首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
滇池沉积物中多环芳烃赋存状态及其再分配的初步研究   总被引:1,自引:0,他引:1  
利用索氏抽提、Tenax部分萃取和沉积物的粒度和密度分离等方法对滇池沉积物中多环芳烃(PAHs)的赋存状态及其再分配进行了研究。研究结果表明:滇池沉积物中PAHs主要存在于小粒度和低密度的组分中;尽管PAHs在粒度分布上存在一定的差异,但沉积物中碳质吸附剂的组成和含量才是决定PAHs在沉积物中赋存状态的主要因素;由于PAHs与沉积物中不同吸附剂相互作用的差异,随着时间的推移,沉积物中的PAHs存在一个再分配过程,吸附在无定形有机质和无机矿物等弱吸附剂上的PAHs逐渐向黑炭、焦炭等碳质吸附剂上转移,导致沉积物中的PAHs慢慢被锁定,因而其生物有效性也逐渐下降。  相似文献   

2.
滇池不同湖区沉积物正构烷烃的分布特征及其环境意义   总被引:1,自引:0,他引:1  
为探明滇池沉积物中有机质的组成特征及其环境意义,2014年7月采集滇池北部和南部各一根柱状沉积物样品,分析了TOC(总有机碳)、TN(总氮)、正构烷烃含量剖面变化规律.结果表明:1滇池沉积物中TOC与TN自20世纪70年代以后增加显著,说明了滇池初级生产力不断提高;2滇池沉积物正构烷烃代用指标n-C27/n-C31比值及Paq和CPI表明,滇池沉积物从下往上草本植物与木本植物交替变化,且沉积物中的高碳数有机质主要来自滇池内源的沉水和漂浮大型植物;3C/N比值及正构烷烃分布特征表明,滇池不同湖区沉积物有机质来源存在差异:滇池北部沉积物中有机质主要来源于內源植物和陆源有机物的人为源;滇池南部沉积物中有机质主要来源于內源大型水生植物和陆源高等植物混源.为此,在今后滇池沉积物有机质的研究中,应加强对滇池不同湖区有机质的深入分析.  相似文献   

3.
滇池PAHs的沉积记录、来源及其生态风险评估   总被引:1,自引:0,他引:1  
采用GC/MS方法分析了滇池沉积柱中16种美国EPA优控的多环芳烃(PAHs)的垂直分布状况,并对其来源变化及生态风险进行了分析和评估.研究表明:滇池沉积柱中PAHs的含量范围为558~6418 ng·g-1,并在20世纪90年代初达到峰值,这明显不同于发达国家的同类研究,也与国内沿海地区和偏远湖泊的相关研究有所不同.滇池沉积物中的PAHs主要来自当地的家庭燃煤、木材和生物秸秆等的低温燃烧过程,但工业燃煤和机动车尾气等高温燃烧过程释放的PAHs的相对含量近年来有明显增加的趋势.风险评估结果显示,滇池中上层沉积物中的PAHs可能存在潜在的生态风险,而这些生态风险主要来自低环数的NAP、FLU、PHEN和高环数的BbF、BaP、DBA等.  相似文献   

4.
淮河中下游沉积物PAHs的稳定碳同位素源解析   总被引:1,自引:0,他引:1  
对淮河中下游水相、悬浮物、沉积物中的PAHs(多环芳烃)进行定量分析,在探讨其分布特征的基础上,利用单体烃稳定碳同位素技术揭示研究区沉积物中PAHs的来源. 结果表明:水相中正阳关的ρ(PAHs)最高,达5.01 ng/mL;悬浮物和沉积物中以蚌埠闸的w(PAHs)最高,分别为9.85和1 175.02 ng/g. 沉积物中PAHs的δ13C在-39.4‰~-17.6‰之间.正阳关、平圩、洛河和蚌埠闸等采样点的高环PAHs的δ13C比低环PAHs的小,表明高环PAHs富集12C(轻碳同位素),显示燃煤源为主要污染源;但这4个采样点PAHs的δ13C与燃煤烟尘相比存在一定差异,表明除燃煤源外可能还存在着少量其他污染源. 双沟镇高环PAHs的δ13C比低环PAHs的大,表明高环PAHs富集13C(重碳同位素),可能是微生物作用所致.   相似文献   

5.
多环芳烃在岩溶地下河表层沉积物-水相的分配   总被引:5,自引:3,他引:2  
蓝家程  孙玉川  肖时珍 《环境科学》2015,36(11):4081-4087
利用实测老龙洞地下河水中和沉积物中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的实际浓度,获取了溶解相-沉积物中PAHs的分配系数Kp值.研究了老龙洞地下河PAHs在水相和沉积物中的质量浓度变化及其在水相和沉积物间的分配.研究结果表明水相和沉积物中PAHs质量浓度分别为81.5~8 089 ng·L-1,平均值(1 439±2 248)ng·L-1和58.2~1 051 ng·g-1,平均值(367.9±342.6)ng·g-1;PAHs组成均以2~3环为主,但沉积物中明显富集高环PAHs.沉积物-水相Kp值分布在55.74~46 067 L·kg-1范围内,随PAHs环数的增加而增大.沉积物-水相中实测的有机碳分配系数(lg Koc)大部分高于预测值上限,PAHs强烈吸附在沉积物上.lg Koc与正辛醇-水分配系数(lg Kow)呈较好的线性自由能关系(R2=0.75),但其斜率小于1,推测地下河沉积物对PAHs化合物的吸收能力较差.  相似文献   

6.
相平衡分配法在滇池沉积物环境质量评价中的应用研究   总被引:8,自引:2,他引:8  
对滇池8个采样点沉积物固相和间隙水中的金属含量进行分析测定,用实测方法计算Cu、Zn、Pb、Cr、Cd、Hg、As等7种金属在滇池沉积物中的分配系数Kp,利用相平衡分配法和国家地表水环境质量标准(GB3838-2002)中的Ⅲ类水质标准确定了滇池沉积物环境质量基准重点探讨了沉积物中的细颗粒物质(<63μm)、酸可挥发性硫化物(AVS)、有机碳(TOC)等主要金属结合相对基准的校正方法.通过对118个样点沉积物中各金属的含量与确定的滇池沉积物环境质量基准值进行比较,结果表明,滇池沉积物存在较为严重的As、Cu、Zn、Cr污染,Pb、Cd污染有扩大的趋势.在外源污染得到控制、水质得到改善的情况下,滇池沉积物会成为内在的金属污染源.  相似文献   

7.
为研究北黄海北部沉积物中多环芳烃(PAHs)的分布特征及控制因素,于2016年7月在北黄海北部采集31个表层沉积物,并对沉积物中16种PAHs、总有机碳(TOC)和粒度进行分析测定。研究结果表明:该海区沉积物中多环芳烃的总含量范围在3.54~93.07 ng/g之间,平均含量34.50 ng/g,在辽东半岛东岸多环芳烃的分布呈由近岸向外海逐渐递减的趋势,总体看该区域PAHs的污染处于较低水平。主成分分析表明该海区沉积物中多环芳烃的主要来源是化石燃料燃烧源和石油源。该区域有机碳的分布受鸭绿江物质输入的影响,自东向西含量逐渐递减。粒度则呈现长山列岛以东,颗粒较粗;长山列岛以西,颗粒较细,空间变化相对较小。进一步分析表明,PAHs的分布主要受鸭绿江、辽东沿岸中小河流以及黄河的物质来源的影响;此外,该区水动力条件也是影响多环芳烃分布的重要因素。  相似文献   

8.
表层沉积物是多环芳烃(PAHs)的重要的汇。由于与上覆水体间的物质交换作用,赋存在沉积物中的PAHs会对一些底栖生物以及水中鱼、虾、蟹、贝等构成威胁,进而通过食物链危害人类的健康,开展沉积物中PAHs修复研究具有重要的理论和实际意义。归纳了陆生植物、红树林植物、水生植物对沉积物中PAHs的修复效果,从植物直接的富集作用和根际作用两大方面总结了植物对沉积物中PAHs的修复机理,并对存在的问题和今后的研究方向提出了建议。  相似文献   

9.
胶州湾不同形态磷的沉积记录及生物可利用性研究   总被引:7,自引:4,他引:3  
利用磷的连续分级浸取法,研究了胶州湾柱状沉积物不同粒级中磷的赋存形态,并探讨了影响磷含量与分布的因素和沉积物中磷的生物可利用性.结果表明,在细、中和粗3个粒级的沉积物中,无机磷是磷的主要赋存形态,Ca-P则是无机磷的优势形态,有机磷只占较小的比例.粒度、有机碳(OC)、pH以及氧化还原电位等是影响胶州湾沉积物中磷的地球化学特征的重要因素.其中除Ca-P外,其他形态的磷大都随着粒度的变细,含量逐渐增加.磷的生物可利用性分析表明,胶州湾潜在的生物可利用磷主要包括可交换态磷、铝结合态磷、铁结合态磷和有机磷等4种赋存形态,并且潜在的生物可利用磷的含量随着粒度的变细,其所占的比例也逐渐增加.沉积物中生物可利用性磷与浮游植物的数量和水体中的磷酸盐大致呈正相关关系.  相似文献   

10.
试验采用大连海湾近海表层沉积物为吸附剂,以粪固醇为吸附质,通过正交实验法,研究了吸附质的初始浓度、反应温度、溶液盐度、pH以及沉积物粒度等因素对近海沉积物吸附粪固醇的影响。结果表明:不同环境因素对吸附的影响程度不同,影响程度依次为吸附质初始浓度>温度>盐度>沉积物粒度>pH。吸附质初始浓度、盐度、温度对粪固醇在沉积物上的吸附作用有一定的影响;沉积物粒度、溶液pH对吸附影响不显著。  相似文献   

11.
截污调水后滇池表层沉积物中16种PAHs的分布特征   总被引:4,自引:3,他引:1  
截污调水等工程实施后,滇池的外源污染已得到有效控制,表层沉积物等内源污染物应加以重视.为研究滇池表层沉积物中16种多环芳烃(PAHs)的分布特征,采用气相色谱-质谱联用法(GC-MS)分析了2016年12月采集的19个滇池表层沉积物样品的PAHs含量,解析其时空分布规律、来源及生态风险.滇池表层沉积物中总多环芳烃(TPAHs)的含量范围为92. 31~1 546. 78 ng·g~(-1),平均值为496. 30 ng·g~(-1),草海TPAHs含量(平均932. 37 ng·g~(-1))远高于外海(平均380. 02ng·g~(-1)),随着截污调水工程的开展,TPAHs含量较2012年大幅下降,已处于我国重点水域中较低水平.滇池表层沉积物中含量最高的物质为荧蒽(80. 65 ng·g~(-1)),毒性当量(TEQ)含量最高的物质为二苯并[a,h]蒽(42. 97 ng·g~(-1)). PAHs组成以4环及5~6环为主(分别占总含量的40. 38%和40. 22%),PAHs构成较以往大体一致.分子比值法分析结果表明,滇池表层沉积物中PAHs主要由生物质或煤的燃烧贡献.基于潜在生态风险标志对比法评估,全湖总体处于低风险水平,但草海的生态风险相对较高,值得进一步关注.本研究结果可为滇池水质的保持与提升提供基础数据和重要参考.  相似文献   

12.
滇池水体和沉积物中营养盐的分布特征   总被引:16,自引:4,他引:12  
在滇池外海不同方位选取6个采样点,研究了水质现状,沉积物Eh,pH,总氮,总磷以及间隙水重金属的剖面分布特征。结果表明,滇池水体仍属富营养化状态。在氧化表层下,Eh随沉积深度的增加迅速降低,沉积物深层为还原状态。pH在沉积物剖面变化不大,为7 0~8 5。滇池沉积物含有丰富的营养物质,总氮和总磷最高质量分数分别为8 67和3 46g kg。剖面分布表明,沉积物表层总氮和总磷含量远高于底层,在表层0~10cm含量随深度增加而迅速降低。重金属元素在水-土界面的浓度梯度为沉积物向水体的扩散提供了条件。不同采样点相比,位于昆明市附近的S6点沉积物内负荷较大。在外源减少的情况下,沉积物内负荷可能在一定时间内成为控制滇池水质的主导因子。   相似文献   

13.
滇池流域硝酸盐污染的氮氧同位素示踪   总被引:3,自引:0,他引:3  
滇池流域硝酸盐污染严重,厘清其来源对硝酸盐污染治理至关重要。本研究在滇池流域收集河水、湖水、井水、雨水样品,分析了无机氮浓度和硝酸根氮、氧同位素比值。总体上,硝酸盐浓度变化范围较大,从低于检测限到高达13.44mg-N/L,显示流域硝酸盐污染存在较大的空间差异。最高浓度出现在流域南部农田区的井水中,井水样品的氮、氧同位素数据大部分落在化学肥料和大气干湿沉降区,表明农业面源和大气输入对流域浅层地下水产生了污染,污染的浅层地下水又是湖泊水体的一个潜在污染源。流域内河流硝酸盐浓度变化范围较大,总体污染程度高于滇池湖泊水体,氮、氧同位素组成表明大部分河流中硝酸盐来自生活污水和人畜粪便。滇池水体的硝酸盐氮、氧同位素组成和河流的相似,说明人畜粪便和生活污水是主要来源。湖泊水体硝酸盐浓度从南向北有逐渐增加的趋势,这与滇池北部紧邻城区(生活污水)、流域南部主要为农田区(面源污染)的空间格局是一致的。总体上,滇池水体的硝酸盐主要来自城市生活污水,农业面源和大气输入。通过地下水途经进入湖泊主要发生在流域南部地区,具体的贡献份额还需要进一步的计算。  相似文献   

14.
滇池典型湖区沉积物粒径与重金属分布特征   总被引:8,自引:1,他引:7  
对滇池3个代表性湖区(草海、湖心区、外海南部)表层(0~10cm)沉积物的粒径组成进行了分析,测试了不同粒径沉积物的主要理化性质和Cu、Cr、Ni、Zn、Pb、Fe、Mn、Cd等8种重金属的质量分数,并对滇池沉积物中重金属质量分数的粒径效应作了校正. 结果表明:滇池表层沉积物粒径主要分布在<250μm的范围内;粉砂(4~<63μm)所占比例最大,平均达到60%;黏土(<4μm)次之,平均占19%. 随着粒径的减小,大部分重金属质量分数在不同粒径的沉积物中呈增加趋势. 重金属在细粒径(<63μm) 沉积物中所占比例平均达79%,显著高于其他粒径(63~<125、125~<250μm). Cr、Cd、Cu、Pb、Zn和Ni具有相似的富集特性,其质量分数高值均出现在粒径为4~<63μm的沉积物中,该粒径沉积物中6种重金属的质量分数分别为土壤背景值的2.04、9.77、4.35、5.11、3.47和4.60倍;而w(Fe)和w(Mn)在各粒径沉积物中无明显差异. 黏土校正结果与不同粒径沉积物黏土校正的理论计算值相差不大. 黏土校正与参比元素校正都适合校正滇池不同粒径沉积物的重金属质量分数.   相似文献   

15.
滇池沉积物内源氮释放风险及控制分区   总被引:2,自引:0,他引:2  
采用淹水培养法测定了滇池20cm沉积物可释放态氮(EN)、潜在可释放态氮(MN)及稳定态氮(FN)含量,并分析了其空间分布特征,结合沉积物定年数据计算了不同形态氮蓄积量.依据沉积物-水界面氮释放通量、EN蓄积量及MN蓄积量对滇池沉积物内源氮污染状况进行分区,评估了不同区域滇池沉积物内源氮释放风险,并对不同分区提出了污染控制措施.结果表明,滇池沉积物内源氮释放风险:外海南部 >外海北部 >外海中部 >草海,潜在释放风险:外海南部 >外海中部 >草海 >外海北部;滇池沉积物氮污染有由北向南转移趋势;滇池全湖20cm沉积物蓄积TN5757.90t,EN637.72t,MN1320.76t,FN3799.42t.根据沉积物氮污染滇池可划分为高污染区、中度污染区、低污染区及安全区,分别占全湖面积的13.51%、15.02%、46.06%、25.42%,其中高污染区主要分布在草海、外海北部盘龙江附近;中度污染区主要分布在高污染区以下从宝象河到观音山区域及滇池出水口海口等区域;低污染区主要分布在中度污染区以下从广谱大沟到整个外海南部区域.高污染区可采取底泥环保疏浚技术,中度污染区可采取安全生态性高的原位控制技术,低污染区可采取覆盖技术,配合水生植被修复技术.  相似文献   

16.
中国主要淡水湖泊沉积物中重金属生态风险研究   总被引:9,自引:0,他引:9  
根据我国主要湖泊表层沉积物中重金属Cr、Cd、Hg、As、Pb、Zn、Cu的污染情况,对沉积物中的重金属分别采用潜在生态风险指数法与地积累指数法进行评价。结果表明:两种方法评价结果基本一致。滇池、红枫湖重金属污染最严重,鄱阳湖、洞庭湖与洪泽湖次之。严重的生态风险不存在,但是Cd在鄱阳湖、滇池和太湖中具有一定的潜在威胁;太湖、巢湖、南四湖重金属潜在生态风险较低。  相似文献   

17.
为研究滇池内源污染特征,于2013年在滇池全湖布设36个采样点,采集表层沉积物样品,并对沉积物中w(NH4+-N)的分布及NH4+-N释放动力学特征进行研究. 结果显示:滇池表层沉积物中w(NH4+-N)为155.8~667.8 mg/kg,平均值为333.7 mg/kg,湖心区域最高. 0~5 min内NH4+-N释放速率最大,可达到3.34~42.31 mg/(kg·min); 5 min后NH4+-N释放速率逐渐降低,并在120 min左右基本达到释放平衡. 沉积物中NH4+-N的释放潜能为17 147~34 163 mg/kg,NH4+-N释放量随着水土质量比的增加而增大;滇池大部分区域NH4+-N的释放潜能相对较高,特别是在草海北部以及外海盘龙江河口处. 滇池沉积物中NH4+-N释放速率、释放潜能均高于长江中下游湖泊沉积物;与同为高原湖泊的洱海相比,其沉积物中NH4+-N释放速率基本相当,但是NH4+-N释放潜能却远高于洱海,表明滇池表层沉积物中NH4+-N具有非常高的释放风险.   相似文献   

18.
滇池表层沉积物对磷的吸附特征   总被引:5,自引:0,他引:5  
在室内模拟条件下,从滇池表层沉积物对磷的吸附动力学与热力学两个角度出发,研究了滇池沉积物对磷的吸附特征,同时探讨了不同磷形态对磷吸附特性的影响,结果表明:1滇池不同形态磷含量顺序为:有机磷钙(O-P)钙结合态磷(Ca-P)金属氧化物结合态磷(Al-P)残渣态磷(Res-P)可还原态磷(Fe-P)弱吸附态磷(NH4Cl-P);2沉积物对磷的吸附动力学过程分为2个阶段,即快吸附和慢吸附阶段.快吸附阶段主要发生在0~0.5 h内,而慢吸附阶段主要发生在0.5~4 h.滇池沉积物对磷的吸附过程主要在4 h内完成.3外海北部上覆水磷酸盐(SRP)浓度低于沉积物中磷的吸附/解吸平衡浓度(EPC0),可初步判断该区域沉积物有向上覆水体释放磷的风险.4不同区域沉积物磷的最大吸附量(Qmax)和总最大吸附量(TQmax)均以外海南部最大.5沉积物本底吸附态磷含量(NAP)与钙结合态磷(Ca-P)呈显著正相关关系(R2=0.5139,p0.05),而其他吸附特征参数与磷形态之间相关性均不显著.6与洱海、太湖等湖泊相比,滇池沉积物磷的本底吸附态磷(NAP)和最大吸附量(Qmax)均处于较高水平,磷污染较为严重.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号