首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 122 毫秒
1.
采用铁刨花-Fenton-絮凝工艺处理染料生产废水,考察了不同Fe~(2+)与H_2O_2摩尔比(1∶3~1∶15)、铁刨花反应时间(2~5h)、Fenton氧化反应时间(20~80 min)下可吸附性有机卤代物(AOX)、色度和总有机碳(TOC)的去除效果.结果表明,AOX、色度和TOC去除率随Fe~(2+)与H_2O_2摩尔比的降低先升高后减少,随铁刨花和Fenton反应时间的增加而持续升高.最优化条件为Fe~(2+)与H_2O_2摩尔比1∶8、铁刨花反应时间4 h和Fenton反应时间60 min,该条件下AOX、色度和TOC的去除率分别为94.2%、93.7%和27.2%.比较实验结果表明,铁刨花-Fenton-絮凝组合工艺对废水AOX、色度和TOC的去除效果远优于铁刨花处理、Fenton氧化、絮凝沉淀的单个技术或两两技术组合效果.GC-MS分析表明,废水中的有机卤代物和苯胺类污染物得到高效去除,此外硝基苯类、苯酚类、苯甲醛类、醚类、腈类和杂环化合物等有毒有害物质也均得到高效去除.叔丁醇捕获·OH实验表明·OH在Fenton反应中的主导作用.  相似文献   

2.
为提高微生物电解池(MEC)利用剩余污泥产氢气和磷回收的效率,采用Fe~(3+)、原儿茶酸(PCA)和H_2O_2体系预调理污泥,探究中性PCA/Fe~(3+)/H_2O_2体系的试剂投加量对污泥液相总磷含量和溶解性化学需氧量(SCOD)的影响.在单因素试验的基础上,通过表面响应法(RSM)优化得到Fe~(3+)和H_2O_2投加量分别为12.96 mmol·L~(-1)和0.45 mol·L~(-1),液相总磷含量和SCOD含量实际值分别为(60.14±0.08) mg·L~(-1)和(3357.67±66.37) mg·L~(-1),模拟效果显著.与未处理的剩余污泥MEC反应器出水相比,经过调理后的剩余污泥MEC反应器出水中的总化学需氧量(TCOD)、多糖和蛋白质的去除率分别提高了30.03%、50.16%和97.31%,氢气转化率提升了1.31倍,有效提升了MEC产氢效率.通过鸟粪石结晶回收MEC污泥上清液中的磷,发现在初始pH值为10、Mg~(2+)浓度为0.056 mol·L~(-1)和NH~+_4浓度为0.08 mol·L~(-1)时效果最佳.鸟粪石晶体质量浓度最高可达7.6 g·L~(-1),晶体纯度最大为88.30%,上清液中77.55%的磷以鸟粪石的形式得到回收.在本研究最优化条件下进行中性PCA/Fe~(3+)/H_2O_2体系调理剩余污泥微生物电解池产氢与磷回收全过程中产出经济价值达到2.36元.实验研究最终表明,经过Fe~(3+)/PCA/H_2O_2体系调理污泥可促进污泥中磷的释放和MEC处理污泥的产氢效率,为探究污泥资源化提供了新的研究思路.  相似文献   

3.
王昶  张宗鹏  曾明 《环境工程》2015,33(12):49-53
采用均相Fenton高级氧化技术对苯甲酸废水进行降解,考察了p H值、H2O2投加量、Fe~(2+)的用量、苯甲酸溶液的初始浓度等因素对苯甲酸降解的影响。结果表明:在室温条件下,最佳初始pH=3,H_2O_2最佳的经济投加量(Qth)为12.3 mmol/L,Fe~(2+)最佳投加量为0.41 mmol/L(即c(H_2O_2)∶c(Fe~(2+))=30∶1);经60 min反应后,100 mg/L苯甲酸基本可完全去除,TOC去除率也可达41.9%以上;当苯甲酸浓度为200 mg/L时,TOC去除率最大,可达45.4%;当苯甲酸浓度高于200 mg/L时,可以采取分批投加H_2O_2的方式以获得较高的去除率。  相似文献   

4.
超声/Fe0/EDTA体系对印染污泥中多环芳烃的降解   总被引:1,自引:0,他引:1  
Fe~0/EDTA类芬顿体系能产生氧化能力极强的羟基自由基(·OH),已被广泛应用于有机污染物的去除.提高·OH的生成速率和浓度是高效降解有机污染物的关键.因此,本文利用超声/Fe~0/EDTA体系处理印染污泥,探讨了不同反应参数对体系中产生·OH的影响,考察了该体系对印染污泥中多环芳烃(PAHs)的去除效果.结果表明,在pH为3.0,超声功率为540 W,Fe~0投加量为15 g·L~(-1),EDTA浓度为2.0 mmol·L~(-1)的最佳条件下,·OH浓度高达862μmol·L~(-1).印染污泥中的铁絮凝剂可作为超声/Fe~0/EDTA体系中Fe~(2+)和Fe~(3+)的来源,促使该体系循环产生H_2O_2和·OH.超声/Fe~0/EDTA体系产生的·OH能快速有效地降解印染污泥中的PAHs,∑_(16)PAHs的平均去除率达到77%,同时有机质含量下降了10.1%.  相似文献   

5.
针对电镀有机废水COD浓度高、可生化性差等特点,选取广东深圳某工业园区电镀厂的除油废水(ρ(COD)为2 000~2 500 mg/L,pH=13.1~13.5),采用Fenton法进行预处理,探索了H_2O_2投加量、n(H_2O_2)/n(Fe~(2+))、pH及反应时间对COD和BOD_5的去除效果,得到的最佳Fenton工艺参数为:H_2O_2投加量=15 00 mg/L,n(H_2O_2)/n(Fe~(2+))=4∶1,pH=3,反应时间=30 min。在此条件下,COD去除率可达到89.76%,同时B/C从0.19提高到0.31,有机废水的可生化性大幅提高,能达到可生化处理的基本要求。采用Fenton法对电镀有机废水进行预处理是可行的。  相似文献   

6.
采用Fenton氧化法对生活垃圾焚烧厂渗滤液MBR出水开展试验研究,考察了初始p H值、H_2O_2投加量和Fe~(2+)投加量对处理效果的影响,分析了最佳反应条件下的处理效果和药剂成本。结果表明:在初始p H=4~5、Fe~(2+)投加量≥2.5 mmol/L、H_2O_2加量=33.6~62.5 mmol/g COD的条件下,Fenton氧化出水COD可下降至121 mg/L,B/C由0.016~0.019上升至0.288~0.331,Fenton氧化法药剂成本为1.14~5.67元/吨水。  相似文献   

7.
均相Fenton法深度处理丙烯腈生化尾水   总被引:2,自引:1,他引:1  
采用均相Fenton法深度处理丙烯腈生化处理工艺尾水,通过单因素法分析了H_2O_2投加量、Fe~(2+)投加量、初始p H值和反应时间对尾水COD去除率的影响;并采用中心响应曲面法优化Fenton处理的工艺参数,得到最佳反应条件为:Fe~(2+)投加量为1.02 mmol·L-1,H_2O_2投加量为11.13 mmol·L~(-1),初始pH值为3.66,反应时间为105 min,COD去除率达到61.1%.处理后尾水COD值低于50 mg·L~(-1),可满足石化行业一级排放标准.Fenton工艺对尾水中特征污染物均有较好的去除效果,最佳反应条件下丙烯腈、间苯二甲腈、3-氰基吡啶的去除率分别为99.5%、97.6%、73.7%;Fenton法对3种特征污染物的降解能力从大到小依次为:丙烯腈间苯二甲腈3-氰基吡啶.三维荧光光谱分析表明,尾水中存在大量类富里酸荧光物质,其中,紫外区类富里酸含量最高,Fenton工艺在较短反应时间和较少的试剂投加量条件下,便可有效地去除这类难降解物质.  相似文献   

8.
Fenton预处理强化污泥脱水:胞外聚合物和黏度的特性研究   总被引:2,自引:2,他引:0  
Fenton试剂具有高效破坏污泥絮体及改善污泥生物可降解性的能力,而被视为强化污泥脱水的有效手段。对Fenton预处理强化污泥脱水过程中污泥胞外聚合物(EPS)和黏度对污泥脱水性能的影响进行了研究,污泥脱水性能采用毛细吸水时间(CST)评价。结果表明:Fenton预处理时,H_2O_2添加量和m(H_2O_2)∶m(Fe~(2+))对污泥的脱水性能有重要影响,优化的污泥脱水条件为m(H_2O_2)∶m(Fe~(2+))=1∶1,H_2O_2添加量200 mg/g(VSS);m(H_2O_2)∶m(Fe~(2+))和H_2O_2添加量对污泥中EPS分布影响显著,EPS分量分布具有明显差异,可能原因为Fenton试剂对污泥絮体结构的破坏程度不同;污泥CST与EPS分量之间基本不符合线性相关,而非线性回归随H_2O_2添加量变化相关性排序为:100>150>200>25(单位为mg/g,以单位质量VSS计);污泥黏度总体上随m(H_2O_2)∶m(Fe~(2+))的增大而增加,而随H_2O_2添加量的增加逐渐下降,污泥CST值与黏度总体上呈显著正相关。  相似文献   

9.
目的确定Fenton法对焦化废水深度处理的去除率、投药比和反应时间。方法选取生化后的二沉出水,加入硫酸调节水样pH值至3.5,加入H_2O_2氧化剂和FeSO_4催化剂,在充分搅拌条件下,由Fe~(2+)催化H_2O_2反应产生羟基自由基(·OH),利用其超强氧化能力深度分解氧化有机物,从而有效去除废水中生物难分解的COD。通过调节H_2O_2、Fe~(2+)用量以及记录不同反应时间下的结果,从而分析出COD最佳去除率的COD:H_2O_2:FeSO_4的摩尔比以及反应时间,以便确定工程应用时的最佳工艺条件。结果通过试验得知,COD:H_2O_2的摩尔比为1∶4时是比较理想的投加比,随着Fe~(2+)投入量的增加,COD去除效果先增加后下降,继续增加Fe~(2+)用量后COD去除率再次上升随后又下降,其变化曲线呈M状,最高去除率为84.6%。随着反应时间的延长,COD去除率上升,在20~30 min左右基本趋于稳定。结论利用Fenton试剂处理对焦化废水进行深度处理时,Fenton药剂投加比与COD去除率的关联曲线为"M"型;药剂最佳投加摩尔比有两个区间,即COD:H_2O_2:FeSO_4=1:4:2.5~3和1:4:4~4.5区间,应避开效果不理想的1:4:3~4;从技术经济角度考虑,最佳反应时间可取30~45 min;控制好Fenton药剂投加比和反应时间,均能使出水COD降低至80 mg/L以下。  相似文献   

10.
通过Hemin催化聚合苯胺工艺在纳米Fe_3O_4上负载导电聚合物聚苯胺(PANI),制备得到了具有高效催化活性的异相类Fenton反应用的催化剂PANI@Fe_3O_4.研究了PANI@Fe_3O_4/H_2O_2体系中罗丹明B(RhB)浓度、H_2O_2浓度、PANI@Fe_3O_4投加量、pH值以及·OH捕获剂对RhB降解的影响.结果表明,对于400mg/L的RhB溶液,当催化剂投加量为0.5g/L,H_2O_2浓度为0.04mol/L时,PANI@Fe_3O_4/H_2O_2可在pH3.75~12.0间达到98%以上的去除率,H_2O_2的利用率达到80%.将该体系对于初始COD为1715mg/L模拟混合染料废水,可去除70%的C0D,PANI@Fe_3O_4/H_2O_2体系适用pH值范围广,催化活性高,H_2O_2利用率高且水相中残留铁离子少.机理分析表明,在PANI@Fe_3O_4中PANI和纳米Fe_3O_4存在明显的协同效应,纳米Fe_3O_4部分溶解释放出Fe~(2+),并通过Fe~(3+)和Fe~(2+)间的快速电子转移补充催化所需Fe~(2+).PANI提供反应所需H~+,并通过与铁离子形成配位键而减少了铁离子释放到水相中.  相似文献   

11.
均相Fenton法处理干法腈纶废水工艺优化与分析   总被引:2,自引:0,他引:2  
采用均相Fenton法处理干法腈纶废水,并通过单因素试验和基于中心组合设计的响应面法考察了H2O2投加量、Fe2+投加量、初始pH值及反应时间的影响及其交互作用.同时,建立了以COD去除率为响应值的二次响应曲面模型,并采用方差分析对模型进行了验证.结果表明,影响COD去除效果的各因子显著性顺序依次为:Fe2+投加量>H2O2投加量>初始pH值>反应时间;Fe2+投加量与初始pH值的交互作用最为显著;反应最优组合条件为:H2O2投加量90.0mmol.L-1,Fe2+投加量30.0mmol.L-1、初始pH值3.1,反应时间113.6min,该条件下COD去除率为47.1%,与模型预测值48.5%基本一致.  相似文献   

12.
光助芬顿反应催化降解气体中甲苯   总被引:3,自引:0,他引:3  
以甲苯作为挥发性有机污染物(VOCs)的代表,利用连续进气动态实验装置,研究光助芬顿反应降解气体中甲苯的作用.考察了芬顿试剂溶液初始p H、H2O2浓度、Fe2+浓度以及甲苯初始浓度对降解甲苯的影响,并利用在线质谱和色谱对产物进行了定性、定量分析.结果表明,紫外光照加快了羟基自由基的生成,显著提高了气体中甲苯的去除率;p H=3.0、H2O2浓度为20 mmol·L-1、Fe2+浓度为0.3 mmol·L-1的条件下,甲苯去除率最高;当甲苯初始浓度为260 mg·m-3时,去除率能够达到98%;光助芬顿反应催化降解气体中甲苯实验未检测到CO2之外的中间产物,CO2产率分析表明去除的甲苯全部转化为CO2.  相似文献   

13.
采用紫外(UV)耦合Fenton反应产生活性氧物种降解准好氧矿化垃圾床渗滤液尾水中的难降解污染物.考察了初始pH值、双氧水和二价铁(Fe~(2+))投加量对污染物去除效能的影响,并采用醇类猝灭实验和三维荧光技术解析了体系产生的主要活性氧物种及其腐殖质的降解机制.结果表明,UV-Fenton体系可协同、有效地处理准好氧矿化垃圾床渗滤液尾水中的污染物.增大双氧水和二价铁投加量可提高体系降解有机物的能力与反应速率,初始pH值为3.0时有机物降解效果最佳,中性与碱性环境均会显著抑制体系对有机物的降解.在H_2O_2投加量为0.084 mol·L~(-1),Fe~(2+)投加量为0.056 mol·L~(-1),初始pH值为3.0的条件下,渗滤液尾水COD去除率与反应速率常数最终分别为77.22%和0.04679.经UV-Fenton体系处理后,得益于体系主要的活性氧物种·OH与O■对渗滤液尾水中芳香类有机物质的有效降解,同时,可见区荧光峰值降低了51.00%,紫外区荧光峰值先增大后减小.因此,渗滤液中大分子物质大幅减少,小分子物质相对增多.  相似文献   

14.
Fenton氧化深度处理石化废水厂二级出水研究   总被引:10,自引:5,他引:5  
王翼  吴昌永  周岳溪  张雪  董波  陈学民 《环境科学》2015,36(7):2597-2603
采用连续流Fenton氧化对石化废水处理厂二级出水进行了处理试验,研究了药剂投量对COD及磷处理效果的影响,同时对处理过程中有机物的变化特性进行了分析.结果表明,原水COD平均为64.8 mg·L-1,PO3-4-P平均为0.79 mg·L-1,当H2O2(30%)投加量为0.4 m L·L-1,Fe SO4·7H2O的投加量为0.8 g·L-1,PAM投加量为0.9 mg·L-1,停留时间为30 min时,COD的平均去除率为24.3%,出水COD低于50 mg·L-1,PO3-4-P平均去除率为95.5%,原水中相对分子质量小于1×103的有机物占80.4%,Fenton氧化处理后该部分比例增加至95.6%.三维荧光分析结果表明,Fenton氧化对水中蛋白类、酚类去除效果显著.GC-MS结果表明,石化二级出水中检出主要有机物约117种,氧化后检出27种,含不饱和键类有机物去除明显.Fenton氧化可用于石化二级出水的深度处理.  相似文献   

15.
二甲基砷作为甲基砷的主要种类之一,主要由含砷废水的排放和农药滥用进入环境水体,进而严重威胁着人类的健康.通过改进电芬顿反应中Fe~(2+)的投加方式,构建了以铁棒为感应阳极、RuO_2/Ti网为阳极、2个活性炭纤维为双阴极的感应电芬顿体系.为探究感应电芬顿体系对二甲基砷的降解效果与机理,考察了反应过程中初始pH、电流密度、反应物初始浓度等因素对二甲基砷去除效果的影响.结果表明,在初始pH值为3,电流密度为2 m A·cm~(-2),二甲基砷初始浓度为5 mg·L~(-1)的最佳条件下,经感应电芬顿反应240 min后,二甲基砷去除率高达94.4%.在此体系中,感应铁电极不断释放的Fe~(2+)与阴极产生的H_2O_2发生电芬顿反应产生羟基自由基将二甲基砷降解为一甲基砷、As(Ⅲ)和As(V),同时,铁离子水解生成的铁的羟基络合物将二甲基砷、一甲基砷、As(III)和As(V)吸附在其表面,从而达到二甲基砷的高效去除.  相似文献   

16.
芬顿试剂氧化对污泥脱水性能的影响   总被引:3,自引:0,他引:3  
利用芬顿试剂调理污泥,以WC(污泥滤饼含水率)和CST(毛细吸水时间)作为评价污泥脱水性能的指标,通过分析污泥中各层ρ(EPS)(EPS为胞外聚合物)和上清液中小分子有机物质量浓度来阐明污泥脱水性能的变化. 结果表明:芬顿试剂调理可促进EPS氧化分解,TB-EPS(紧密结合的胞外聚合物)破解转化为LB-EPS(松散结合的胞外聚合物)和S-EPS(上清液层胞外聚合物),大幅降低WC和CST. 试验中当pH为4,w(H2O2)和 w(Fe2+)均为40 mg/g时,ρ(EPS)降低了33.04%,WC和CST分别降至63.36%和28.7 s. Pearson相关性分析表明,ρ(TB-EPS)与WC和CST均存在显著的正相关性(P<0.01),是影响污泥脱水性能的重要因素,而ρ(LB-EPS)和ρ(S-EPS)与污泥脱水性能的相关性较低. 液相色谱分析表明,随着芬顿试剂投加量的增大,EPS等有机物分解程度增大,污泥上清液中小分子有机物种类明显增多,其质量浓度显著升高,ρ(甲酸)和ρ(乙酸)分别由原污泥的52.72、15.99 mg/L升至446.05、522.36 mg/L.   相似文献   

17.
甘肃省某精细化工企业实际生产废水成分复杂、有机物含量高、可生化性差,为满足后续生化工艺需求,急需开展适宜的预处理技术研究.采用Fenton氧化工艺对该企业废水进行预处理,在单因素试验基础上,以初始pH、H2O2投加量、n(H2O2):n(Fe2+)、反应时间为考察因素,CODCr去除效果为响应值,构建响应曲面模型,分析4个独立因素及各因素之间的交互作用对CODCr去除效果的影响;同时,对反应过程进行表观反应动力学分析,采用紫外光谱及傅立叶变换红外光谱分析废水有机物结构变化,探究该反应过程机理.结果表明:①废水预处理的最佳工艺条件为初始pH 4、H2O2投加量8 mL/L、n(H2O2):n(Fe2+)12、反应时间88 min,废水CODCr去除率达30.15%;模型的实际运行结果与预测值接近,模型可靠.②Fenton氧化降解该精细化工废水中有机物途径复杂,难以通过单一的底物模型进行拟合.③Fenton氧化能有效降解废水中不饱和有机物,但出水中仍含有酰胺类、不饱和醛类和芳香类化合物.研究显示,Fenton预处理能有效降解废水中难降解有机物,但出水仍未达到后续生化处理要求,还需进一步优化或与其他预处理工艺组合.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号