反应温度越高,沸石吸附Zn2+到达平衡时间越短。沸石对Zn2+吸附过程符合Langmuir吸附等温式,其吸附为单分子层吸附;准二级反应动力学方程能很好描述沸石对Zn2+的吸附行为。  相似文献   

5.
负载型纳米铁吸附剂去除饮用水中As(Ⅴ)的研究   总被引:7,自引:2,他引:5  
朱慧杰  贾永锋  姚淑华  吴星  王淑莹 《环境科学》2009,30(12):3562-3567
以活性炭为载体制备了一种负载型纳米铁吸附剂.纳米铁在活性炭孔内为针状,其直径为30~500 nm,长度为1 000~3 000 nm,载入量[m(Fe)/m(炭)]为82.1 mg/g.用1.5 g/L该吸附剂对pH 6.5、 (25±2)℃、 2 mg/L的As(Ⅴ)进行吸附其去除率为99.5%,在平衡浓度1.0 mg/L时,该吸附剂对As(Ⅴ)的吸附容量为15.4 mg/g;吸附速度较快,12 h可达91.4%,72 h达到吸附平衡.吸附过程可由孔内扩散模型较好地说明.除PO_4~(3-)、SiO_4~(2-)外其它常见阴阳离子均对As(Ⅴ)的去除影响不大.吸附剂可以用0.1 mol/L NaOH溶液再生,再生效率较高.实验室初步实验数据表明,该吸附剂对饮用水砷去除具有较好的应用前景.  相似文献   

6.
石松  吴乾元  李新正  黄满红 《环境科学》2020,41(9):4124-4132
比较了3种铁矿石(黄铁矿、赤铁矿和磁铁矿)对于五价锑[Sb(Ⅴ)]的吸附效果,选用效果最好的黄铁矿作为Sb(Ⅴ)的吸附剂,考察了黄铁矿粒径、投加量和pH对吸附效果的影响.结果表明,当Sb(Ⅴ)初始浓度在90~100μg·L~(-1)时,黄铁矿粒径200M(过200目筛,0.074 mm)、投加量1 g·L~(-1)和pH=7时吸附效果最好,对Sb(Ⅴ)的去除率在80%以上;离子竞争实验结果表明,PO_4~(3-)对吸附Sb(Ⅴ)有抑制作用,而SO_4~(2-)和CO_3~(2-)对吸附Sb(Ⅴ)无明显不利影响,这可能是因为PO_4~(3-)会与Sb(Ⅴ)竞争黄铁矿表面的活性配位吸附点;准二级动力学模型和Langmuir模型能更好地模拟吸附过程,表明吸附过程是单层吸附行为,主要作用是化学吸附;红外分析表明黄铁矿对Sb(Ⅴ)的去除过程是配位离子交换反应; EDS与XPS数据证实锑被吸附到黄铁矿表面,并且没有被还原成毒性更高的三价锑[Sb(Ⅲ)].  相似文献   

7.
人工合成铁、铝矿对As(V)吸附的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用批实验方法研究了人工合成铁、铝矿物对As(V)的吸附,考察吸附时间及溶液pH值对As(V)吸附的影响.结果表明,不同类型铁、铝矿对As(V)的吸附量均表现出随初始As(V)浓度(0.1~100mg/L)的增加而增加的趋势,其中水铁矿的吸附量在整个浓度范围内始终呈上升趋势,初始浓度为100mg/L As(V)时的吸附量为22.56mg/g,而针铁矿、水铝矿和赤铁矿的吸附量在低初始浓度时上升较快,随浓度升高上升幅度减缓直至平衡,其中赤铁矿的吸附量最小,100mg/L As(V)时的吸附量为4.75mg/g.Freundlich方程对吸附数据的拟合效果优于Langmuir方程,吸附能力表现为水铁矿最高,水铝矿和针铁矿相近,赤铁矿较低.随着吸附时间的增加,4种铁、铝矿物对As(V)的吸附量都逐渐增加,尤其是水铁矿,10min内即达到平衡吸附量的96.3%;水铝矿和针铁矿在48h时吸附量分别为平衡吸附量的97.2%和97.4%;赤铁矿则需96h才基本达到平衡.除水铁矿外,4种动力学方程对其他矿物动力学曲线的拟合均较好,尤其是双常数方程.pH值对矿物吸附As(V)的影响受As(V)初始浓度的影响,初始浓度较低时,铁、铝矿的吸附量仅在极碱条件下(pH>10)降低,而初始浓度较高时则表现为随pH值升高直线下降的趋势.  相似文献   

8.
载铁(β-FeOOH)球形棉纤维素吸附剂去除地下水As(Ⅴ)的研究   总被引:4,自引:2,他引:2  
制备了一种载铁(β- FeOOH)球形棉纤维素吸附剂,球珠孔隙度大,强度好,活性成分铁的载入量可高达360mg/mL ,(质量分数达50%) ,活性好.研究表明,当铁含量为220mg/mL时,该吸附剂对As(V)的最大吸附量为15.6mg/mL(33.2mg/g) ,Langmuir和Freundlich方程能很好地描述吸附等温线.吸附速度较快,10h可达到吸附平衡,吸附动力学符合Lagergren二级方程.SiO32- ,SO42-,Cl-干扰离子均不影响砷的去除.柱吸附实验表明,空床停留时间为5.9min ,进水As(V)浓度为500μg/L时,As(V)的穿透体积为5000BV .吸附剂可以用1.5mol·L-1 NaOH再生,洗脱和再生效率可达90%以上.活性成分β-FeOOH形态稳定,柱操作和再生时铁无溶出.吸附剂制备方法简单,新颖,对地下水和饮用水砷去除具有较好的应用前景.  相似文献   

9.
采用还原-共沉淀法制备了无定型纳米复合Fe-Ti氧化物(FFT)吸附剂,并研究其对水中低浓度As(Ⅴ)的去除性能.XRD表征结果表明,制备的纳米FFT物相为无定型,BET比表面积达325.3 m2·g-1,计算得到的BJH吸附平均孔径为2.46 nm(4V/A),颗粒分布均匀.同时,考察了纳米FFT吸附As(Ⅴ)的动力学、热力学、吸附等温线,以及温度、水中共存离子对其去除As(Ⅴ)的影响.结果发现,纳米FFT对As(Ⅴ)的吸附符合拟二级动力学模型,计算出的孔道扩散系数DP在10-11~10-13cm2·s-1之间,显示孔扩散是速率限速步骤.Langmuir、Freundlich和DubininRadushkevich(D-R)吸附等温式均可较好地拟合吸附行为,低浓度下Langmuir吸附模型计算出的Qm达到26.46 mg·g-1.最后,研究了地下水中常见的共存离子对吸附的影响,发现Ca2+、Mg2+能够促进吸附,H2PO-4和HCO-3则明显抑制吸附过程.  相似文献   

10.
施氏矿物是天然的砷吸附剂,但其存在酸性条件下对As(III)吸附性能较弱且无法对As(III)氧化降毒的缺陷. 采用液相沉淀法成功制备出锰氧化物负载施氏矿物(MnOx@Sch),研究锰负载量、初始pH值和共存离子对MnOx@Sch去除As(III)的影响,并采用吸附动力学结合XPS、FTIR及TEM等表征探究该过程的机理. 结果表明:在初始pH=3、投加量为0.5 g·L-1、As(III)初始浓度为1 mg·L-1的条件下,As(III)与MnOx@Sch反应后的剩余浓度仅为2.42~3.38 μg·L-1.MnOx@Sch去除As(III)受初始pH影响较小,H2PO4-共存时As(III)去除存在明显的抑制作用. MnOx@Sch 去除As(III)的过程符合准二级动力学方程和颗粒内扩散方程. 液相化学组分和固相产物表征分析显示MnOx@Sch对As(III)的去除机理可概括为As(III)氧化、静电吸附和络合配位及配体交换. 研究结果可为施氏矿物及其改性材料应用于酸性矿山废水砷污染治理提供理论依据.  相似文献   

11.
Soil contaminated with heavy metals cadmium(Cd)and lead(Pb)is hard to be remediated.Phytoremediation may be a feasible method to remove toxic metals from soil,but there are few suitable plants which can hyperaccumulate metals.In this study,Cd and Pb accumulation by four plants including sunflower(Helianthus annuus L.),mustard(Brassica juncea L.),alfalfa(Medicago sativa L.), ricinus(Ricinus communis L.)in hydroponic cultures was compared.Results showed that these plants could phytocxtract heavy metals, the ability of accumulation differed with species,concentrations and categories of heavy metals.Values of BCF(bioconcentration factor)and TF(translocation factor)indicated that four species had dissimilar abilities of phytoextraction and transportation of heavy metals.Changes on the biomass of plants,pH and Eh at different treatments revealed that these four plants had distinct responses to Cd and Pb in cultures.Measurements should be taken to improve the phytoremediation of sites contaminated with heavy metals,such as pH and Eh regulations,and so forth.  相似文献   

12.
The oxidation of As(Ⅲ) with potassium permanganate was studied under conditions including pH, initial As(Ⅲ) concentration and dosage of Mn(Ⅶ). The results have shown that potassium permanganate was an effective agent for oxidizing of As(Ⅲ) in a wide pH range. The pH value of tested water was not a significant factor affecting the oxidation of As(Ⅲ) by Mn(Ⅶ). Although theoretical redox analyses suggest that Mn(Ⅶ) should have better performance in oxidization of As(Ⅲ) within lower pH ranges, the experimental results show that the oxidation efficiencies of As(Ⅲ) under basic and acidic conditions were similar, which may be due to the adsorption of As(Ⅲ) on the Mn(OH)2 and MnO2 resulting from the oxidation of As(Ⅲ).  相似文献   

13.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

14.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

15.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

16.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

17.
The Xijiang River is the major source of water for about 4.5 millions of urban population and 28.7 millions of rural population. The water quality is very important for the health of the rural population. The concentration and distribution of chlorobenzenes (CBs) in both water and waterweeds collected from 4 stations in the Xijiang River (Gangdong section) of the Pearl River in April and November were determined. The result showed that nearly every congener of CBs was detected. The total contents of CBs (∑CBs) in the river water ranged from 111.1 to 360.0 ng/L in April and from 151.9 to 481.7 ng/L in November, respectively. The pollution level of CBs in the water in April was higher than that in November. The contents of ∑ CBs in waterweeds ranged from 13.53×102 μg/g to 38.27×102μg/g dry weight (dw). There was no significant difference between April and November in waterweeds. The distribution of CBs in roots, caulis, and leaves of Vallisneria spiralis L. showed different patterns. The leaves mainly contained low-molecular-weight CBs(DCBs), whereas the roots accumulated more PCBs and HCBs. The average lgBCFlip (bioconcentration factor) of CBs ranged from 0.64 to 3.57 in the waterweeds. The spatial distribution character of CBs in the Xijiang River was: Fengkai County < Yunan County <Yun'an County < Gaoyao County according to the ∑CBs, and the pollution deteriorated from the upstream to the downstream of the Xijiang River. Further analysis demonstrated that the discharge of waste containing CBs may be the main source of CBs pollution in the Xijiang River.  相似文献   

18.
Degradation of 2,4-dichlorophenol(2,4-DCP)was studied in a novel three-electrode photoelectrocatalytic(PEC)integrative oxidation process,and the factors influencing the degradation rate,such as applied current,flow speed of O_2,pH,adscititious voltage and initial 2,4-DCP concentration were investigated and optimized.H_2O_2 was produced nearby cathode and Fe~(2 )continuously generated from Fe anode in solution when current and O_2 were applied,so,main reactions,H_2O_2-assisted TiO_2 PEC oxidation and E-Fenton reaction,occurred during degradation of 2,4-DCP in this integrative system.The degradation ratio of 2,4-DCP was 93% in this integrative oxidation process,while it was only 31% in E-Fenton process and 46% in H_2O_2-assisted TiO_2 PEC process.So,it revealed that the degradation of 2,4-DCP was improved greatly by photoelectrical cooperation effect.By the investigation of pH,it showed that this integrative process could work well in a wide pH range from pH 3 to pH 9.  相似文献   

19.
The influence of coexisting copper (Cu) ion on the degradation of pesticides pyrethroid cypermethrin and cyhalothrin in soil and photodegradation in water system were studied.Serial concentrations of the pesticides with the addition of copper ion were spiked in the soil and incubated for a regular period of time,the analysis of the extracts from the soil was carried out using gas chromatography (GC).The photodegradation of pyrethroids in water system was conducted under UV irradiation.The effect of Cu~(2 ) on the pesticides degradation was measured with half life (t_(0.5)) of degradation.It was found that a negative correlation between the degradation of the pyrethroid pesticides in soil and Cu addition was observed.But Cu~(2 ) could accelerate photodegradation of the pyrethroids in water.The t_(0.5) for cyhalothrin extended from 6.7 to 6.8 d while for cypermethrin extended from 8.1 to 10.9 d with the presence of copper ion in soil.As for photodegradation,t_(0.5) for cyhalothrin reduced from 173.3 to 115.5 rain and for cypermethrin from 115.5 to 99.0 min.The results suggested that copper influenced the degradation of the pesticides in soil by affecting the activity of microorganisms.However, it had catalyst tendency for photodegradation in water system.The difference for the degradation efficiency of pyrethroid isomers in soil was also observed.Copper could obviously accelerate the degradation of some special isomers.  相似文献   

20.
以三峡大学的校园河道求索溪为研究对象,利用综合水质标识指数法确定求索溪水质类别,分析其水质时空变化规律,并利用对应分析法得出求索溪中不同监测点的主要污染因子.研究结果表明:求索溪整体的综合水质标识指数为7.423,整体水质为劣V类(地表水环境质量标准GB 3838-2002)且黑臭.从时间变化来看,求索溪4月份的水质最差,5月份次之,4、5月份所有监测点的水质都劣于V类且黑臭;8月份水质最好,水质为Ⅳ类;从空间分布来看,8个监测点综合水质标识指数均超过6.0,水质为劣V类,其中6号监测点的水质相对最好,监测点3号的水质相对最差;对应分析法得出求索溪的整体水体污染程度受总氮因子的影响最大,其次为总磷.该研究拟为求索溪及类似校园河道的水环境治理研究提供基础依据和参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号